Malaysian Journal of Analytical Sciences Vol 25 No 2 (2021): 243 - 256

 

 

 

 

COMPARISON OF PHYSICOCHEMICAL, TOTAL PROTEIN AND ANTIOXIDANT PROFILES BETWEEN MALAYSIAN Apis AND Trigona HONEYS

 

(Perbandingan Profil Fizikokimia, Jumlah Protin dan Antioksidan antara Madu Apis dan Trigona Malaysia)

 

Norjihada Izzah Ismail1,2*, Mohammed Rafiq Abdul Kadir1, Razauden Mohamed Zulkifli3, Mahaneem Mohamed4

 

1School of Biomedical Engineering and Health Sciences, Faculty of Engineering

2Medical Devices and Technology Centre

3Department of Biosciences, Faculty of Science

Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia

4Department of Physiology, School of Medical Sciences,

Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia

 

*Corresponding author:  norjihada@utm.my

 

 

Received: 24 November 2020; Accepted: 25 February 2021; Published:  25 April 2021

 

 

Abstract

The properties of honeys are highly influenced by botanical sources, geographical origins, seasonal, processing, and bee species. The aims of this study are to characterize and compare the physicochemical, total phenolic, total flavonoids, total protein and antioxidant profiles between several Malaysian Apis and Trigona honeys. pH, free acidity, total soluble solids, ash content, electrical conductivity, density, colour, hydroxymethylfurfural and sugar content were the observed physicochemical parameters. All honey samples were also analyzed for their total phenolic (TPC), flavonoid (TFC) and protein contents, DPPH radical scavenging and total antioxidant activities. The physicochemical results of Malaysian Apis and Trigona honeys were noticeably different in terms of free acidity and electrical conductivity (EC), with extremely high free acidity (271.1 – 553.2 meq/kg) and higher EC (0.92 – 1.29 mS/cm) were observed for the latter. The results from TPC (60.21 mg GAE/100 g), TFC (65.86 mg QE/100 g), DPPH radical scavenging IC50 (10.57 mg/mL) and total antioxidant activities (713.82 µM Fe(II)) revealed that Trigona K1 honey was rich with polyphenols and other antioxidants compared to other Trigona and Apis honeys. It can be concluded from the present study that Malaysian Trigona honeys have distinguished physicochemical and antioxidant profiles than Apis honeys.

 

Keywords:  Apis honey, Trigona honey, stingless bee, physicochemical, total phenolic content, antioxidant

 

Abstrak

Sifat-sifat madu adalah sangat dipengaruhi oleh sumber botani, asal geografi, musim, pemprosesan dan jenis lebah. Matlamat kajian ini adalah untuk mencirikan dan membandingkan profil fizikokimia, jumlah fenolik, jumlah flavonoid, jumlah protin dan antioksidan antara beberapa madu Apis dan Trigona Malaysia. pH, asid bebas, jumlah pepejal larut, kandungan abu, kekonduksian elektrikal, ketumpatan, warna, kandungan hidroksimetilfurfural dan kandungan gula adalah parameter-parameter yang dilihat. Kesemua sampel madu juga dianalisa untuk jumlah kandungan fenolik (TPC), kandungan flavonoid (TFC) dan kandungan protin, aktviti memerangkap radikal DPPH dan aktiviti jumlah antioksidan. Keputusan fizikokimia bagi madu Apis dan Trigona Malaysia telah menunjukkan perbezaan yang ketara dari segi asid bebas dan kekonduksian elektrikal (EC), dengan asid bebas yang amat tinggi (271.1 – 553.2 meq/kg) dan EC yang tinggi (0.92 – 1.29 mS/cm) diperhatikan untuk jenis madu kedua. Keputusan TPC (60.21 mg GAE/100 g), TFC (65.86 mg QE/100 g), IC50 memerangkap radikal DPPH (10.57 mg/mL) dan aktiviti jumlah antioksidan (713.82 µM Fe(II)) mendedahkan bahawa madu Trigona K1 adalah kaya dengan polifenol-polfenol dan antioksidan-antioksidan lain berbanding dengan madu Trigona dan Apis yang lain. Dapat disimpulkan daripada kajian ini bahawa madu Trigona Malaysia mempunyai profil fizikokimia dan antioksidan yang berbeza daripada madu Apis.

 

Kata kunci:  madu Apis, madu Trigona, lebah kelulut, fizikokimia, jumah kandungan fenolik, antioksidan

 

References

1.      Anklam, E. (1998). A review of the analytical methods to determine the geographical and botanical origin of honey. Food Chemistry, 63(4): 549-562.

2.      Gheldof, N., Wang, X. H. and Engeseth, N. J. (2002). Identification and quantification of antioxidant components of honeys from various floral sources. Journal of Agricultural and Food Chemistry, 50(21): 5870-5877.

3.      Weirich, G. F., Collins, A. M. and Williams, V. P. (2002). Antioxidant enzymes in the honey bee, Apis mellifera. Apidologie, 33(1): 3-14.

4.      Al-Mamary, M., Al-Meeri, A. and Al-Habori, M. (2002). Antioxidant activities and total phenolics of different types of honey. Nutrition Research, 22(9): 1041-1047.

5.      Aljadi, A. M. and Kamaruddin, M. Y. (2004). Evaluation of the phenolic contents and antioxidant capacities of two Malaysian floral honeys. Food Chemistry, 85(4): 513-518.

6.      Beretta, G., Granata, P., Ferrero, M., Orioli, M. and Facino, R. M. (2005). Standardization of antioxidant properties of honey by a combination of spectrophotometric/fluorimetric assays and chemometrics. Analytica Chimica Acta, 533(2): 185-191.

7.      Baltrušaitytė, V., Venskutonis, P. R. and Čeksterytė, V. (2007). Radical scavenging activity of different floral origin honey and beebread phenolic extracts. Food Chemistry, 101(2): 502-514.

8.      Tenore, G. C., Ritieni, A., Campiglia, P. and Novellino, E. (2012). Nutraceutical potential of monofloral honeys produced by the Sicilian black honeybees (Apis mellifera ssp. sicula). Food and Chemical Toxicology, 50 (6): 1955-1961.

9.      Gomes. S., Dias, L. G., Moreira, L. L., Rodrigues, P. and Estevinho, L. (2010). Physicochemical, microbiological and antimicrobial properties of commercial honeys from Portugal. Food and Chemical Toxicology, 48(2): 544-548.

10.   Codex Alimentarius Commission (2001). Codex Standard for Honey: CODEX STAN 12-1981, Rev. 1 (1987), Rev. 2 (2001). FAO, Rome: pp. 1-8.

11.   EU (European Union) Council. (2002). Council Directive 2001/110/EC of 20 December 2001 relating to honey. Official Journal of the European Union, L10: pp. 47-52.

12.   Vit, P., Bogdanov, S. and Kilchenmann, V. (1994). Composition of Venezuelan honeys from stingless bees (Apidae : Meliponinae) and Apis mellifera L. Apidologie, 25(3): 278-288.

13.   Bogdanov, S., Vit, P. and Kilchenmann, V. (1996). Sugar profiles and conductivity of stingless bee honeys from Venezuela. Apidologie, 27(6): 445-450.

14.   Silva, T. M. S., dos Santos, F. P., Evangelista-Rodrigues, A., da Silva, E. M. S., da Silva, G. S., de Novais, J. S., dos Santos, F. d. A. R. and Camara, C. (2013). A phenolic compound, melissopalynological, physicochemical analysis and antioxidant activity of jandaíra (Melipona subnitida) honey. Journal of Food Composition and Analysis, 2 (1): 10-18.

15.   Chuttong, B., Chanbang, Y., Sringarm, K. and Burgett, M. (2016).  Physicochemical profiles of stingless bee (Apidae: Meliponini) honey from South East Asia (Thailand). Food Chemistry, 192: 149-155.

16.   Ismail, N. I., Kadir, M. R. A., Mahmood, N. H., Singh, O. P., Iqbal, N. and Zulkifli, R. M. (2016). Apini and Meliponini foraging activities influence the phenolic content of different types of Malaysian honey. Journal of Apicultural Research, 55(2): 137-150.

17.   Shamsudin, S., Selamat, J., Sanny, M., Razak, S. B. A., Jambari, N. N., Mian, Z. and Khatib, A. (2019). Influence of origins and bee species on physicochemical, antioxidant properties and botanical discrimination of stingless bee honey. International Journal of Food Properties, 22(1): 239-264.

18.   Bogdanov, S. (2009). Harmonised method of the international honey commission. Access from http://www.bee-hexagon.net/en/network.htm. [Access online 20 January 2013].

19.   Saxena, S., Gautam, S. and Sharma, A. (2010). Physical, biochemical and antioxidant properties of some Indian honeys. Food Chemistry, 118(2): 391-397.

20.   United States Department of Agriculture (1985). United States standards for grades of extracted honey. Washington D.C., United States of America: Agricultural Marketing Service.

21.   Khalil, M. I., Sulaiman, S. A., Alam, N., Ramli, N., Mohamed, M., Bai’e, S. and Hua G. S. (2012). Content and antioxidant properties of processed tualang honey (Agromas®) collected from different regions in Malaysia. International Journal of Pharmacy and Pharmaceutical Sciences, 4: 214-219.

22.   Bradford, M. M. (1976). A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2): 248-254.

23.   Wang, H., Gao, X. D., Zhou, G. C., Cai, L. and Yao, W. B. (2008). In vitro and in vivo antioxidant activity of aqueous extract from Choerospondias axillaris fruit. Food Chemistry, 106(3): 888-895.

24.   Ferreira, I. C. F. R., Aires, E., Barreira, J. C. M. and Estevinho, L. M. (2009). Antioxidant activity of Portuguese honey samples: Different contributions of the entire honey and phenolic extract. Food Chemistry, 114(4): 1438-1443.

25.   Khalil, M. I., Sulaiman, S. A. and Gan, S. H. (2010). High 5-hydroxymethylfurfural concentrations are found in Malaysian honey samples stored for more than one year. Food and Chemical Toxicology, 48(8-9): 2388-2392.

26.   Chua, L. S., Abdul-Rahaman, N. L., Sarmidi, M. R. and Aziz, R. (2012). Multi-elemental composition and physical properties of honey samples from Malaysia. Food Chemistry, 135(3): 880-887.

27.   Moniruzzaman, M., Khalil, M. I., Sulaiman, S. A. and Gan, S. H. (2013). Physicochemical and antioxidant properties of Malaysian honeys produced by Apis cerana, Apis dorsata and Apis mellifera. BMC Complementary and Alternative Medicine, 13(1): 43.

28.   Omar, S., Enchang, F. K., Nazri, M. U. I. A., Ismail, M. M. and Ismail, W. I. W. (2019). Physicochemical profiles of honey harvested from four major species of stingless bee (kelulut) in north east peninsular of Malaysia. Malaysian Applied Biology, 48(1): 111-116.

29.   Selvaraju, K., Vikram, P., Soon, J. M., Krishnan, K. T. and Mohammed, A. (2019). Melissopalynological, physicochemical and antioxidant properties of honey from West Coast of Malaysia. Journal of Food Science and Technology, 56(5): 2508-2521.

30.   Ouchemoukh, S., Louaileche, H. and Schweitzer, P. (2007). Physicochemical characteristics and pollen spectrum of some Algerian honeys. Food Control, 18(1): 52-58.

31.   Terrab, A., Dı́ez, M. J. and Heredia, F. J. (2002). Characterisation of Moroccan unifloral honeys by their physicochemical characteristics. Food Chemistry, 79(3): 373-379.

32.   Tan, H. T., Rahman, R. A., Gan, S. H., Halim, A. S., Hassan, S. A., Sulaiman, S. A. and Kirnpaul-Kaur, B. S. (2009). The antibacterial properties of Malaysian tualang honey against wound and enteric microorganisms in comparison to manuka honey. BMC Complementary and Alternative Medicine, 9 (34): 1-8.

33.   Al-Kafaween, M. A., Hilmi, A. B. M., Jaffar, N., Al-Jamal, H. A. N., Zahri, M. K. and Jibril, F. I. (2020). Antibacterial and antibiofilm activities of Malaysian Trigona honey against Pseudomonas aeruginosa ATCC 10145 and Streptococcus pyogenes ATCC 19615. Jordan Journal of Biological Sciences, 13(1): 69-76.

34.   Silva, L. R., Videira, R., Monteiro, A. P., Valentăo, P. and Andrade, P. B. (2009). Honey from Luso region (Portugal): physicochemical characteristics and mineral contents. Microchemal Journal, 93(1): 73-77.

35.   Alqarni, A. S., Owayss, A. A. and Mahmoud, A. A. (2016). Physicochemical characteristics, total phenols and pigments of national and international honeys in Saudi Arabia. Arabian Journal of Chemistry, 9(1): 114-120.

36.   Bakar, M. F. A., Sanusi, S. B., Bakar, F. I. A., Cong, O. J. and Mian, Z. (2017). Physicochemical and antioxidant potential of raw unprocessed honey from Malaysian stingless bees. Pakistan Journal of Nutrition. 16(11): 888-894.

37.   Roubik, D. W. (1979). Nest and colony characteristics of stingless bees from French Guiana (Hymenoptera: Apidae). Journal of the Kansas Entomological Society, 52(3): 443-470.

38.   Sommeijer, M. J., De Rooy, G., Punt, W. and De Bruijn, L. L. M. (1983). A comparative study of foraging behavior and pollen resources of various stingless bees (Hym., Meliponinae) and honeybees (Hym., Apinae) in Trinidad, West-Indies. Apidologie, 14(3): 205-224.

39.   Singh, N. and Bath, P. K. (1997). Quality evaluation of different types of Indian honey. Food Chemistry, 58(1-2): 129-133.

40.   Ranneh, Y., Ali, F., Zarei, M., Akim, A. M., Hamid, H. A. and Khazaai, H. (2018). Malaysian stingless bee and Tualang honeys: A comparative characterization of total antioxidant capacity and phenolic profile using liquid chromatography-mass spectrometry. LWT-Food Science and Technology, 89: 1-9.

41.   Chua, L. S., Rahaman, N. L. A., Adnan, N. A. and Tan, T. T. E. (2013). Antioxidant activity of three honey samples in relation with their biochemical components. Journal of Analytical Methods in Chemistry, 2013: 313798.

42.   Khalil, M. I., Alam, N., Moniruzzaman, M., Sulaiman, S. A. and Gan, S. H. (2011). Phenolic acid composition and antioxidant properties of Malaysian honeys. Journal of Food Science, 76(6): 921- 928.

43.   Frankel, S., Robinson, G. E. and Berenbaum, M. R. (1998). Antioxidant capacity and correlated characteristics of 14 unifloral honeys. Journal of Apicultural Research, 37(1): 27-31.

44.   Ismail, N. I., Sornambikai, S., Kadir, M. R. A., Mahmood, N. H., Zulkifli, R. M. and Shahir, S. (2018). Evaluation of radical scavenging capacity of polyphenols found in natural Malaysian honeys by voltammetric techniques. Electroanalysis, 30(12): 2939-2949.

45.   Benzie, I. F. F. and Strain, J. J. (1999). Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods in Enzymology, 299: 15-27.