Malaysian
Journal of Analytical Sciences Vol 18 No 3 (2014): 711 - 717
THERMAL CHARACTERIZATION OF
MODIFIED TACCA LEONTOPETALOIDES
STARCH AND NATURAL RUBBER BASED THERMOPLASTIC ELASTOMER
(Pencirian Termal
antara Modifikasi Kanji Tacca
leontopetaloides dan Getah Semulajadi berasaskan Termoplastik Elastomer)
Ainatul Mardhiah Mohd
Amin*, Nur Shahidah Ab Aziz, Nurul Shuhada Mohd Makhtar,
Miradatul Najwa Mohd
Rodhi, Suhaila Mohd Sauid
Faculty of Chemical Engineering,
Universiti Teknologi MARA, 40450 Shah Alam, Selangor
Darul Ehsan, Malaysia
*Corresponding author: mardhiah.amin@yahoo.com
Abstract
The
purpose of this study is to identify the potential of Tacca leontopetaloides starch as bio-based thermoplastic
elastomers, TPEs. Starch based polymer had been recognized to have highly potential
in replace existing source of conventional elastomeric polymer. The modification
process of blending starch with natural rubber, plasticizers, additives, and
filler contribute to the enhancement and improvement for the properties of
starch in order to produce biopolymers by approaching the properties of TPEs. Thermal
properties of starch based thermoplastic was studied to evaluate the
decomposition and degradation of the samples by using Thermogravimetric
Analysis, TGA while the properties of endothermic reactions of the samples were
thermally analyzed via Differential Scanning Calorimetry, DSC. From the
analysis, it was found that the thermal properties of samples were revealed by
recognizing GM-2 (green materials, GM) has high thermal resistance towards high
temperature up to 480.06°C with higher amount of residue which is 4.97 mg compared
to other samples. This indicates GM-2 comprises of superior combination of
ratio between natural rubbers and glycerol (plasticizer) in purpose of approaching
the properties of Thermoplastic Elastomers, TPEs.
Keywords: biopolymer, green material, Tacca
leontopetaloides, thermal characterization
Abstrak
Kajian ini dijalankan bertujuan mengenal pasti potensi kanji Tacca leontopetaloides untuk dijadikan sebagai bahan asas bio yang akan digunapakai dalam pembuatan termoplastik elastomer, TPE. Kanji Tacca ini dikenalpasti mempunyai potensi yang tinggi dalam menggantikan sumber yang ada bagi pembuatan konvensional elastomerik polimer. Proses modifikasi antara adunan kanji, getah semulajadi, pemplastik, aditif dan bahan pengisi mampu menyumbang kepada penambahbaikan dan peningkatan ciri-ciri bahan asas bio untuk menghasilkan biopolimer sekaligus menepati sifat-sifat termoplastik elastomer, TPE. Sifat termal bagi sample modifikasi Tacca sebagai bahan asas bio dalam pembuatan termoplastik dikaji adalah untuk menilai kesan penghuraian dan degradasi dengan menggunakan Analisis Termogravimetri (TGA). Manakala alat Kalorimetri Imbasan Diferensial (DSC) digunakan untuk menganalisis tindak balas sample terhadap reaksi endotermik. Daripada analisa dan kajian yang dijalankan, sample GM-2 (bahan hijau, GM) didapati menepati ciri-ciri termal dalam menolak rintangan haba terhadap suhu yang tinggi sehingga mencecah 480.06 ° C dan meninggalkan jumlah sisa yang lebih tinggi iaitu sebanyak 4.97 mg berbanding sample-sample lain. Hal ini menunjukkan bahawa sample GM-2 memiliki kombinasi yang unggul antara nisbah getah asli dan gliserol (pemplastik) dalam menepati sifat-sifat termoplastik elastomer, TPEs.
Kata kunci: biopolymer, bahan hijau, Tacca
leontopetaloides, pencirian termal
References
1. Chaudhary, P. T. (2009). Amylose content and
chemical modification effects on thermoplastic starch from maize, Processing
and characterisation using conventional polymer equipment. Carbohydrates
Polymer, 917–925.
2. Bourtoom, T. (2008). Plasticizer effect on the
properties of biodegradable blend film from rice starch-chitosan. Science
and Technology, 149-165.
3. Mahallati, P., Arefazar, A.,
and Naderi, Gh. (2011). Thermal
and morphological properties of thermoplastic elastomer nanocomposites based on
PA6 / NBR. Iranian Journal of Chemical
Engineering 8: 1 (Winter).
4. Long Yu, K. D. (2006). Polymer blends and
composites from renewable resources. Progress in Polymer Science,
576–602.
5. Mondragón, M., Hernández, E. M.,
Rivera-Armenta, J. L., and Rodríguez-González, F. J. (2009). Injection molded
thermoplastic starch/natural rubber/clay nanocomposites: morphology and
mechanical properties. Carbohydrate
Polymers, 77(1), 80-86.
6. Maurizio Avella, A. B. (2009). Eco-Challenges
of Bio-Based Polymer Composites. Materials, 911-925.
7. Richard J. and Spontak, N. P. (2000).
Thermoplastic elastomers: fundamentals and applications. Colloids and
Interface Science 5(5): 334-340
8. Spennemann, D. H. (1992). Notes on the
occurrence, utilisation and importance of Polynesian Arrowroot (Taccaleontopetaloides)
in the Marshall Islands.
9. Prachayawarakorn, J., Sangnitidej, P. and
Boonpasith, P. (2010). Properties of thermoplastic rice starch composites
reinforced by cotton fiber or low-density polyethylene. Carbohydrate Polymers, 81(2): 425-433.
10. Curvelo, A. A. S., De Carvalho, A. J. F., and
Agnelli, J. A. M. (2001). Thermoplastic starch–cellulosic fibers composites:
preliminary results. Carbohydrate
Polymers, 45(2): 183-188.
11. Alessandra L, D. R., Márcia,
D. Z., Antonio, A.S.C., & Antonio J.F, C. (2011). Thermoplastic starch modified during melt
processing with organic acids: The effect of molar mass on thermal and
mechanical properties. Industrial Crops
and Products, 33(1): 152-157.
12. Mohd Makhtar, N, S., Muhd
Rodhi., M, N., Musa, M., & Ku Hamid, K, H. (2013). Thermal Behavior of Tacca leontopetaloides
Starch-Based Biopolymer. International
Journal of Polymer Science 3: 1-7.
13. Zhang F., Zhang J. and Sun D. (2009). Study on
Thermal Decomposition of Intumescent Fire-Retardant Polypropylene by TG/Fourier
Transform Infrared. Thermoplastic Composite Materials, 22: 681.
14. Taghizadeh, A., Sazarin, P.,
& Favis, B. D. (2013). High molecular weight plasticizers in thermoplastic
starch/polyethylene blends. Journal of
Materials Science, 48: 1799-1811.
15. Saikrasun, S., & Amornsakchai, T. (2012).
Thermal decomposition behavior and mechanical properties of elastomeric
composites based on polyolefinic thermoplastic elastomer and
organomontmorillonite. Journal of Polymer
Research, 19(1), 1-13.
16. Rodriguez, G. F. J., Ramsay, B. A., and Favis,
B. D. (2004). Rheological and thermal properties of thermoplastic starch with
high glycerol content. Carbohydrate
Polymers, 58(2): 139-147.
17. Montoya, M., Tomba, J. P., Carella, J. M. and
Gobernado-Mitre, M. I. (2004). Physical characterization of commercial
polyolefinic thermoplastic elastomers. European
polymer journal, 40(12), 2757-2766. Differential Scanning Calorimetry
(DSC). (n.d.). Retrieved from
www1.chm.colostate.edu/Files/CIFDSC/dsc2000.pdf