Malaysian Journal of Analytical Sciences Vol 25 No 2 (2021): 268 - 285

 

 

 

 

VOLTAMMETRIC TECHNIQUE FOR DETERMINATION OF ARSENIC RESIDUES IN CALCIUM CARBIDE RIPENED CLIMACTERIC FRUITS

 

(Teknik Voltammetrik bagi Penentuan Sisa Arsenik dalam Pematangan Buah Klimakterik Menggunakan Kalsium Karbida)

 

Nurasmat Mohd Shukri1, Noor Zuhartini Md Muslim1*,  Nur Fazeera Kamal1, Faizuan Abdullah2

 

1School of Health Sciences,

Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia

2Department of Chemistry, Faculty of Science,

Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia

 

*Corresponding author: zuhartini@usm.my

 

 

Received: 13 December 2020; Accepted: 9 February 2021; Published:  25 April 2021

 

 

Abstract

Calcium carbide (CaC2) often being used as one of the fruit ripening agents due to cheaper cost and readily available in the market. However, it is not recommended to use CaC2 in Malaysia, because the arsenic (As) residues which present as impurities in this fruit ripening agents can cause serious adverse effect to human consumption. Voltammetric measurement using a gold electrode in acidic medium (2 M HCl) was developed to determine the As residues in the fruit samples. This technique observed the electrochemical behaviour and quantitative analysis of the As(V) species at the gold electrode. It was found that As(V) undergone irreversible oxidation process at the gold electrode. The working parameters validated for differential pulse anodic stripping voltammetry (DPASV) were Ei = -0.20 V, Ef = +0.30 V, v = 0.02 V/s, Eacc1 = -1.10 V, tacc1 = 120 s, Eacc2 = +0.04V, tacc2 = 10 s and pulse amplitude = 0.05 V which produced peak potential at +0.10 V. The LOD and LOQ using statistical method were 1.3 ppb and 4 ppb, respectively. While by visual observation were 0.7 ppb and 2 ppb, respectively. The method successfully applied for the estimation of As residue in fruit ripening that was used CaC2 as a ripening agent and also As(V) in fruits bought from local market. Therefore, the developed voltammetry method can be a great potential instrument to measure As(V) in fruit sample.

 

Keywords:   differential pulse anodic stripping voltammetry, gold electrode, arsenic, calcium carbide, climacteric fruits

 

Abstrak

Kalsium karbida (CaC2) sering digunakan sebagai salah satu agen pematangan buah kerana harganya yang lebih murah dan mudah didapati di pasaran. Walau bagaimanapun, tidak digalakkan menggunakan CaC2 di Malaysia, kerana sisa arsenik (As) yang hadir sebagai kekotoran pada agen pematangan buah ini boleh menyebabkan kesan buruk yang serius terhadap penggunaan manusia. Pengukuran voltammetrik menggunakan elektrod emas dalam medium berasid (2 M HCl) dikembangkan untuk menentukan sisa As dalam sampel buah. Teknik ini memerhatikan tingkah laku elektrokimia analisis kuantitatif spesies As(V) pada elektrod emas. Didapati bahawa As(V) menjalani proses pengoksidaan yang tidak berbalik pada elektrod emas. Parameter kerja yang disahkan untuk voltammetri denyut pembeza pelucutan anodik (DPASV) adalah Ei = -0.20 V, Ef = +0.30 V, v = 0.02 V/s, Eacc1 = -1.10 V, tacc1 = 120 s, Eacc2 = +0.04V, tacc2 = 10 s dan nadi amplitud = 0.05 V yang menghasilkan potensi puncak pada +0.10 V. LOD dan LOQ menggunakan kaedah statistik masing-masing adalah 1.3 ppb dan 4 ppb, sementara dengan pemerhatian visual masing-masing 0.7 ppb dan 2 ppb. Kaedah ini berjaya digunakan untuk perkiraan sisa As dalam pematangan buah yang mengunakan CaC2 sebagai agen pematangan dan As(V) pada buah-buahan yang dibeli di pasar tempatan. Oleh itu, kaedah voltammetri yang dikembangkan dapat menjadi instrumen berpotensi besar untuk mengukur As(V) dalam sampel buah.

 

Kata kunci:     voltammetri denyut pembeza pelucutan anodik, elektrod emas, arsenik, kalsium karbida, buah klimaterik

 

References

1.      Islam, Md. N., Imtiaz, M. Y., Alam, S. S., Nowshad, F., Shadman, S. A. and Khan, M. S. (2018). Artificial ripening on banana (Musa Spp.) samples: Analyzing ripening agents and change in nutritional parameters Yildizlez, F., (Ed.). Cogent Food & Agriculture, 4: 1–16.

2.      Bouzayen, M., Latché, A., Nath, P. and Pech, J.C. (2010). Mechanism of fruit ripening. In: Pua, E.C. And Davey, M.R., (Eds.) Plant developmental biology - biotechnological perspectives. Springer Berlin Heidelberg. Berlin, Heidelberg: pp. 319-339.

3.      Prasanna, V., Prabha, T. N. and Tharanathan, R. N. (2007). Fruit ripening phenomena–an overview. Critical Reviews in Food Science and Nutrition, 47: 1-19.

4.      Dhembare, A.J. (2013). Bitter truth about fruit with reference to artificial ripener. Archives of Applied Science Research, 5: 45-54.

5.      Siddiqui, W. and Dhua, R. S. (2010). Eating artificially ripened fruits is harmful. Current Science, 99: 1664-1668.

6.   Mondal, P., Balo Majumder, C. and Mohanty, B. (2007). Removal of trivalent arsenic (As(III)) from contaminated water by calcium chloride (CaCl2)-impregnated rice husk carbon. Industrial & Engineering Chemistry Research, 46: 2550-2557.                                                                                  

7.      Kjuus, H., Andersen, A. and Langard, S. (1986). Incidence of cancer among workers producing calcium carbide. Occupational and Environmental Medicine, 43: 237-242.

8.      Rohani, M., (1999). Proses pemasakan dan penyahhijauan. In: pengendalian lepas tuai buah-buahan dan sayur-sayuran tropika. Institut Penyelidikan dan Kemajuan Pertanian Malaysia (Mardi): pp. 70-76.

9.      Consumers Association of Penang (2011). Ban the Use of Carbide Gas to Ripen Fruits. Access from http://www.consumer.org.my/index.php/food/safety/502-ban-the-use-of-carbide-gas-to-ripen-fruits.

10.   Ur-Rahman, A., Chowdhury, F. R. and Alam, M. B. (2008). Artificial ripening: What we are eating. Journal of Medicine, 9(1): 42-44.

11.   Chandel, R., Sharma, P. C. and Gupta, A. (2018). Method for detection and removal of arsenic residues in calcium carbide ripened mangoes. Journal of Food Processing and Preservation, 42: 1-6.

12.   Benhadria, N., Attar, T. and Messaoudi, B. (2020). Understanding the link between the detection limit and the energy stability of two quercetin–antimony complexes by means of conceptual DFT. South African Journal of Chemical, 73: 120-124.

13.   Behadria, N., Messaoudi, B. and Attar, T. (2020). The study of the correlation between the detection limit and the energy stability of two antimony complexes by means of conceptual DFT. Malaysian Journal of Chemistry, 22: 111-120.

14.   Attar, T., Messaoudi, B. and Benhadria, N. (2020). DFT theoretical study of some thiosemicarbazide derivatives with copper. Chemistry & Chemical Technology, 14: 20-25.

15.   Metrohm, (2019). Determination of arsenic by stripping voltammetry at the rotating gold electrode. https://www.metrohm.com/sv-se/applications/ab-226 [Accessed online 16 April 2019]. 

16.   Miller, J. N. and Miller, J. C. (2000). Statistics and chemometrics for analytical chemistry. 4th Edition, Pearson Education.

17.   Garlaschelli, F., Alberti, G., Fiol, N. and Villaescusa, I. (2017) Application of anodic stripping voltammetry to assess sorption performance of an industrial waste entrapped in alginate beads to remove As(V). Arabian Journal of Chemistry, 10: 1014-1021.

18.   Association of Official Analytical Chemists (1990). AOAC: Official Methods of Analysis (Volume 1). In: Official Methods of Analysis of The Association Of Official Analytical Chemists. Association of Official Analytical Chemists, Inc, Virginia, USA: pp. 1-771.  

19.   Izumi, T., Yokohama, Y. and Watanabe, I. (1991). Activation of a gold electrode by electrochemical oxidation-reduction pretreatment in hydrochloric acid. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 303: 151-160.

20.   Fischer, L. M., Tenje, M., Heiskanen, A., Masuda, N., Castillo, J., Bentien, J., Emneus, J., Jakobsen M. H. and Boisen, A. (2009). Gold cleaning methods for electrochemical detection applications. Microelectronic Engineering, 86: 1282-1285.

21.   Giacomino, A., Abollino, A., Lazzara M., Malandrino, M. and Mentasti, E. (2011). Determination of As(III) by anodic stripping voltammetry using a lateral gold electrode: Experimental conditions, electron transfer and monitoring of electrode surface. Talanta, 83: 1428-1435.

22.   Susteric, M. G., Almeida, N. V., Von Mengershausen, A. E. and Esquenoni, S. M. (2012). Hydrogen oxidation on gold electrode in sulphuric acid solution. International Journal of Hydrogen Energy, 37: 14747-14752.

23.   Zhang, W., Bas, A.D., Ghali, E. and Choi, Y., (2015). Passive behavior of gold in sulfuric acid medium. Transactions of Nonferrous Metals Society of China, 25: 2037-2046.

24.   Burke, L. D., Moran, J. M. and Nugent, P. F. (2003). Cyclic voltammetry responses of metastable gold electrodes in aqueous media. Journal of Solid State Electrochemistry, 7: 529-538.

25.   Elgrishi, N., Rountree, K. J., McCharty, B. D., Rountree, Eisenhart, T. S. and Dempsey, J. R. (2018). A practical beginner’s guide to cyclic voltammetry. Journal of Chemical Education, 95: 197-206.

26.   Yilmaz, S., Baba, B., Baba, A., Yagmur, S. and Citak, M. (2009). Direct quantitative determination of total arsenic in natural hotwaters by anodic stripping voltammetry at the rotating lateral gold electrode. Current Analytical Chemistry, 5: 29-34.

27.   Cavicchioli, A., La-Scalea, M. A. and Gutz, I. G. R. (2004). Analysis and speciation of traces of arsenic in environmental, food and industrial samples by voltammetry: A review. Electroanalysis, 16: 697-711.

28.   United State Environmental Protection Agency (1996). Arsenic in aqueous samples and extracts by anodic stripping voltammetry: pp. 1-9.

29.   Wei, Z. and Somasundaran, P. (2004). Cyclic voltammetric study of arsenic reduction and oxidation in hydrochloric acid using a Pt RDE. Journal of Applied Electrochemistry, 34: 241-244.

30.   Salaün, P., Planer-Friedrich, B. and Van Den Berg, C. M. G. (2007). Inorganic arsenic speciation in water and seawater by anodic stripping voltammetry with a gold microelectrode. Analytica Chimica Acta, 585: 312-322.

31.   Taşdemir, İ. H. (2014). Electrochemistry and determination of cefdinir by voltammetric and computational approaches. Journal of Food and Drug Analysis, 22: 527-536.

32.   Kopanica, M. and Novotný, L. (1998). Determination of traces of arsenic(III) by anodic stripping voltammetry in solutions, natural waters and biological material. Analytica Chimica Acta, 368(3): 211-218.

33.   Mardegan, A., Scopece, P., Ugo, P. and Moretto, L. M. (2015). Ensembles of gold nanowires for the anodic stripping voltammetric determination of inorganic arsenic. Journal of Nanoscience and Nanotechnology, 15(5): 3417–3422.

34.   Bu, L., Liu, J., Xie, Q. and Yao, S. (2015). Anodic stripping voltammetric analysis of trace arsenic(III) enhanced by mild hydrogen-evolution at a bimetallic Au-Pt nanoparticle modified glassy carbon electrode. Electrochemistry Communications, 59: 28-31.

35.   Jedryczko, D., Pohl, P. and Welna, M. (2016). Inorganic arsenic speciation in natural mineral drinking waters by flow-through anodic stripping chronopotentiometry. Talanta, 150: 265-271.

36.   Zhou, C., Yang, M., Li, S. S., Jiang, T. J., Liu, J. H., Huang, X. J. and Chen, X. (2017). Electrochemically etched gold wire microelectrode for the determination of inorganic arsenic. Electrochimica Acta, 231: 238-246.

37.   Tupiti, W., Chandra, S. and Prasad, S. (2018). Sensitive inorganic arsenic speciation on a voltammetric platform in environmental water samples. Microchemical Journal, 139: 301-305.

38.   Caseiro, A. Bauer, H., Schmidl, C., Pio, C. A. and Puxbaum, H. (2009). Wood burning impact on PM10 in three Austrian regions. Atmospheric Environment, 43: 2186-2195.

39.   Unsworth, J. (2010). Guidance on residue analytical methods. Access from http://agrochemicals.iupac.org/.

40.   Noor Shaeda, I., Irniza, R., Sarva, M. P. and Emilia, Z.A. (2018). Calcium carbide (CaC2) exposure from fruit ripening process and health effects among fruit farmers: A research review. International Journal of Public Health and Clinical Sciences, 5: 91-101.

41.   Asif, M. (2012). Physico-chemical properties and toxic effect of fruit-ripening agent calcium carbide. Annals of Tropical Medicine and Public Health, 5: 150-156.