Malaysian Journal of Analytical Sciences Vol 25 No 2 (2021): 203 - 214

 

 

 

 

OILY SAND CLEANING OPTIMIZATION BY SURFACTANTS INTERFACIAL TENSION SCREENING AND HYDROCYCLONE SEPARATION

 

(Pengoptimuman Pembersihan Pasir Berminyak oleh Saringan Ketegangan antara Muka Surfaktan dan Pemisahan Hidrosiklon)

 

Akhmal Sidek1*, Ahmad Faiq Omar1, Aizuddin Supee2, Amni Haslinda Alpandi3, Hazlina Husin3, Dewandra Bagus Ekaputra4, Shaziera Omar1

 

1Petroleum Engineering Department, SCEE, Faculty of Engineering

2Energy Management Group, SCEE, Faculty of Engineering

Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia

3Petroleum Engineering Department,

Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia

4Department of Geological Engineering, Faculty of Engineering,

Universitas Islam Riau, Riau 28284, Indonesia

 

*Corresponding author:  akhmalsidek@utm.my

 

 

Received: 30 December 2020; Accepted: 10 February 2021; Published:  25 April 2021

 

 

Abstract

The oily sand cleaning process should pass the standard discharge requirements so that its impact on the environment can be minimized. This work has used integrated surfactants which includes sodium dodecyl sulfate (SDS, anionic), saponin (plant-based, nonionic), and cetyl trimethylammonium bromide (CTAB, cationic) with hydrocyclone method, for washing oily sand (41 wt.% of paraffin) with fixed cleaning time of 150 minutes. The interfacial tension (IFT) of the surfactants as a cleaning agent was screened based on the critical micelle concentration (CMC) so that the desirable surfactant concentration can be used. Field Emission Scanning Electron Microscopy-Energy Dispersive X-ray (FESEM-EDX) was used to characterize the sand for before and after the cleaning process. As compared to without hydrocyclone, the application of hydrocyclone caused in increasing oil removal efficiency with CTAB exhibits 91%, followed by SDS (87%), and saponin (79%). Based on the FESEM-EDX characterization, besides its primary function of oil removal from the sand, saponin is also capable to remove heavy metal elements. It can be deduced that the integration of hydrocyclone with the surfactants can cause in synergized effects which could then improve the oily sand cleaning efficiency.

 

Keywords:  interfacial tension screening, critical micelle concentration, hydrocyclone, oily sand cleaning, efficiency

 

Abstrak

Proses pembersihan pasir berminyak perlu melepasi syarat-syarat piawai pelepasan supaya kesannya terhadap alam sekitar boleh dikurangkan. Kajian ini telah menggunakan integrasi surfaktan yang merangkumi sodium dodekil sulfat (SDS, anionik), saponin (sumber tumbuhan, non-ionik) dan cetyl trimetilammonium bromida (CTAB, kationik) dengan kaedah hidrosiklon, bagi pembersihan pasir berminyak (kandungan paraffin 41 wt.%) dengan masa pembersihan tetap 150 minutes. Ketegangan antara muka (IFT) surfaktan sebagai agen pembersihan telah disaring berdasarkan kepekatan misel kritikal (CMC) supaya kepekatan surfaktan yang diingini dapat digunakan. Mikroskopi Imbasan Electron Pelepasan Medan-Tenaga Serakan sinar-X (FESEM-EDX) telah digunakan untuk mencirikan pasir sebelum dan selepas proses pembersihan. Berbanding dengan tanpa hidrosiklon, penggunaan hidrosiklon telah menyebabkan peningkatan kecekapan penyingkiran minyak dengan CTAB menunjukkan 91%, diikuti oleh SDS (87%), dan saponin (79%). Berdasarkan ciri FESEM-EDX, selain fungsi utama penyingkiran minyak dari pasir, saponin juga mampu menyingkirkan unsur logam berat. Dapat disimpulkan bahawa integrasi hidrosiklon dengan surfaktan menyebabkan kesan sinergi yang kemudian membawa kepada peningkatan kecekapan pembersihan pasir berminyak.

 

Kata kunci:  saringan ketegangan antara muka, kepekatan misel kritikal, hidrosiklon, pembersihan pasir berminyak, kecekapan

 

References

1.      Rawlins, H. (2013). Sand management methodologies for sustained facilities operations. Oil and Gas Facilities, 2(05): 27-34.

2.      Ikporo, B. and Sylvester, O. (2015). Effect of sand invasion on oil well production: a case study of Garon field in the Niger Delta. The International Journal of Engineering and Science, 4(5): 64-72.

3.      Pichtel, J. (2016). Oil and gas production wastewater: Soil contamination and pollution prevention. Applied and Environmental Soil Science, 2016: 1-25.

4.      Khamehchi, E., Ameri, O. and Alizadeh, A. (2015). Choosing an optimum sand control method. Egyptian Journal of Petroleum, 24(2): 193-202.

5.      Jiuxing, Z. H. Y. Y. W. and Dongping, W. (2010). A study on oily sludge (sand) treatment technology. Environmental Protection of Oil & Gas Fields, 3: 1-20.

6.      Zali, M. A., Ahmad, W. K. W., Retnam, A. and Catrina, N. (2015). Concentration of heavy metals in virgin, used, recovered and waste oil: a spectroscopic study. Procedia Environmental Sciences, 30: 201-204.

7.      AlSofi, A. M., AlKhatib, A. M., Al-Ajwad, H. A., Wang, Q. and Zahrani, B. H. (2019). Assessment of enhanced-oil-recovery-chemicals production and its potential effect on upstream facilities. SPE Journal, 24(3): 1-037.

8.      Bahmani, F., Ataei, S. A. and Mikaili, M. A. (2018). The effect of moisture content variation on the bioremediation of hydrocarbon contaminated soils: modeling and experimental investigation. Journal of Environmental Analytical Chemistry, 5(2): 236.

9.      Liu, P. W. G., Chang, T. C., Whang, L. M., Kao, C. H., Pan, P. T. and Cheng, S. S. (2011). Bioremediation of petroleum hydrocarbon contaminated soil: Effects of strategies and microbial community shift. International Biodeterioration & Biodegradation, 65(8): 1119-1127.

10.   Jing, G., Chen, T. and Luan, M. (2016). Studying oily sludge treatment by thermo chemistry. Arabian Journal of Chemistry, 9: S457-S460.

11.   Muņoz-Morales, M., Braojos, M., Sáez, C., Caņizares, P. and Rodrigo, M. A. (2017). Remediation of soils polluted with lindane using surfactant-aided soil washing and electrochemical oxidation. Journal of Hazardous Materials, 339: 232-238.

12.   Gao, Y. X., Ding, R., Chen, X., Gong, Z. B., Zhang, Y. and Yang, M. (2018). Ultrasonic washing for oily sludge treatment in pilot scale. Ultrasonics, 90: 1-4.

13.   Arelli, A., Nuzzo, A., Sabia, C., Banat, I. M., Zanaroli, G. and Fava, F. (2018). Optimization of washing conditions with biogenic mobilizing agents for marine fuel-contaminated beach sands. New Biotechnology, 43: 13-22.

14.   Singh, A. K. and Cameotra, S. S. (2013). Efficiency of lipopeptide biosurfactants in removal of petroleum hydrocarbons and heavy metals from contaminated soil. Environmental Science and Pollution Research, 20(10): 7367-7376.

15.   Belhaj, A. F., Elraies, K. A., Alnarabiji, M. S., Shuhli, J. A., Mahmood, S. M. and Ern, L. W. (2019). Experimental investigation of surfactant partitioning in pre-CMC and post-CMC regimes for enhanced oil recovery application. Energies, 12(12): 2319.

16.   Manshad, A. K., Rezaei, M., Moradi, S., Nowrouzi, I. and Mohammadi, A. H. (2017). Wettability alteration and interfacial tension (IFT) reduction in enhanced oil recovery (EOR) process by ionic liquid flooding. Journal of Molecular Liquids, 248: 153-162.

17.   Duan, M., Wang, X., Fang, S., Zhao, B., Li, C. and Xiong, Y. (2018). Treatment of Daqing oily sludge by thermochemical cleaning method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 554: 272-278.

18.   Bahadori, A. (2018). Fundamentals of enhanced oil and gas recovery from conventional and unconventional reservoirs. Gulf Professional Publishing.

19.   Saidy, A. R., Smernik, R. J., Baldock, J. A., Kaiser, K. and Sanderman, J. (2013). The sorption of organic carbon onto differing clay minerals in the presence and absence of hydrous iron oxide. Geoderma, 209: 15-21.

20.   Ferreira, T. M., Bernin, D. and Topgaard, D. (2013). NMR studies of nonionic surfactants. In Annual Reports on NMR Spectroscopy. Academic Press, 79: pp. 73-127.

21.   Tang, J., He, J., Xin, X., Hu, H. and Liu, T. (2018). Biosurfactants enhanced heavy metals removal from sludge in the electrokinetic treatment. Chemical Engineering Journal, 334: 2579-2592.

22.   Borghi, C. C., Fabbri, M., Fiorini, M., Mancini, M. and Ribani, P. L. (2011). Magnetic removal of surfactants from wastewater using micrometric iron oxide powders. Separation and Purification Technology, 83: 180-188.

23.   Dehaghani, A. H. S. and Badizad, M. H. (2018). Effect of magnetic field treatment on interfacial tension of CTAB nano-emulsion: Developing a novel agent for enhanced oil recovery. Journal of Molecular Liquids, 261: 107-114.

24.   Para, G., Hamerska-Dudra, A., Wilk, K. A. and Warszyński, P. (2010). Surface activity of cationic surfactants, influence of molecular structure. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 365(1-3): 215-221.

25.   Gu, X., Zhang, F., Li, Y., Zhang, J., Chen, S., Qu, C. and Chen, G. (2018). Investigation of cationic surfactants as clean flow improvers for crude oil and a mechanism study. Journal of Petroleum Science and Engineering, 164: 87-90.

26.   Negin, C., Ali, S. and Xie, Q. (2017). Most common surfactants employed in chemical enhanced oil recovery. Petroleum, 3(2): 197-211.

27.   Urum, K., Pekdemir, T. and Gopur, M. (2003). Optimum conditions for washing of crude oil-contaminated soil with biosurfactant solutions. Process Safety and Environmental Protection, 81(3): 203-209.

28.   Khalladi, R., Benhabiles, O., Bentahar, F. and Moulai-Mostefa, N. (2009). Surfactant remediation of diesel fuel polluted soil. Journal of Hazardous Materials, 164(2-3): 1179-1184.

29.   Bandala, E. R., Aguilar, F. and Torres, L. G. (2010). Surfactant-enhanced soil washing for the remediation of sites contaminated with pesticides. Land Contamination & Reclamation, 18(2): 2.

30.   Long, A., Zhang, H. and Lei, Y. (2013). Surfactant flushing remediation of toluene contaminated soil: Optimization with response surface methodology and surfactant recovery by selective oxidation with sulfate radicals. Separation and Purification Technology, 118: 612-619.

31.   Huang, Z., Wang, D., Befkadu, A. A., Zhou, J., Srivastava, I., Pan, D. and Chen, Q. (2020). Enhancement of auxiliary agent for washing efficiency of diesel contaminated soil with surfactants. Chemosphere, 252: 126494.

32.   Zheng, C., Wang, M., Wang, Y. and Huang, Z. (2012). Optimization of biosurfactant-mediated oil extraction from oil sludge. Bioresource Technology, 110: 338-342.

33.   Kobayashi, T., Kaminaga, H., Navarro, R. R. and Iimura, Y. (2012). Application of aqueous saponin on the remediation of polycyclic aromatic hydrocarbons-contaminated soil. Journal of Environmental Science and Health, Part A, 47(8), 1138-1145.

34.   Zhou, W., Wang, X., Chen, C. and Zhu, L. (2013). Enhanced soil washing of phenanthrene by a plant-derived natural biosurfactant, Sapindus saponin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 425: 122-128.

35.   Li, G., Guo, S. and Hu, J. (2016). The influence of clay minerals and surfactants on hydrocarbon removal during the washing of petroleum-contaminated soil. Chemical Engineering Journal, 286: 191-197.

36.   Trisunaryanti, W., Larasati, S., Bahri, S., lailun Ni’mah, Y., Efiyanti, L., Amri, K. and Sumbogo, S. D. (2020). Performance comparison of Ni-Fe loaded on NH2-functionalized mesoporous silica and beach sand in the hydrotreatment of waste palm cooking oil. Journal of Environmental Chemical Engineering, 8(6): 104477.

37.   Zhu, Z., Zhang, B., Chen, B., Cai, Q. and Lin, W. (2016). Biosurfactant production by marine-originated bacteria Bacillus Subtilis and its application for crude oil removal. Water, Air, & Soil Pollution, 227(9): 328.

38.   Nandwani, S. K., Malek, N. I., Lad, V. N., Chakraborty, M. and Gupta, S. (2017). Study on interfacial properties of Imidazolium ionic liquids as surfactant and their application in enhanced oil recovery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 516: 383-393.

39.   Saad, M. A., Kamil, M., Abdurahman, N. H., Yunus, R. M. and Awad, O. I. (2019). An overview of recent advances in state-of-the-art techniques in the demulsification of crude oil emulsions. Processes, 7(7): 470.

40.   Yurdem, H., Demir, V. and Degirmencioglu, A. (2010). Development of a mathematical model to predict clean water head losses in hydrocyclone filters in drip irrigation systems using dimensional analysis. Biosystems Engineering, 105(4): 495-506.

41.   Durdevic, P., Pedersen, S., Bram, M., Hansen, D., Hassan, A. and Yang, Z. (2015). Control oriented modeling of a de-oiling hydrocyclone. IFAC-PapersOnLine, 48(28): 291-296.

42.   Shi, Y., Zhu, H., Zhang, J., Yin, B., Xu, R. and Zhao, J. (2017). Investigation of condition parameters in each stage of a three-stage helico-axial multiphase pump via numerical simulation. In the 27th  International Ocean and Polar Engineering Conference. International Society of Offshore and Polar Engineers.

43.   ASTM E11 (2013). Standard specification for woven wire test sieve cloth and test sieves. West Conshohocken: ASTM

44.   Arpornpong, N., Padungpol, R., Khondee, N., Tongcumpou, C., Soonglerdsongpha, S., Suttiponparnit, K. and Luepromchai, E. (2020). Formulation of bio-based washing agent and its application for removal of petroleum hydrocarbons from drill cuttings before bioremediation. Frontiers in Bioengineering and Biotechnology, 8: 961.

45.   Falciglia, P. P., Giustra, M. G. and Vagliasindi, F. G. A. (2011). Low-temperature thermal desorption of diesel polluted soil: Influence of temperature and soil texture on contaminant removal kinetics. Journal of Hazardous Materials, 185(1): 392-400.

46.   Villalobos, M., Avila-Forcada, A. P. and Gutierrez-Ruiz, M. E. (2008). An improved gravimetric method to determine total petroleum hydrocarbons in contaminated soils. Water, Air, and Soil Pollution, 194(1-4): 151-161.