Malaysian Journal of Analytical Sciences Vol 25 No 2 (2021): 286 - 295

 

 

 

 

POLYMELAMINE/GOLD NANOPARTICLE-MODIFIED CARBON PASTE ELECTRODE AS VOLTAMMETRIC SENSOR OF URIC ACID

 

(Elektrod Pes Carbon Terubahsuai Polimelamin/Partikel Nano Emas sebagai Sensor Voltametrik bagi Asid Urik)

 

Muji Harsini1*, Erna Fitriany1,2, Ainy Nur Farida1, Dianita Suryaningrum1, Dimas Noor Asy’ari1, Bernadeta Ayu Widyaningrum1, Denok. Rizky Ayu Paramita3, Afaf Baktir1, Fredy Kurniawan4

 

1Department of Chemistry, Faculty of Science and Technology,

Universitas Airlangga, Surabaya, Indonesia

2Akademi Farmasi Mitra Sehat Mandiri, Sidoarjo, Indonesia

3Akademi Farmasi Jember, Jember, Indonesia

4Department of Chemistry, Faculty of Natural Science,

Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

 

*Corresponding author:  muji-h@fst.unair.ac.id

 

 

Received: 25 December 2020; Accepted: 25 February 2021; Published:  25 April 2021

 

 

Abstract

Uric acid (UA), a vital biological substance, should be accurately detected in clinical monitoring and diagnosis. An electrochemical sensor was developed for UA determination based on polymelamine/gold nanoparticle-modified carbon paste electrode (AuNPs/PM/CPE). Carbon paste electrode (CPE) was made by mixing carbon and paraffin powder at a ratio of 7:3. PM/CPE was made using 1 mM melamine electropolymerisation in 0.1 M NaOH solution on the CPE surface with the cyclic voltammetry (CV) technique with a potential range of 0 to +1.6 V, and a scan rate of 100 mV/s. AuNPs/PM/CPE electrodes were made using Au electrodeposition on the PM/CPE surface using a 1 mM HAuCl4 solution containing 0.1 M Na2SO4. Electrodeposition was performed by CV in the potential range of -0.6 to +1.5 V, with a scan rate of 50 mV/s. The electrocatalytic activity towards UA was systematically studied by CV techniques on the surface of CPE, PM/CPE, AuNPs/CPE, and AuNPs/PM/CPE in phosphate-buffered solution (PBS) at pH 7 with the potential of 0 V to + 1 V, and a scan rate of 100 mV/s. The effect of pH and the analysis of real samples using baby urine that had been diluted and spiked with UA were also studied. The results for bare CPE, and AuNPs/PM/CPE showed a 5-fold increase in anodic peak currents for UA. The optimum conditions were pH 5 (PBS 0.1 M) with the scan rate of 100 mV/s. Under this optimised condition, the modified electrode demonstrated high catalytic activity of UA oxidation. The differential pulse voltammetry (DPV) technique was used for quantitative analysis. The performance of AuNPs/PM/CPE electrodes has a linearity range, detection limit, sensitivity, precision, and accuracy of 0.1-11 µM, 0.0647 µM, 7.8592 µA/µM, 0.1107-0.3930%, and 82.45-107.23%, respectively.  The results of the UA analysis in the baby urine show that the recovery of the disposed sample was 99.41 ± 0.06%, indicating that these electrodes have good accuracy.

 

Keywords:  voltammetry, uric acid, polymelamine, gold nanoparticles, modified carbon electrode

 

Abstrak

Asid urik (UA), bahan biologi penting, mesti dikesan dengan tepat dalam pemantauan dan diagnosis klinikal. Penderia elektrokimia telah dibangunkan untuk pengesanan UA berdasarkan elektrod pes karbon terubahsuai nano partikel emas/polimelamin (AuNPs/PM/CPE). Elektrod pes karbon (CPE) disediakan dengan mencampurkan karbon dan serbuk parafin pada nisbah 7:3. PM/PCE dihasilkan menggunakan 1 mM elektropolimerisasi melamin dalam larutan 0.1 M NaOH pada permukaan CPE melalui teknik voltametri berkitar (CV) pada julat potensi 0 hingga +1.6 V dan kadar imbasan 100 mV/s. Elektrod AuNPs/PM/CPE dihasilkan menggunakan pengelektroendapan Au pada permukaan PM/CFE menggunakan larutan 1 mM HAuCl4 yang mengandungi 0.1 M Na2SO4. Pengelektroendapan dilakukan menggunakan CV dalam julat potensi −0.6 hingga +1.5 V, dengan kadar imbasan 50 mV/s. Aktiviti elektropemangkinan UA dikaji secara sistematik menggunakan teknik CV pada permukaan CPE, PM/CPE, AuNPs/CPE, dan AuNPs/PM/CPE dalam larutan penimbal fosfat (PBS) pada pH 7 dengan julat potensi 0 hingga +1 V dan kadar imbasan 100 mV/s. Kesan pH dan analisis sampel sebenar menggunakan air kencing bayi yang dicairkan dan dicampur dengan UA juga dikaji. Keputusan bagi CPE terdedah dan AuNPs/PM/CPE menunjukkan peningkatan 5 kali ganda dalam arus puncak anodik bagi UA. Keadaan optimum adalah pada pH 5 (PBS 0.1 M) dengan kadar imbasan 100 mV/s. Pada keadaan optimum tersebut, elektrod terubah suai menunjukkan aktiviti pemangkinan pengoksidaan UA yang tinggi. Teknik voltametri denyut pembezaan (DPV) digunakan untuk analisis kuantitatif. Prestasi elektrod AuNPs/PM/CPE masing-masing mempunyai julat kelinearan, had pengesanan, kepekaan, kejituan, dan ketepatan pada 0.1–11 µM, 0.0647 µM, 7.8592 µA/µM, 0.1107%–0.3930%, dan 82.45%–107.23%.  Keputusan analisis UA dalam bayi air kencing menunjukkan bahawa perolehan sampel dilupuskan pada 99.41 ± 0.06%, menunjukkan elektrod ini mempunyai ketepatan yang baik.

 

Kata kunci:  voltametri, asid urik, polimelamin, nano partikel emas, elektrod karbon terubahsuai


References

1.      Maiuolo, J., Oppedisano, F., Gratteri, S., Muscoli, C. and Mollace, V. (2016). Regulation of uric acid metabolism and excretion. International Journal of Cardiology, 213: 8-14.

2.      Atta, N. F., El-kady, M. F. and Galal, A. (2010). Simultaneous determination of catecholamines, uric acid and ascorbic acid at physiological levels using poly (N-methylpyrrole)/Pd-nanoclusters sensor. Analytical Biochemistry, 400(1): 78-88.

3.      Kong, D., Zhuang, Q., Han, Y., Xu, L., Wang, Z. and Jiang, L. (2018). Simultaneous voltammetry detection of dopamine and uric acid in human serum and urine with a poly (procaterol hydrochloride) modified glassy carbon electrode. Talanta, 185(3): 203-212.

4.      Rana, L., Gupta, R., Tomar, M. and Gupta, V. (2018). Highly sensitive Love wave acoustic biosensor for uric acid. Sensors & Actuators: B. Chemical, 261: 169-177.

5.      El, R. and Tallima, H. (2017). Physiological functions and pathogenic potential of uric acid: A review. Journal of Advanced Research, 8(5): 487-493.

6.      Norazmi, N., Rasad, Z. R. A., Mohamad, M. and Manap, H. (2017). Uric acid detection using UV-Vis spectrometer. IOP Conference Series: Materials Science and Engineering, 257(1): 1-6.

7.      Norazmi, N., Rasat, Z. R. A., Mohamad, M. and Manap, H. (2018). UV detection on artificial uric acid using UV-Vis spectrometer. Journal of Lasers, Optics & Photonics, 5(179): 2.

8.      Jeliki, M., Djurdjevi, P. and Stankov, D. (2003). Determination of uric acid in human serum by an enzymatic method using N-methyl-N-(4-aminophenyl)-3-methoxyaniline reagent. Journal Serbian Chemical Society, 68: 691-698.

9.      Kock, R., Seitz, S., Delvoux, B. and Greiling, H. (1995). A method for the simultaneous determination of creatinine and uric acid in serum by high-performance-liquid-chromatography evaluated versus reference methods. Clinical Chemistry and Laboratory Medicine, 33(1): 23-30.

10.   Wijemanne, N., Soysa, P., Wijesundara, S. and Perera, H. (2018). Development and validation of a simple high performance liquid chromatography/UV method for simultaneous determination of urinary uric acid, hypoxanthine, and creatinine in human urine. International Journal of Analytical Chemistry, 2018: 1-7.

11.   Honeychurch, K. (2018). The Determination of uric acid in human saliva by liquid chromatography with electrochemical detection. Journal of Analytical, Bioanalytical and Separation Techniques, 2(1): 47-51.

12.   Popa, E., Kubota, Y., Tryk, D. A. and Fujishima, A. (2000). Selective voltammetric and amperometric detection of uric acid with oxidized diamond film electrodes. Analytical Chemistry, 72(7): 1724-1727.

13.   Kumar, S. S., Mathiyarasu, J., Phani, K. L., Jain, Y. K. and Yegnaraman, V. (2005). Determination of uric acid in the presence of ascorbic acid using poly (3, 4‐ethylenedioxythiophene)‐modified electrodes. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 17(24): 2281-2286.

14.   Wang, L., Huang, P., Bai, J., Wang, H., Wu, X. and Zhao, Y. (2006). Voltammetric sensing of uric acid and ascorbic acid with poly (p-toluene sulfonic acid) modified electrode. International Journal of Electrochemical Science, 1: 334-342.

15.   Khasanah, M., Mudasir, M., Mada, U. G. and Kuncaka, A. (2012). Development of uric acid sensor based on molecularly imprinted polymethacrylic acid-modified hanging mercury drop electrode. Journal of Chemistry and Chemical Engineering, 6: 209-214.

16.   Sadikoglu, M., Taskin, G., Demirtas, F. G., Selvi, B. and Barut, M. (2012). Voltammetric determination of uricacid on poly (p-aminobenzene sulfonic acid)-modified glassy carbon electrode. International Journal of Electrochemical Science,7: 11550-11557.

17.   Amiri, M. and Bezaatpour, A. (2012). Simultaneous voltammetric determination of uric acid and ascorbic acid using carbon paste/cobalt Schiff base composite electrode, Journal Solid State Electrochemistry, 16: 2187-2195.

18.   Movlaee, K., Norouzi, P., Beitollahi, H., Rezapour, M. and Larijani, B. (2017). Highly selective differential pulse voltammetric determination of uric acid using modified glassy carbon electrode. International Journal of Electrochemical Science,12: 3241-3251.

19.   Metto, M., Eramias, S., Gelagay, B. and Washe, A. P. (2019). Voltammetric determination of uric acid in clinical serum samples using DMF modified screen printed carbon electrodes, International Journal of Electrochemistry, 2019: 1-8.

20.   Kounaves, S. P. (1997). Voltammetric techniques, handbook of instrumental techniques for analytical chemistry: pp. 709-726.

21.   Sroysee, W., Chairam, S. and Amatatongchai, M. (2016). Poly (m-ferrocenylaniline) modified carbon nanotubes-paste electrode encapsulated in nafion film for selective and sensitive determination of dopamine and uric acid in the presence of ascorbic acid. Journal of Saudi Chemical Society, 22(2): 173-182.

22.   Chitravathi, S., Swamy, B. E. K., Mamatha, G. P. and Sherigara, B. S. (2012). Electrochemical behavior of poly (naphthol green B)-film modified carbon paste electrode and its application for the determination of dopamine and uric acid. Journal of Electroanalytical Chemistry, 667: 66-75.

23.   Atta, N. F. and El-kady, M. F. (2010). Novel poly (3-methylthiophene)/Pd, Pt nanoparticle sensor: Synthesis, characterization and its application to the simultaneous analysis of dopamine and ascorbic acid in biological fluids. Sensors & Actuators: B. Chemical, 145(1): 299-310.

24.   Wang, C., Li, J., Shi, K., Wang, Q., Zhao, X., Xiong, Z. and Wang, Y. (2016). Graphene coated by polydopamine/multi-walled carbon nanotubes modified electrode for highly selective detection of dopamine and uric acid in the presence of ascorbic acid. Journal of electroanalytical Chemistry, 770: 56-61.

25.   Chandrashekar, B. N., Lv, W. and Jayaprakash, G. K. (2019). Cyclic voltammetric and quantum chemical studies of a poly (methionine) modified carbon paste electrode for simultaneous detection of dopamine and uric acid. Chemosensors, 7(24):1-18.

26.   Hou, S., Zheng, N., Feng, H., Li, X. and Yuan, Z. (2008). Determination of dopamine in the presence of ascorbic acid using poly (3, 5-dihydroxy benzoic acid) film modified electrode, 179: 179-184.

27.   Xiongwei, X. U., In, Q. L., Iu, A. L., Hen, W. C., Eng, X. W. and Ang, C. W. (2010). Simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid using polybromothymol blue film-modified glassy. Chemical and Pharmaceutical Bulletin, 58(6): 788-793.

28.   Baskar, S., Liao, C., Chang, J. and Zen, J. (2013). Electrochemical synthesis of electroactive poly (melamine) with mechanistic explanation and its applicability to functionalize carbon surface to prepare nanotube – nanoparticles hybrid. Electrochimica Acta, 88: 1-5.

29.   Goyal, R. N. (2015). Gold nanoparticles decorated poly-melamine modi fi ed glassy carbon sensor for the voltammetric estimation of domperidone in pharmaceuticals and biological fl uids. Talanta, 141: 53-59.

30.   Peng, J., Feng, Y., Han, X. and Gao, Z. (2016). Simultaneous determination of bisphenol A and hydroquinone using a poly (melamine) coated graphene doped carbon paste electrode. Microchimica Acta, 183: 2289-2296.

31.   Gupta, P., Yadav, S. K. and Goyal, R. N. (2015). A sensitive polymelamine modified sensor for the determination of lomefloxacin in biological fluids. Journal of The Electrochemical Society, 162(1): 86-92.

32.   Tadayon, F., Vahed, S. and Bagheri, H. (2016). Au-Pd/reduced graphene oxide composite as a new sensing layer for electrochemical determination of ascorbic acid, acetaminophen and tyrosine. Materials Science & Engineering C, 68: 805-813.

33.   Amidi, S., Ardakani, Y. H., Amiri-Aref, M., Ranjbari, E., Sepehri, Z. and Bagheri, H. (2017). Sensitive electrochemical determination of rifampicin using gold nanoparticles/poly-melamine nanocomposite. RSC Advances, 7(64): 40111-40118.

34.   Widyaningrum, B. A. (2018). Modifikasi elektroda pasta karbon dengan polimelamin/nanopartikel emas secara elektrokimia sebagai sensor voltammetri dopamin. Tesis Magister, Universitas Airlangga, Surabaya-Indonesia.

35.   Farida, A. N., Fitriany, E., Baktir, A., Kurniawan, F. and Harsini, M. (2019). Voltammetric study of ascorbic acid using polymelamine/gold nanoparticle modified carbon paste electrode. IOP Conference Series: Earth and Environmental Science, 217(1): 012004.

36.   Paramita, D. R. A. (2018). Modifikasi elektroda pasta karbon menggunakan polimelamin/ nanopartikel emas secara elektrokimia sebagai sensor voltammetri hidrokuinon. Tesis Magister, Universitas Airlangga, Surabaya-Indonesia.

37.  Zen, J. and Chen, P. (1997). A selective voltammetric method for uric acid and dopamine detection using clay-modified electrodes. Analytical Chemistry, 69(24): 5087-5093.

38.  Harmita (2004). Petunjuk pelaksanaan validasi metode dan cara perhitungannya, Majalah Ilmu Kefarmasian, 1(3): 117-135.

39.  Association for Clinical Biochemistry (2013). Dopamine (plasma, urine). Retrieved from http://www.acb.org.uk/Nat Lab Med Hbk/ Dopamine.pdf.