Malaysian Journal of Analytical Sciences Vol 18 No 3 (2014): 711 - 717

 

 

 

THERMAL CHARACTERIZATION OF MODIFIED TACCA LEONTOPETALOIDES STARCH AND NATURAL RUBBER BASED THERMOPLASTIC ELASTOMER

 

(Pencirian Termal antara Modifikasi Kanji Tacca leontopetaloides dan Getah Semulajadi berasaskan Termoplastik Elastomer)

 

Ainatul Mardhiah Mohd Amin*, Nur Shahidah Ab Aziz, Nurul Shuhada Mohd Makhtar,

Miradatul Najwa Mohd Rodhi, Suhaila Mohd Sauid

 

Faculty of Chemical Engineering,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor Darul Ehsan, Malaysia

 

*Corresponding author: mardhiah.amin@yahoo.com

 

 

Abstract

The purpose of this study is to identify the potential of Tacca leontopetaloides starch as bio-based thermoplastic elastomers, TPEs. Starch based polymer had been recognized to have highly potential in replace existing source of conventional elastomeric polymer. The modification process of blending starch with natural rubber, plasticizers, additives, and filler contribute to the enhancement and improvement for the properties of starch in order to produce biopolymers by approaching the properties of TPEs. Thermal properties of starch based thermoplastic was studied to evaluate the decomposition and degradation of the samples by using Thermogravimetric Analysis, TGA while the properties of endothermic reactions of the samples were thermally analyzed via Differential Scanning Calorimetry, DSC. From the analysis, it was found that the thermal properties of samples were revealed by recognizing GM-2 (green materials, GM) has high thermal resistance towards high temperature up to 480.06°C with higher amount of residue which is 4.97 mg compared to other samples. This indicates GM-2 comprises of superior combination of ratio between natural rubbers and glycerol (plasticizer) in purpose of approaching the properties of Thermoplastic Elastomers, TPEs.

 

Keywords: biopolymer, green material, Tacca leontopetaloides, thermal characterization

 

Abstrak

Kajian ini dijalankan bertujuan mengenal pasti potensi kanji Tacca leontopetaloides untuk dijadikan sebagai bahan asas bio yang akan digunapakai dalam pembuatan termoplastik elastomer, TPE. Kanji Tacca ini dikenalpasti mempunyai potensi yang tinggi dalam menggantikan sumber yang ada bagi pembuatan konvensional elastomerik polimer. Proses modifikasi antara adunan kanji, getah semulajadi, pemplastik, aditif dan bahan pengisi mampu menyumbang kepada penambahbaikan dan peningkatan ciri-ciri bahan asas bio untuk menghasilkan biopolimer sekaligus menepati sifat-sifat termoplastik elastomer, TPE. Sifat termal bagi sample modifikasi Tacca  sebagai bahan asas bio dalam pembuatan termoplastik dikaji adalah untuk menilai kesan penghuraian dan degradasi dengan menggunakan Analisis Termogravimetri (TGA). Manakala alat Kalorimetri Imbasan Diferensial (DSC) digunakan untuk menganalisis tindak balas sample terhadap reaksi endotermik. Daripada analisa dan kajian yang dijalankan, sample GM-2 (bahan hijau, GM)  didapati  menepati ciri-ciri termal dalam menolak rintangan haba terhadap suhu yang tinggi sehingga mencecah 480.06 ° C dan meninggalkan jumlah sisa yang lebih tinggi iaitu sebanyak 4.97 mg berbanding sample-sample lain. Hal ini menunjukkan bahawa sample GM-2 memiliki kombinasi yang unggul antara nisbah getah asli dan gliserol (pemplastik) dalam menepati sifat-sifat termoplastik elastomer, TPEs.

 

Kata kunci: biopolymer, bahan hijau, Tacca leontopetaloides, pencirian termal

 

References

1.       Chaudhary, P. T. (2009). Amylose content and chemical modification effects on thermoplastic starch from maize, Processing and characterisation using conventional polymer equipment. Carbohydrates Polymer, 917–925.

2.       Bourtoom, T. (2008). Plasticizer effect on the properties of biodegradable blend film from rice starch-chitosan. Science and Technology, 149-165.

3.       Mahallati, P., Arefazar, A., and Naderi, Gh. (2011). Thermal and morphological properties of thermoplastic elastomer nanocomposites based on PA6 / NBR. Iranian Journal of Chemical Engineering 8: 1 (Winter).

4.       Long Yu, K. D. (2006). Polymer blends and composites from renewable resources. Progress in Polymer Science, 576–602.

5.       Mondragón, M., Hernández, E. M., Rivera-Armenta, J. L., and Rodríguez-González, F. J. (2009). Injection molded thermoplastic starch/natural rubber/clay nanocomposites: morphology and mechanical properties. Carbohydrate Polymers, 77(1), 80-86.

6.       Maurizio Avella, A. B. (2009). Eco-Challenges of Bio-Based Polymer Composites. Materials, 911-925.

7.       Richard J. and Spontak, N. P. (2000). Thermoplastic elastomers: fundamentals and applications. Colloids and Interface Science 5(5): 334-340

8.       Spennemann, D. H. (1992). Notes on the occurrence, utilisation and importance of Polynesian Arrowroot (Taccaleontopetaloides) in the Marshall Islands.

9.       Prachayawarakorn, J., Sangnitidej, P. and Boonpasith, P. (2010). Properties of thermoplastic rice starch composites reinforced by cotton fiber or low-density polyethylene. Carbohydrate Polymers, 81(2): 425-433.

10.    Curvelo, A. A. S., De Carvalho, A. J. F., and Agnelli, J. A. M. (2001). Thermoplastic starch–cellulosic fibers composites: preliminary results. Carbohydrate Polymers, 45(2): 183-188.

11.    Alessandra L, D. R., Márcia, D. Z., Antonio, A.S.C., & Antonio J.F, C. (2011). Thermoplastic starch modified during melt processing with organic acids: The effect of molar mass on thermal and mechanical properties. Industrial Crops and Products, 33(1): 152-157.

12.    Mohd Makhtar, N, S., Muhd Rodhi., M, N., Musa, M., & Ku Hamid, K, H. (2013). Thermal Behavior of Tacca leontopetaloides Starch-Based Biopolymer. International Journal of Polymer Science 3: 1-7.

13.    Zhang F., Zhang J. and Sun D. (2009). Study on Thermal Decomposition of Intumescent Fire-Retardant Polypropylene by TG/Fourier Transform Infrared. Thermoplastic Composite Materials, 22: 681.

14.    Taghizadeh, A., Sazarin, P., & Favis, B. D. (2013). High molecular weight plasticizers in thermoplastic starch/polyethylene blends. Journal of Materials Science, 48: 1799-1811.

15.    Saikrasun, S., & Amornsakchai, T. (2012). Thermal decomposition behavior and mechanical properties of elastomeric composites based on polyolefinic thermoplastic elastomer and organomontmorillonite. Journal of Polymer Research, 19(1), 1-13.

16.    Rodriguez, G. F. J., Ramsay, B. A., and Favis, B. D. (2004). Rheological and thermal properties of thermoplastic starch with high glycerol content. Carbohydrate Polymers, 58(2): 139-147.

17.    Montoya, M., Tomba, J. P., Carella, J. M. and Gobernado-Mitre, M. I. (2004). Physical characterization of commercial polyolefinic thermoplastic elastomers. European polymer journal, 40(12), 2757-2766. Differential Scanning Calorimetry (DSC). (n.d.). Retrieved from www1.chm.colostate.edu/Files/CIFDSC/dsc2000.pdf

 

Previous                    Content                    Next