Malaysian Journal of Analytical Sciences Vol 18 No 3 (2014): 700 - 704

 

 

 

PRODUCTION OF BIOCHAR WITH HIGH MINERAL CONTENT FROM OIL PALM BIOMASS

 

(Pengeluaran Biochar dengan Kandungan Mineral yang Tinggi dari Biomas Kelapa Sawit)

 

Juferi Idris1,2,3, Yoshihito Shirai1  , Yoshito Ando1 , Ahmad Amiruddin Mohd Ali1 , Mohd Ridzuan Othman4 , Izzudin Ibrahim4, Mohd Ali Hassan4,5*

 

1Department of Biological Functions and Engineering, Graduate School of Life Science and Systems Engineering,

Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0196, Japan.

2Faculty of Chemical Engineering,

Universiti Teknologi MARA (UiTM) Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia

3Faculty of Chemical Engineering,

Universiti Teknologi MARA (UiTM) Malaysia, 40450, Shah Alam, Selangor, Malaysia.

4Department of Bioprocess Technology, Faculty of Biotechnology and Bimolecular Sciences,

5Department of Process and Food Engineering, Faculty of Engineering,

Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

 

*Corresponding author: alihas@upm.edu.my

 

 

Abstract

Carbonization of oil palm empty fruit bunch (OPEFB) biomass for the production of high mineral content biochar under an uncontrolled carbonization temperature and controlled air flow rate was studied using a pilot-scale brick carbonization reactor. The maximum temperature during the carbonization process was found to be in the range of 543 to 564 oC at exhaust gas flow rate of 36 m3/hr. All minerals (i.e  P, K ,Mg, Ca, Na, Mn, Fe, Cr, AI) showed an increased from the feedstock concentration up to 300 %. The concentration of heavy metal extracted from OPEFB biochar was lower than listed ceiling permitted levels. This proposed system without electrical control and heating source is preferable to the industry due to its simplicity, ease of operation and low energy requirement making it suitable for OPEFB biochar production for mulching purposes with more than double the mineral content compared to raw OPEFB biomass.

 

Keywords: biochar, elemental, carbonization; oil palm empty fruit bunch; oil palm biomass

 

Abstrak

Karbonisasi kelapa sawit tandan kosong biomas untuk pengeluaran kandungan mineral yang tinggi biochar di bawah suhu karbonisasi yang tidak terkawal dan dikawal kadar aliran keluar asap telah dikaji menggunakan skala-pilot reaktor bata karbonisasi. Suhu maksimum semasa proses karbonisasi  yang  didapati  dalam  julat 543-564oC pada  kadar  aliran  asap  pada 36 m3/jam. Semua mineral (iaitu P, K, Mg, Ca, Na, Mn, Fe, Cr, AI) menunjukkan peningkatan dari kepekatan bahan mentah sehingga 300%. Kepekatan logam berat yang diekstrak daripada biochar adalah lebih rendah daripada paras siling dibenarkan disenaraikan. Sistem yang dicadangkan tanpa kawalan elektrik dan sumber pemanasan adalah lebih baik untuk industri karena kesederhanaan, kemudahan operasi dan keperluan tenaga yang rendah menjadikan ia sesuai untuk pengeluaran biochar kelapa sawit untuk tujuan mulsa dengan lebih daripada dua kali ganda kandungan mineral berbanding kelapa biomas mentah.

 

Kata kunci : biochar, unsur mineral, karbonisasi; kelapa sawit buah tandan kosong; biomas kelapa sawit

 

References

1.       Gaunt, J. L. and Lehmann, J. (2008). Energy balance and emissions associated with biochar sequestration and pyrolysis bioenergy production. Environ Sci Technol 42: 4152–4158.

2.       Abu Bakar, R., Darus, S. Z. and Kulaseharan, S. (2010). Jamaluddin N. Effects of ten year application of empty fruit bunches in an oil palm plantation on soil chemical properties. Nutr Cycl Agroecosystems 89:341–349.

3.       Lim, K. C. and Zaharah, A. R. (2000). Decomposition and n & k release by oil palm empty fruit bunches applied under mature palms. J Oil Palm Res 12:55–62.

4.       Malaysian palm oil council (MPOC). Oil palm plantation (2014). Oil palm plantation .http://www.mpoc.org.my/Overview.aspx. [aceessed 20.4.2014]

5.       Sumathi, S., Chai, S. P. and Mohamed, A. R. (2008). Utilization of oil palm as a source of renewable energy in Malaysia. Renew Sustain Energy Rev 12: 2404–2421.

6.       Yoshizaki, T., Shirai, Y., Hassan, M. A., Baharuddin, A. S., Raja Abdullah, N. M. and Sulaiman, A. (2013). Improved economic viability of integrated biogas energy and compost production for sustainable palm oil mill management. J Clean Prod 44:1–7.

7.       Yusoff, S. (2006). Renewable energy from palm oil – innovation on effective utilization of waste. J Clean Prod, 14:87–93.

8.       Pan, H. and Eberhardt, T.L. (2011). Characterization of the fly ash from the gasification of wood and assessment for its application as a soil amendment. Bioresources 6:3987–4004.

9.       Odlare, M. and Pell, M. (2009). Effect of wood fly ash and compost on nitrification and denitrification in agricultural soil. Appl Energy 86:74–80.

10.    Idris, J., Musa, M., Yin, C. Y. and Hamid, K. H. K. (2010). Recovery of nickel from spent catalyst from palm oil hydrogenation process using acidic solutions. J Ind Eng Chem 16:251–255.

11.    Razali, W. A. W., Baharuddin, A. S., Talib, A. T., Sulaiman, A., Naim, M. N. and Hassan, M.A. (2012). Degradation of oil palm empty fruit bunches (OPEFB) fibre during composting process using in-vessel composter. BioResources 7:4786–805.

12.    Razuan, R., Chen, Q., Finney, K. N., Russell, N. V., Sharifi, V. N. and Swithenbank, J. (2011). Combustion of oil palm stone in a pilot-scale fluidised bed reactor. Fuel Process Technol 92:2219–2225.

13.    Spokas, K. A., Cantrell, K. B., Novak, J. M., Archer, D. W., Ippolito, J. A. and Collins, H. P. (2012). Biochar: a synthesis of its agronomic impact beyond carbon sequestration. J Environ Qual 41:973–89.

14.    EPA. (2005). Title 40-Protection of environment. Standards for the use or disposal of sewage sludge. Code of federal regulations. Washington, D.C.

15.    Lievens, C., Yperman, J., Vangronsveld, J. and Carleer, R. (2008). Study of the potential valorisation of heavy metal contaminated biomass via phytoremediation by fast pyrolysis: Part I. Influence of temperature, biomass species and solid heat carrier on the behaviour of heavy metals. Fuel, 87:1894–905.

 

 

Previous                    Content                    Next