Malaysian
Journal of Analytical Sciences Vol 25 No 2
(2021): 243 - 256
COMPARISON OF PHYSICOCHEMICAL, TOTAL PROTEIN
AND ANTIOXIDANT PROFILES BETWEEN MALAYSIAN Apis
AND Trigona HONEYS
(Perbandingan
Profil Fizikokimia, Jumlah Protin dan Antioksidan antara Madu Apis dan Trigona Malaysia)
Norjihada
Izzah Ismail1,2*, Mohammed Rafiq Abdul Kadir1, Razauden
Mohamed Zulkifli3, Mahaneem Mohamed4
1School
of Biomedical Engineering and Health Sciences, Faculty of Engineering
2Medical
Devices and Technology Centre
3Department
of Biosciences, Faculty of Science
Universiti
Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
4Department
of Physiology, School of Medical Sciences,
Universiti
Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
*Corresponding author: norjihada@utm.my
Received: 24 November 2020;
Accepted: 25 February 2021; Published: 25
April 2021
Abstract
The properties of honeys are highly influenced by botanical sources,
geographical origins, seasonal, processing, and bee species. The aims of this
study are to characterize
and compare the physicochemical, total phenolic, total flavonoids, total
protein and antioxidant profiles between several Malaysian Apis and Trigona honeys.
pH, free acidity, total soluble solids, ash content, electrical conductivity,
density, colour, hydroxymethylfurfural and sugar content were the observed
physicochemical parameters. All honey samples were also analyzed for their
total phenolic (TPC), flavonoid (TFC) and protein contents, DPPH radical
scavenging and total antioxidant activities. The physicochemical results of
Malaysian Apis and Trigona honeys were noticeably different
in terms of free acidity and electrical conductivity (EC), with extremely high
free acidity (271.1 – 553.2 meq/kg) and higher EC (0.92 – 1.29 mS/cm) were
observed for the latter. The results from TPC (60.21 mg GAE/100 g), TFC (65.86 mg QE/100 g), DPPH radical scavenging IC50 (10.57 mg/mL) and total antioxidant activities
(713.82 µM Fe(II))
revealed that Trigona K1 honey was rich with polyphenols and
other antioxidants compared to other Trigona
and Apis honeys. It can be concluded
from the present study that Malaysian Trigona
honeys have distinguished physicochemical and antioxidant profiles than Apis honeys.
Keywords: Apis honey, Trigona honey, stingless bee,
physicochemical, total phenolic content, antioxidant
Abstrak
Sifat-sifat
madu adalah sangat dipengaruhi oleh sumber botani, asal geografi, musim,
pemprosesan dan jenis lebah. Matlamat kajian ini adalah untuk mencirikan dan
membandingkan profil fizikokimia, jumlah fenolik, jumlah flavonoid, jumlah
protin dan antioksidan antara beberapa madu Apis
dan Trigona Malaysia. pH, asid bebas,
jumlah pepejal larut, kandungan abu, kekonduksian elektrikal, ketumpatan,
warna, kandungan hidroksimetilfurfural dan kandungan gula adalah
parameter-parameter yang dilihat. Kesemua sampel madu juga dianalisa untuk
jumlah kandungan fenolik (TPC), kandungan flavonoid (TFC) dan kandungan protin,
aktviti memerangkap radikal DPPH dan aktiviti jumlah antioksidan. Keputusan
fizikokimia bagi madu Apis dan Trigona Malaysia telah menunjukkan
perbezaan yang ketara dari segi asid bebas dan kekonduksian elektrikal (EC),
dengan asid bebas yang amat tinggi (271.1 – 553.2 meq/kg) dan EC yang tinggi
(0.92 – 1.29 mS/cm) diperhatikan untuk jenis madu kedua. Keputusan TPC (60.21 mg GAE/100 g), TFC (65.86 mg QE/100 g), IC50
memerangkap radikal DPPH (10.57 mg/mL) dan aktiviti jumlah
antioksidan (713.82 µM Fe(II))
mendedahkan bahawa madu Trigona K1
adalah kaya dengan polifenol-polfenol dan antioksidan-antioksidan lain
berbanding dengan madu Trigona dan Apis yang lain. Dapat
disimpulkan daripada kajian ini bahawa madu Trigona
Malaysia mempunyai profil fizikokimia dan antioksidan yang berbeza daripada
madu Apis.
Kata kunci: madu Apis, madu Trigona, lebah
kelulut, fizikokimia, jumah kandungan fenolik, antioksidan
References
1. Anklam, E. (1998). A review of the
analytical methods to determine the geographical and botanical origin of honey.
Food Chemistry, 63(4):
549-562.
2. Gheldof, N., Wang, X. H. and
Engeseth, N. J. (2002). Identification and quantification of antioxidant
components of honeys from various floral sources. Journal of Agricultural
and Food Chemistry, 50(21):
5870-5877.
3. Weirich, G. F., Collins, A. M. and
Williams, V. P. (2002). Antioxidant enzymes in the honey bee, Apis mellifera. Apidologie, 33(1): 3-14.
4. Al-Mamary, M., Al-Meeri, A. and
Al-Habori, M. (2002). Antioxidant activities and total phenolics of different
types of honey. Nutrition Research, 22(9): 1041-1047.
5. Aljadi, A. M. and Kamaruddin, M. Y.
(2004). Evaluation of the phenolic contents and antioxidant capacities of two
Malaysian floral honeys. Food Chemistry, 85(4): 513-518.
6. Beretta, G., Granata, P., Ferrero,
M., Orioli, M. and Facino, R. M. (2005). Standardization of antioxidant
properties of honey by a combination of spectrophotometric/fluorimetric assays
and chemometrics. Analytica Chimica Acta, 533(2): 185-191.
7. Baltrušaitytė, V., Venskutonis,
P. R. and Čeksterytė, V. (2007). Radical scavenging activity of
different floral origin honey and beebread phenolic extracts. Food Chemistry, 101(2): 502-514.
8. Tenore, G. C., Ritieni, A.,
Campiglia, P. and Novellino, E. (2012). Nutraceutical potential of monofloral
honeys produced by the Sicilian black honeybees (Apis mellifera ssp. sicula). Food and Chemical Toxicology, 50 (6): 1955-1961.
9. Gomes. S., Dias, L. G., Moreira, L.
L., Rodrigues, P. and Estevinho, L. (2010). Physicochemical, microbiological
and antimicrobial properties of commercial honeys from Portugal. Food and
Chemical Toxicology, 48(2):
544-548.
10. Codex Alimentarius Commission (2001).
Codex Standard for Honey: CODEX STAN 12-1981, Rev. 1 (1987), Rev. 2 (2001).
FAO, Rome: pp. 1-8.
11. EU (European Union) Council. (2002).
Council Directive 2001/110/EC of 20 December 2001 relating to honey. Official Journal of the European Union,
L10: pp. 47-52.
12. Vit, P., Bogdanov, S. and
Kilchenmann, V. (1994). Composition of Venezuelan honeys from stingless bees
(Apidae : Meliponinae) and Apis
mellifera L. Apidologie, 25(3):
278-288.
13. Bogdanov, S., Vit, P. and
Kilchenmann, V. (1996). Sugar profiles and conductivity of stingless bee honeys
from Venezuela. Apidologie, 27(6):
445-450.
14. Silva, T. M. S., dos Santos, F. P.,
Evangelista-Rodrigues, A., da Silva, E. M. S., da Silva, G. S., de Novais, J.
S., dos Santos, F. d. A. R. and Camara, C. (2013). A phenolic compound,
melissopalynological, physicochemical analysis and antioxidant activity of
jandaíra (Melipona subnitida) honey. Journal
of Food Composition and Analysis, 2 (1): 10-18.
15. Chuttong, B., Chanbang, Y., Sringarm,
K. and Burgett, M. (2016).
Physicochemical profiles of stingless bee (Apidae: Meliponini) honey
from South East Asia (Thailand). Food Chemistry, 192: 149-155.
16. Ismail, N. I., Kadir, M. R. A.,
Mahmood, N. H., Singh, O. P., Iqbal, N. and Zulkifli, R. M. (2016). Apini and
Meliponini foraging activities influence the phenolic content of different
types of Malaysian honey. Journal of Apicultural Research, 55(2): 137-150.
17. Shamsudin, S., Selamat, J., Sanny,
M., Razak, S. B. A., Jambari, N. N., Mian, Z. and Khatib, A. (2019). Influence
of origins and bee species on physicochemical, antioxidant properties and
botanical discrimination of stingless bee honey. International Journal of
Food Properties, 22(1):
239-264.
18. Bogdanov,
S. (2009). Harmonised method of the international honey commission. Access from
http://www.bee-hexagon.net/en/network.htm. [Access online 20 January 2013].
19. Saxena, S., Gautam, S. and Sharma, A.
(2010). Physical, biochemical and antioxidant properties of some Indian honeys.
Food Chemistry, 118(2):
391-397.
20. United States Department of
Agriculture (1985). United States standards for grades of extracted honey.
Washington D.C., United States of America: Agricultural Marketing Service.
21. Khalil, M. I., Sulaiman, S. A., Alam,
N., Ramli, N., Mohamed, M., Bai’e, S. and Hua G. S. (2012). Content and
antioxidant properties of processed tualang honey (Agromas®) collected from
different regions in Malaysia. International Journal of Pharmacy and
Pharmaceutical Sciences, 4: 214-219.
22. Bradford, M. M. (1976). A rapid and
sensitive method for quantification of microgram quantities of protein
utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2): 248-254.
23. Wang, H., Gao, X. D., Zhou, G. C.,
Cai, L. and Yao, W. B. (2008). In vitro and in vivo antioxidant activity of
aqueous extract from Choerospondias
axillaris fruit. Food Chemistry,
106(3): 888-895.
24. Ferreira, I. C. F. R., Aires, E.,
Barreira, J. C. M. and Estevinho, L. M. (2009). Antioxidant activity of
Portuguese honey samples: Different contributions of the entire honey and
phenolic extract. Food Chemistry, 114(4):
1438-1443.
25. Khalil, M. I., Sulaiman, S. A. and
Gan, S. H. (2010). High 5-hydroxymethylfurfural concentrations are found in
Malaysian honey samples stored for more than one year. Food and Chemical
Toxicology, 48(8-9):
2388-2392.
26. Chua, L. S., Abdul-Rahaman, N. L.,
Sarmidi, M. R. and Aziz, R. (2012). Multi-elemental composition and physical
properties of honey samples from Malaysia. Food Chemistry, 135(3): 880-887.
27. Moniruzzaman, M., Khalil, M. I.,
Sulaiman, S. A. and Gan, S. H. (2013). Physicochemical and antioxidant
properties of Malaysian honeys produced by Apis
cerana, Apis dorsata and Apis mellifera. BMC Complementary and Alternative Medicine, 13(1): 43.
28. Omar, S., Enchang, F. K., Nazri, M.
U. I. A., Ismail, M. M. and Ismail, W. I. W. (2019). Physicochemical profiles
of honey harvested from four major species of stingless bee (kelulut) in north
east peninsular of Malaysia. Malaysian Applied Biology, 48(1): 111-116.
29. Selvaraju, K., Vikram, P., Soon, J.
M., Krishnan, K. T. and Mohammed, A. (2019). Melissopalynological,
physicochemical and antioxidant properties of honey from West Coast of
Malaysia. Journal of Food Science and Technology, 56(5): 2508-2521.
30. Ouchemoukh, S., Louaileche, H. and
Schweitzer, P. (2007). Physicochemical characteristics and pollen spectrum of
some Algerian honeys. Food Control, 18(1): 52-58.
31. Terrab, A., Dı́ez, M. J.
and Heredia, F. J. (2002). Characterisation of Moroccan unifloral honeys by their
physicochemical characteristics. Food Chemistry, 79(3):
373-379.
32. Tan, H. T., Rahman, R. A., Gan, S.
H., Halim, A. S., Hassan, S. A., Sulaiman, S. A. and Kirnpaul-Kaur, B. S.
(2009). The antibacterial properties of Malaysian tualang honey against wound and
enteric microorganisms in comparison to manuka honey. BMC Complementary and
Alternative Medicine, 9
(34): 1-8.
33. Al-Kafaween, M. A., Hilmi, A. B. M.,
Jaffar, N., Al-Jamal, H. A. N., Zahri, M. K. and Jibril, F. I. (2020).
Antibacterial and antibiofilm activities of Malaysian Trigona honey against Pseudomonas
aeruginosa ATCC 10145 and Streptococcus
pyogenes ATCC 19615. Jordan Journal of Biological Sciences, 13(1): 69-76.
34. Silva, L. R., Videira, R., Monteiro,
A. P., Valentăo, P. and Andrade, P. B. (2009). Honey from Luso region
(Portugal): physicochemical characteristics and mineral contents. Microchemal
Journal, 93(1): 73-77.
35. Alqarni, A. S., Owayss, A. A. and
Mahmoud, A. A. (2016). Physicochemical characteristics, total phenols and
pigments of national and international honeys in Saudi Arabia. Arabian
Journal of Chemistry, 9(1):
114-120.
36. Bakar, M. F. A., Sanusi, S. B.,
Bakar, F. I. A., Cong, O. J. and Mian, Z. (2017). Physicochemical and
antioxidant potential of raw unprocessed honey from Malaysian stingless bees. Pakistan
Journal of Nutrition. 16(11):
888-894.
37. Roubik, D. W. (1979). Nest and colony
characteristics of stingless bees from French Guiana (Hymenoptera: Apidae). Journal
of the Kansas Entomological Society, 52(3):
443-470.
38. Sommeijer, M. J., De Rooy, G., Punt,
W. and De Bruijn, L. L. M. (1983). A comparative study of foraging behavior and
pollen resources of various stingless bees (Hym., Meliponinae) and honeybees
(Hym., Apinae) in Trinidad, West-Indies. Apidologie, 14(3): 205-224.
39. Singh, N. and Bath, P. K. (1997).
Quality evaluation of different types of Indian honey. Food Chemistry, 58(1-2): 129-133.
40. Ranneh, Y., Ali, F., Zarei, M., Akim,
A. M., Hamid, H. A. and Khazaai, H. (2018). Malaysian stingless bee and Tualang
honeys: A comparative characterization of total antioxidant capacity and
phenolic profile using liquid chromatography-mass spectrometry. LWT-Food
Science and Technology, 89:
1-9.
41. Chua, L. S., Rahaman, N. L. A.,
Adnan, N. A. and Tan, T. T. E. (2013). Antioxidant activity of three honey
samples in relation with their biochemical components. Journal of Analytical
Methods in Chemistry, 2013: 313798.
42. Khalil, M. I., Alam, N.,
Moniruzzaman, M., Sulaiman, S. A. and Gan, S. H. (2011). Phenolic acid
composition and antioxidant properties of Malaysian honeys. Journal of Food
Science, 76(6): 921- 928.
43. Frankel, S., Robinson, G. E. and
Berenbaum, M. R. (1998). Antioxidant capacity and correlated characteristics of
14 unifloral honeys. Journal of Apicultural Research, 37(1): 27-31.
44. Ismail, N. I., Sornambikai, S.,
Kadir, M. R. A., Mahmood, N. H., Zulkifli, R. M. and Shahir, S. (2018).
Evaluation of radical scavenging capacity of polyphenols found in natural
Malaysian honeys by voltammetric techniques. Electroanalysis, 30(12): 2939-2949.
45. Benzie,
I. F. F. and Strain, J. J. (1999). Ferric reducing/antioxidant power assay:
Direct measure of total antioxidant activity of biological fluids and modified
version for simultaneous measurement of total antioxidant power and ascorbic
acid concentration. Methods in Enzymology,
299: 15-27.