Malaysian Journal of Analytical
Sciences Vol 18 No 3 (2014): 705 – 710
THERMOGRAVIMETRIC ANALYSIS OF RICE HUSK AND COCONUT
PULP FOR POTENTIAL BIOFUEL PRODUCTION BY FLASH PYROLYSIS
(Analisa
Thermogravimetrik Sekam Padi dan Pulpa Kelapa Untuk Mengkaji Potensi
Penghasilan Minyak Bio Melalui Pirolisis Pantas)
Noorhaza Alias1, Norazana Ibrahim1*, Mohd.
Kamaruddin Abd. Hamid2, Hasrinah Hasbullah3,
Roshafima Rasit Ali4, Aziatul
Niza Sadikin4, Umi Aisah Asli4
1UTM-MPRC
Institute for Oil and Gas, Faculty of Petroleum and Renewable Energy
Engineering,
2Process
Systems of Engineering Centre, Faculty of Chemical Engineering,
3AMTEC, Faculty of Petroleum and Renewable Energy
Engineering,
4Faculty of Chemical Engineering,
Universiti
Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
*Corresponding author: norazana@petroleum.utm.my
Abstract
The purpose of this paper is to study the characteristics and thermal
degradation behavior of rice husk and coconut pulp for biofuel production via
flash pyrolysis technology. The elemental properties
of the feedstock were characterized by an elemental analyzer while thermal
properties were investigated using thermogravimetric analyzer (TGA). The
pyrolysis processes were carried out at room
temperature up to 700°C in the presence of nitrogen
gas flowing at 150 ml/min. The investigated
parameters are particle sizes and heating rates. The particle sizes varied in the range of dp1 < 0.30 mm
and 0.30≤ dp2 <0.50 mm. The heating rates applied were
50°C/min and 80°C/min. It was shown smaller
particle size produces 2.11-3.59% less volatile product when pyrolized at 50°C/min compared to 80°C/min. Higher
heating rates causes biomass degrades in a narrow temperature range by 25°C. It also increases the maximum peak rate by 0.01 mg/s for
rice husk at dp1 and 0.02 mg/s at dp2. In case of coconut pulp, the change is not significant
for dp1 but
for dp2 a 0.02 mg/s changes
was recorded.
Keywords: rice husk, coconut pulp, thermogravimetric analyses, flash pyrolysis, biofuel
Abstrak
Tujuan
kajian ini dijalankan adalah untuk mengenalpasti ciri-ciri serta corak
degradasi therma sekam padi dan pulpa kelapa bagi tujuan penghasilan minyak bio
melalui proses pirolisis pantas. Komposisi unsur ditentukan dengan menggunakan
penganalisa unsur manakala ciri-ciri therma dikaji menggunakan penganalisa
thermogravimetrik (TGA). Proses degradasi therma dijalankan pada suhu bilik
sehingga mencapai 700°C, dengan aliran gas nitrogen pada kadar 150 ml/min. Dua pemboleh ubah telah dikenalpasti sebagai
fokus kajian iaitu saiz partikel dan kadar pemanasan. Saiz partikel yang
digunakan adalah dp1 < 0.30 mm dan 0.30≤ dp2 <0.50
mm manakala kadar pemanasan ditetapkan pada suhu 50°C/min dan 80°C/min. Hasil
kajian mendapati bahawa saiz partikel yang lebih kecil menghasilkan kurang
produk meruap sebanyak 2.11 - 3.59% apabila diproses pada suhu 50°C/min. Kadar pemanasan yang tinggi
menyebabkan kedua-dua sampel lupus pada jangka suhu yang lebih cepat iaitu
sebanyak 25°C. Kadar degradasi
maxima bagi sekam padi turut meningkat sebanyak 0.01
mg/s pada dp1 dan 0.02 mg/s pada dp2. Pulpa kelapa tidak mencatat sebarang perubahan yang
signifikan pada dp1 tetapi pada dp2 peningkatan sebanyak 0.02 mg/s telah
direkodkan.
Kata
kunci: sekam padi, pulpa kelapa, analisa
thermogravimetrik, pirolisis pantas, minyak bio
References
1.
Patel,
B. and Gami, B. (2012).
Biomass Characterization and its Use as Solid for Combustion. Iranica
Journal of Energy and Environment,
123-128.
2.
Zafar,
S., (2014). Bioenergy Developments in Malaysia. Retrieved from http://www.bioenergyconsult.com /tag/biomass-resources-in-malaysia/
3.
Jahirul,
M. I., Rasul, M. G., Chowdhury, A. A. & Ashwath, N. (2012). Biofuels
Production through Biomass Pyrolysis - A Technological Review. Energies 5: 4952-5001.
4.
Mansaray,
K. G. and Ghaly, A. E. (1997). Physical and Thermochemical Properties of Rice
Husk. Energy Sources, 27: 989-1004.
5.
Chuayjuljit,
S., Eiumnoh, S. and Potiyaraj, P. (2001). Using Silica from Rice Husk as a
Reinforcing Filler In Natural Rubber. Journal
of Scientific Research Chulalongkorn University, 26: 127-137.
6.
Stenseng,
M., Jensen, A. and Dam-Johansen, K. (2001). Investigation of Biomass Pyrolysis
by Thermogravimetric Analysis and Differential Scanning Calorimetry. Journal
of Analytical and Applied Pyrolysis 58-59: 765-780.
7.
Stresov,
V., Moghtaderi, B. and Lucas, J. (2003). Thermal Study of Decomposition of
Selected Biomass Samples. Journal of
Thermal Analysis and Calorimetry, 72: 1041-1048.
8.
Wannapeera,
J., Worasuwannarak, N. and Pipatmanomai, S. (2008). Product Yields and
Characteristics of Rice Husk, Rice Straw and Corncob During Fast Pyrolysis in a
Drop-Tube/Fixed-Bed Reactor. Songklanakarin
J. Sci. Technol. 30 (3): 393-404.
9.
Ho,
Y.S., and Ofomaja, A.E. (2006). Biosorption Thermodynamics of Cadmium on
Coconut Copra Meal as Biosorbent. Biochemical
Engineering Journal, 30: 117–123.
10.
Burhennea,
L., Messmer, J., Aicher, T. and Laborie, M. (2013). The Effect of The Biomass Components Lignin,
Cellulose and Hemicellulose on TGA and Fixed Bed Pyrolysis. Journal of Analytical and Applied Pyrolysis, 101: 177–184.