Malaysian Journal of Analytical
Sciences Vol 18 No 3 (2014): 700 - 704
PRODUCTION OF BIOCHAR WITH HIGH MINERAL CONTENT FROM
OIL PALM BIOMASS
(Pengeluaran
Biochar dengan Kandungan Mineral yang Tinggi dari Biomas Kelapa Sawit)
Juferi Idris1,2,3, Yoshihito Shirai1 ,
Yoshito Ando1 , Ahmad
Amiruddin Mohd Ali1 ,
Mohd Ridzuan Othman4
, Izzudin Ibrahim4, Mohd
Ali Hassan4,5*
1Department of Biological Functions and Engineering,
Graduate School of Life Science and Systems Engineering,
Kyushu Institute
of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0196, Japan.
2Faculty of Chemical Engineering,
Universiti
Teknologi MARA (UiTM) Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
3Faculty of Chemical Engineering,
Universiti
Teknologi MARA (UiTM) Malaysia, 40450, Shah Alam, Selangor, Malaysia.
4Department of Bioprocess Technology, Faculty of
Biotechnology and Bimolecular Sciences,
5Department of Process and Food Engineering, Faculty
of Engineering,
Universiti Putra
Malaysia, 43400 UPM Serdang, Selangor, Malaysia
*Corresponding author: alihas@upm.edu.my
Abstract
Carbonization
of oil palm empty fruit bunch (OPEFB) biomass for the production of high
mineral content biochar under an uncontrolled carbonization temperature and controlled
air flow rate was studied using a pilot-scale brick carbonization reactor. The
maximum temperature during the carbonization process was found to be in the
range of 543 to 564 oC at exhaust gas flow rate of 36 m3/hr.
All minerals (i.e P, K ,Mg, Ca, Na, Mn,
Fe, Cr, AI) showed an increased from the feedstock concentration up to 300 %.
The concentration of heavy metal extracted from OPEFB biochar was lower than
listed ceiling permitted levels. This proposed system without electrical
control and heating source is preferable to the industry due to its simplicity,
ease of operation and low energy requirement making it suitable for OPEFB
biochar production for mulching purposes with more than double the mineral
content compared to raw OPEFB biomass.
Keywords: biochar, elemental, carbonization; oil palm empty
fruit bunch; oil palm biomass
Abstrak
Karbonisasi kelapa sawit tandan kosong biomas untuk pengeluaran
kandungan mineral yang tinggi biochar di bawah suhu karbonisasi yang tidak
terkawal dan dikawal kadar aliran keluar asap telah dikaji menggunakan
skala-pilot reaktor bata karbonisasi. Suhu maksimum semasa proses karbonisasi yang didapati
dalam julat 543-564oC pada kadar aliran
asap pada 36 m3/jam. Semua mineral
(iaitu P, K, Mg, Ca, Na, Mn, Fe, Cr, AI) menunjukkan peningkatan dari kepekatan
bahan mentah sehingga 300%. Kepekatan logam berat yang diekstrak daripada biochar
adalah lebih rendah daripada paras siling dibenarkan disenaraikan. Sistem yang
dicadangkan tanpa kawalan elektrik dan sumber pemanasan adalah lebih baik untuk
industri karena kesederhanaan, kemudahan operasi dan keperluan tenaga yang
rendah menjadikan ia sesuai untuk pengeluaran biochar kelapa sawit untuk tujuan
mulsa dengan lebih daripada dua kali ganda kandungan mineral berbanding kelapa biomas
mentah.
Kata kunci : biochar, unsur mineral, karbonisasi; kelapa sawit
buah tandan kosong; biomas kelapa sawit
References
1.
Gaunt, J. L. and Lehmann, J. (2008).
Energy balance and emissions associated with biochar sequestration and pyrolysis
bioenergy production. Environ Sci Technol
42: 4152–4158.
2.
Abu
Bakar, R., Darus, S. Z. and Kulaseharan, S. (2010). Jamaluddin N. Effects of
ten year application of empty fruit bunches in an oil palm plantation on soil
chemical properties. Nutr Cycl
Agroecosystems 89:341–349.
3.
Lim,
K. C. and Zaharah, A. R. (2000). Decomposition and n & k release by oil
palm empty fruit bunches applied under mature palms. J Oil Palm Res 12:55–62.
4.
Malaysian
palm oil council (MPOC). Oil palm plantation (2014). Oil palm plantation
.http://www.mpoc.org.my/Overview.aspx. [aceessed 20.4.2014]
5.
Sumathi,
S., Chai, S. P. and Mohamed, A. R. (2008). Utilization of oil palm as a source
of renewable energy in Malaysia. Renew
Sustain Energy Rev 12: 2404–2421.
6.
Yoshizaki,
T., Shirai, Y., Hassan, M. A., Baharuddin, A. S., Raja Abdullah, N. M. and
Sulaiman, A. (2013). Improved economic viability of integrated biogas energy
and compost production for sustainable palm oil mill management. J Clean Prod 44:1–7.
7.
Yusoff,
S. (2006). Renewable energy from palm oil – innovation on effective utilization
of waste. J Clean Prod, 14:87–93.
8.
Pan,
H. and Eberhardt, T.L. (2011). Characterization of the fly ash from the
gasification of wood and assessment for its application as a soil amendment. Bioresources 6:3987–4004.
9.
Odlare,
M. and Pell, M. (2009). Effect of wood fly ash and compost on nitrification and
denitrification in agricultural soil. Appl
Energy 86:74–80.
10.
Idris,
J., Musa, M., Yin, C. Y. and Hamid, K. H. K. (2010). Recovery of nickel from
spent catalyst from palm oil hydrogenation process using acidic solutions. J Ind Eng Chem 16:251–255.
11.
Razali,
W. A. W., Baharuddin, A. S., Talib, A. T., Sulaiman, A., Naim, M. N. and Hassan,
M.A. (2012). Degradation of oil palm empty fruit bunches (OPEFB) fibre during
composting process using in-vessel composter. BioResources 7:4786–805.
12.
Razuan,
R., Chen, Q., Finney, K. N., Russell, N. V., Sharifi, V. N. and Swithenbank, J.
(2011). Combustion of oil palm stone in a pilot-scale fluidised bed reactor. Fuel Process Technol 92:2219–2225.
13.
Spokas,
K. A., Cantrell, K. B., Novak, J. M., Archer, D. W., Ippolito, J. A. and
Collins, H. P. (2012). Biochar: a synthesis of its agronomic impact beyond
carbon sequestration. J Environ Qual 41:973–89.
14.
EPA.
(2005). Title 40-Protection of environment. Standards for the use or disposal
of sewage sludge. Code of federal regulations. Washington, D.C.
15.
Lievens,
C., Yperman, J., Vangronsveld, J. and Carleer, R. (2008). Study of the
potential valorisation of heavy metal contaminated biomass via phytoremediation
by fast pyrolysis: Part I. Influence of temperature, biomass species and solid
heat carrier on the behaviour of heavy metals. Fuel, 87:1894–905.