Malaysian
Journal of Analytical Sciences Vol 25 No 2
(2021): 268 - 285
VOLTAMMETRIC TECHNIQUE FOR DETERMINATION OF ARSENIC RESIDUES IN
CALCIUM CARBIDE RIPENED CLIMACTERIC FRUITS
(Teknik Voltammetrik bagi
Penentuan Sisa Arsenik dalam Pematangan Buah Klimakterik
Menggunakan Kalsium Karbida)
Nurasmat Mohd Shukri1, Noor Zuhartini Md Muslim1*, Nur Fazeera Kamal1, Faizuan
Abdullah2
1School of Health Sciences,
Universiti Sains Malaysia, 16150 Kubang
Kerian, Kelantan, Malaysia
2Department of Chemistry, Faculty of
Science,
Universiti Teknologi Malaysia,
81310 Johor Bahru, Malaysia
*Corresponding author: zuhartini@usm.my
Received: 13 December 2020; Accepted: 9 February 2021;
Published: 25 April 2021
Abstract
Calcium
carbide (CaC2) often being used as one of the fruit ripening agents
due to cheaper cost and readily available in the market. However, it is not
recommended to use CaC2 in Malaysia, because the arsenic (As)
residues which present as impurities in this fruit ripening agents can cause
serious adverse effect to human consumption. Voltammetric measurement using a
gold electrode in acidic medium (2 M HCl) was developed to determine the As
residues in the fruit samples. This technique observed the electrochemical behaviour
and quantitative analysis of the As(V) species at the gold electrode. It was
found that As(V) undergone irreversible oxidation process at the gold
electrode. The working parameters validated for differential pulse anodic
stripping voltammetry (DPASV) were Ei = -0.20 V, Ef =
+0.30 V, v = 0.02 V/s, Eacc1 = -1.10 V, tacc1 = 120 s, Eacc2
= +0.04V, tacc2 = 10 s and pulse amplitude = 0.05 V which produced
peak potential at +0.10 V. The LOD and LOQ using statistical method were 1.3
ppb and 4 ppb, respectively. While by visual observation were 0.7 ppb and 2
ppb, respectively. The method successfully
applied for the estimation of As residue in fruit ripening that was used CaC2
as a ripening agent and also As(V) in fruits bought from local market.
Therefore, the developed voltammetry method can be a great potential instrument
to measure As(V) in fruit sample.
Keywords: differential
pulse anodic stripping voltammetry,
gold electrode, arsenic, calcium carbide, climacteric fruits
Abstrak
Kalsium karbida (CaC2) sering digunakan
sebagai salah satu agen pematangan buah kerana harganya yang lebih murah dan
mudah didapati di pasaran. Walau bagaimanapun, tidak digalakkan menggunakan CaC2
di Malaysia, kerana sisa arsenik (As) yang hadir sebagai kekotoran pada agen
pematangan buah ini boleh menyebabkan kesan buruk yang serius terhadap
penggunaan manusia. Pengukuran voltammetrik menggunakan elektrod emas dalam
medium berasid (2 M HCl) dikembangkan untuk menentukan sisa As dalam sampel
buah. Teknik ini memerhatikan tingkah laku elektrokimia analisis kuantitatif
spesies As(V) pada elektrod emas. Didapati bahawa As(V) menjalani proses
pengoksidaan yang tidak berbalik pada elektrod emas. Parameter kerja yang
disahkan untuk voltammetri denyut pembeza pelucutan anodik (DPASV) adalah Ei
= -0.20 V, Ef = +0.30 V, v = 0.02 V/s, Eacc1 = -1.10 V, tacc1
= 120 s, Eacc2 = +0.04V, tacc2 = 10 s dan nadi amplitud =
0.05 V yang menghasilkan potensi puncak pada +0.10 V. LOD dan LOQ menggunakan
kaedah statistik masing-masing adalah 1.3 ppb dan 4 ppb, sementara dengan
pemerhatian visual masing-masing 0.7 ppb dan 2 ppb. Kaedah ini berjaya
digunakan untuk perkiraan sisa As dalam pematangan buah yang mengunakan CaC2
sebagai agen pematangan dan As(V) pada buah-buahan yang dibeli di pasar
tempatan. Oleh itu, kaedah voltammetri yang dikembangkan dapat menjadi
instrumen berpotensi besar untuk mengukur As(V) dalam sampel buah.
Kata
kunci: voltammetri denyut pembeza pelucutan anodik, elektrod
emas, arsenik, kalsium karbida, buah klimaterik
References
1.
Islam, Md. N., Imtiaz, M.
Y., Alam, S. S., Nowshad, F., Shadman, S. A. and Khan, M. S. (2018). Artificial
ripening on banana (Musa Spp.) samples: Analyzing ripening agents and change in
nutritional parameters Yildizlez, F., (Ed.). Cogent Food & Agriculture,
4: 1–16.
2.
Bouzayen, M., Latché, A.,
Nath, P. and Pech, J.C. (2010). Mechanism of fruit ripening. In: Pua, E.C. And
Davey, M.R., (Eds.) Plant developmental biology - biotechnological
perspectives. Springer Berlin Heidelberg. Berlin, Heidelberg: pp. 319-339.
3.
Prasanna, V., Prabha, T.
N. and Tharanathan, R. N. (2007). Fruit ripening phenomena–an overview. Critical
Reviews in Food Science and Nutrition, 47: 1-19.
4.
Dhembare, A.J. (2013).
Bitter truth about fruit with reference to artificial ripener. Archives of Applied Science Research, 5:
45-54.
5.
Siddiqui, W. and Dhua, R.
S. (2010). Eating artificially ripened fruits is harmful. Current Science,
99: 1664-1668.
6.
Mondal, P., Balo
Majumder, C. and Mohanty, B. (2007). Removal of trivalent arsenic (As(III))
from contaminated water by calcium chloride (CaCl2)-impregnated rice
husk carbon. Industrial & Engineering Chemistry Research, 46: 2550-2557.
7.
Kjuus, H., Andersen, A.
and Langard, S. (1986). Incidence of cancer among workers producing calcium
carbide. Occupational and Environmental Medicine, 43: 237-242.
8.
Rohani, M., (1999).
Proses pemasakan dan penyahhijauan. In: pengendalian lepas tuai buah-buahan dan sayur-sayuran
tropika. Institut Penyelidikan dan Kemajuan Pertanian Malaysia
(Mardi): pp. 70-76.
9.
Consumers Association of
Penang (2011). Ban the Use of Carbide Gas to Ripen Fruits. Access from
http://www.consumer.org.my/index.php/food/safety/502-ban-the-use-of-carbide-gas-to-ripen-fruits.
10.
Ur-Rahman, A., Chowdhury,
F. R. and Alam, M. B. (2008). Artificial ripening: What we are eating. Journal
of Medicine, 9(1): 42-44.
11.
Chandel, R., Sharma, P.
C. and Gupta, A. (2018). Method for detection and removal of arsenic residues
in calcium carbide ripened mangoes. Journal of Food Processing and
Preservation, 42: 1-6.
12.
Benhadria, N., Attar, T.
and Messaoudi, B. (2020). Understanding the link between the detection limit
and the energy stability of two quercetin–antimony complexes by means of
conceptual DFT. South African Journal of Chemical, 73: 120-124.
13.
Behadria, N.,
Messaoudi, B. and Attar, T. (2020). The study of the correlation between the
detection limit and the energy stability of two antimony complexes by means of
conceptual DFT. Malaysian Journal of Chemistry, 22: 111-120.
14.
Attar, T., Messaoudi, B.
and Benhadria, N. (2020). DFT theoretical study of some thiosemicarbazide
derivatives with copper. Chemistry & Chemical Technology, 14: 20-25.
15.
Metrohm, (2019).
Determination of arsenic by stripping voltammetry at the rotating gold
electrode. https://www.metrohm.com/sv-se/applications/ab-226 [Accessed online
16 April 2019].
16.
Miller, J. N. and Miller,
J. C. (2000). Statistics and chemometrics for analytical chemistry. 4th
Edition, Pearson Education.
17.
Garlaschelli, F.,
Alberti, G., Fiol, N. and Villaescusa, I. (2017) Application of anodic
stripping voltammetry to assess sorption performance of an industrial waste
entrapped in alginate beads to remove As(V). Arabian Journal of Chemistry,
10: 1014-1021.
18.
Association of Official
Analytical Chemists (1990). AOAC: Official Methods of Analysis (Volume 1). In: Official
Methods of Analysis of The Association Of Official Analytical Chemists.
Association of Official Analytical Chemists, Inc, Virginia, USA: pp. 1-771.
19.
Izumi, T., Yokohama, Y.
and Watanabe, I. (1991). Activation of a gold electrode by electrochemical
oxidation-reduction pretreatment in hydrochloric acid. Journal of
Electroanalytical Chemistry and Interfacial Electrochemistry, 303: 151-160.
20.
Fischer, L. M., Tenje,
M., Heiskanen, A., Masuda, N., Castillo, J., Bentien, J., Emneus, J., Jakobsen
M. H. and Boisen, A. (2009).
Gold cleaning methods for electrochemical detection applications. Microelectronic
Engineering, 86: 1282-1285.
21.
Giacomino, A., Abollino,
A., Lazzara M., Malandrino, M. and Mentasti, E. (2011). Determination of
As(III) by anodic stripping voltammetry using a lateral gold electrode:
Experimental conditions, electron transfer and monitoring of electrode surface.
Talanta, 83: 1428-1435.
22.
Susteric, M. G., Almeida,
N. V., Von Mengershausen, A. E. and Esquenoni, S. M. (2012). Hydrogen oxidation
on gold electrode in sulphuric acid solution. International Journal of
Hydrogen Energy, 37:
14747-14752.
23.
Zhang, W., Bas, A.D.,
Ghali, E. and Choi, Y., (2015). Passive behavior of gold in sulfuric acid
medium. Transactions of Nonferrous Metals Society of China, 25: 2037-2046.
24.
Burke, L. D., Moran, J.
M. and Nugent, P. F. (2003). Cyclic voltammetry responses of metastable gold
electrodes in aqueous media. Journal of Solid State Electrochemistry, 7: 529-538.
25.
Elgrishi, N., Rountree,
K. J., McCharty, B. D., Rountree, Eisenhart, T. S. and Dempsey, J. R. (2018). A
practical beginner’s guide to cyclic voltammetry. Journal of Chemical
Education, 95: 197-206.
26.
Yilmaz, S., Baba, B.,
Baba, A., Yagmur, S. and Citak, M. (2009). Direct quantitative determination of
total arsenic in natural hotwaters by anodic stripping voltammetry at the
rotating lateral gold electrode. Current Analytical Chemistry, 5: 29-34.
27.
Cavicchioli, A., La-Scalea,
M. A. and Gutz, I. G. R. (2004). Analysis and speciation of traces of arsenic
in environmental, food and industrial samples by voltammetry: A review. Electroanalysis, 16: 697-711.
28.
United State
Environmental Protection Agency (1996). Arsenic in aqueous samples and extracts
by anodic stripping voltammetry: pp. 1-9.
29.
Wei, Z. and Somasundaran,
P. (2004). Cyclic voltammetric study of arsenic reduction and oxidation in
hydrochloric acid using a Pt RDE. Journal of Applied Electrochemistry, 34: 241-244.
30.
Salaün, P.,
Planer-Friedrich, B. and Van Den Berg, C. M. G. (2007). Inorganic arsenic
speciation in water and seawater by anodic stripping voltammetry with a gold
microelectrode. Analytica Chimica Acta, 585: 312-322.
31.
Taşdemir, İ. H.
(2014). Electrochemistry and determination of cefdinir by voltammetric and
computational approaches. Journal of Food and Drug Analysis, 22:
527-536.
32.
Kopanica,
M. and Novotný, L. (1998). Determination of traces of arsenic(III) by anodic
stripping voltammetry in solutions, natural waters and biological material. Analytica
Chimica Acta, 368(3): 211-218.
33.
Mardegan,
A., Scopece, P., Ugo, P. and Moretto, L. M. (2015). Ensembles of gold nanowires
for the anodic stripping voltammetric determination of inorganic arsenic. Journal
of Nanoscience and Nanotechnology, 15(5): 3417–3422.
34.
Bu, L.,
Liu, J., Xie, Q. and Yao, S. (2015). Anodic stripping voltammetric analysis of
trace arsenic(III) enhanced by mild hydrogen-evolution at a bimetallic Au-Pt
nanoparticle modified glassy carbon electrode. Electrochemistry
Communications, 59: 28-31.
35.
Jedryczko,
D., Pohl, P. and Welna, M. (2016). Inorganic arsenic speciation in natural
mineral drinking waters by flow-through anodic stripping chronopotentiometry. Talanta,
150: 265-271.
36.
Zhou,
C., Yang, M., Li, S. S., Jiang, T. J., Liu, J. H., Huang, X. J. and Chen, X.
(2017). Electrochemically etched gold wire microelectrode for the determination
of inorganic arsenic. Electrochimica Acta, 231: 238-246.
37.
Tupiti,
W., Chandra, S. and Prasad, S. (2018). Sensitive inorganic arsenic speciation
on a voltammetric platform in environmental water samples. Microchemical
Journal, 139: 301-305.
38.
Caseiro, A. Bauer, H., Schmidl, C., Pio, C. A. and Puxbaum, H. (2009). Wood burning impact on
PM10
in three Austrian regions. Atmospheric Environment, 43: 2186-2195.
39.
Unsworth, J. (2010). Guidance on residue
analytical methods. Access from http://agrochemicals.iupac.org/.
40.
Noor Shaeda, I., Irniza,
R., Sarva, M. P. and Emilia, Z.A. (2018). Calcium carbide (CaC2)
exposure from fruit ripening process and health effects among fruit farmers: A
research review. International Journal of Public Health and Clinical
Sciences, 5: 91-101.
41.
Asif, M. (2012).
Physico-chemical properties and toxic effect of fruit-ripening agent calcium
carbide. Annals of Tropical Medicine and Public Health,
5: 150-156.