Malaysian
Journal of Analytical Sciences Vol 25 No 2
(2021): 203 - 214
OILY SAND CLEANING OPTIMIZATION BY SURFACTANTS INTERFACIAL TENSION
SCREENING AND HYDROCYCLONE SEPARATION
(Pengoptimuman Pembersihan
Pasir Berminyak oleh Saringan Ketegangan antara Muka Surfaktan dan Pemisahan
Hidrosiklon)
Akhmal Sidek1*, Ahmad Faiq Omar1,
Aizuddin Supee2, Amni Haslinda Alpandi3, Hazlina Husin3,
Dewandra Bagus Ekaputra4, Shaziera Omar1
1Petroleum Engineering Department, SCEE, Faculty of Engineering
2Energy Management Group, SCEE, Faculty of Engineering
Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
3Petroleum Engineering Department,
Universiti Teknologi PETRONAS, 32610 Seri
Iskandar, Perak, Malaysia
4Department of Geological Engineering, Faculty of
Engineering,
Universitas Islam Riau, Riau 28284, Indonesia
*Corresponding author: akhmalsidek@utm.my
Received: 30 December 2020;
Accepted: 10 February 2021; Published:
25 April 2021
Abstract
The oily sand cleaning process should pass the
standard discharge requirements so that its impact on the environment can be
minimized. This work has used integrated surfactants which includes sodium
dodecyl sulfate (SDS, anionic), saponin (plant-based, nonionic), and cetyl trimethylammonium bromide
(CTAB, cationic) with hydrocyclone method, for washing oily sand (41 wt.% of
paraffin) with fixed cleaning time of 150 minutes. The interfacial tension (IFT)
of the surfactants as a cleaning agent was screened based on the critical
micelle concentration (CMC) so that the desirable surfactant concentration can
be used. Field Emission Scanning Electron Microscopy-Energy Dispersive X-ray
(FESEM-EDX) was used to characterize the sand for before and after the cleaning
process. As compared to without hydrocyclone, the application of hydrocyclone
caused in increasing oil removal efficiency with CTAB exhibits 91%, followed by
SDS (87%), and saponin (79%). Based on the FESEM-EDX characterization, besides
its primary function of oil removal from the sand, saponin is also capable to
remove heavy metal elements. It can be deduced that the integration of
hydrocyclone with the surfactants can cause in synergized effects which could
then improve the oily sand cleaning efficiency.
Keywords: interfacial tension screening, critical
micelle concentration, hydrocyclone, oily sand cleaning, efficiency
Abstrak
Proses
pembersihan pasir berminyak perlu melepasi syarat-syarat piawai pelepasan
supaya kesannya terhadap alam sekitar boleh dikurangkan. Kajian ini telah
menggunakan integrasi surfaktan yang merangkumi sodium dodekil sulfat (SDS,
anionik), saponin (sumber tumbuhan, non-ionik) dan cetyl trimetilammonium
bromida (CTAB, kationik) dengan kaedah hidrosiklon, bagi pembersihan pasir
berminyak (kandungan paraffin 41 wt.%) dengan masa pembersihan tetap 150
minutes. Ketegangan antara muka (IFT) surfaktan
sebagai agen pembersihan telah disaring berdasarkan kepekatan misel kritikal
(CMC) supaya kepekatan surfaktan yang diingini dapat digunakan. Mikroskopi
Imbasan Electron Pelepasan Medan-Tenaga Serakan sinar-X (FESEM-EDX) telah
digunakan untuk mencirikan pasir sebelum dan selepas proses pembersihan.
Berbanding dengan tanpa hidrosiklon, penggunaan hidrosiklon telah menyebabkan
peningkatan kecekapan penyingkiran minyak dengan CTAB menunjukkan 91%, diikuti
oleh SDS (87%), dan saponin (79%). Berdasarkan ciri FESEM-EDX, selain fungsi
utama penyingkiran minyak dari pasir, saponin juga mampu menyingkirkan unsur
logam berat. Dapat disimpulkan bahawa integrasi hidrosiklon dengan surfaktan
menyebabkan kesan sinergi yang kemudian membawa kepada peningkatan kecekapan
pembersihan pasir berminyak.
Kata kunci: saringan
ketegangan antara muka, kepekatan misel kritikal, hidrosiklon, pembersihan
pasir berminyak, kecekapan
References
1.
Rawlins, H. (2013). Sand
management methodologies for sustained facilities operations. Oil and
Gas Facilities, 2(05): 27-34.
2.
Ikporo, B. and Sylvester,
O. (2015). Effect of sand invasion on oil well production: a case study of
Garon field in the Niger Delta. The International Journal of
Engineering and Science, 4(5): 64-72.
3.
Pichtel, J. (2016). Oil
and gas production wastewater: Soil contamination and pollution
prevention. Applied and Environmental Soil Science, 2016:
1-25.
4.
Khamehchi, E., Ameri, O.
and Alizadeh, A. (2015). Choosing an optimum sand control method. Egyptian
Journal of Petroleum, 24(2): 193-202.
5.
Jiuxing, Z. H. Y. Y. W.
and Dongping, W. (2010). A study on oily sludge (sand) treatment technology. Environmental
Protection of Oil & Gas Fields, 3: 1-20.
6.
Zali, M. A., Ahmad, W. K.
W., Retnam, A. and Catrina, N. (2015). Concentration of heavy metals in virgin,
used, recovered and waste oil: a spectroscopic study. Procedia
Environmental Sciences, 30: 201-204.
7.
AlSofi, A. M., AlKhatib,
A. M., Al-Ajwad, H. A., Wang, Q. and Zahrani, B. H. (2019). Assessment of
enhanced-oil-recovery-chemicals production and its potential effect on upstream
facilities. SPE Journal, 24(3): 1-037.
8.
Bahmani, F., Ataei, S. A.
and Mikaili, M. A. (2018). The effect of moisture content variation on the
bioremediation of hydrocarbon contaminated soils: modeling and experimental
investigation. Journal of Environmental Analytical Chemistry, 5(2):
236.
9.
Liu, P. W. G., Chang, T.
C., Whang, L. M., Kao, C. H., Pan, P. T. and Cheng, S. S. (2011).
Bioremediation of petroleum hydrocarbon contaminated soil: Effects of
strategies and microbial community shift. International
Biodeterioration & Biodegradation, 65(8): 1119-1127.
10.
Jing, G., Chen, T. and
Luan, M. (2016). Studying oily sludge treatment by thermo chemistry. Arabian
Journal of Chemistry, 9: S457-S460.
11.
Muņoz-Morales, M.,
Braojos, M., Sáez, C., Caņizares, P. and Rodrigo, M. A. (2017). Remediation of
soils polluted with lindane using surfactant-aided soil washing and
electrochemical oxidation. Journal of Hazardous Materials, 339:
232-238.
12.
Gao, Y. X., Ding, R.,
Chen, X., Gong, Z. B., Zhang, Y. and Yang, M. (2018). Ultrasonic washing for
oily sludge treatment in pilot scale. Ultrasonics, 90: 1-4.
13.
Arelli, A., Nuzzo, A.,
Sabia, C., Banat, I. M., Zanaroli, G. and Fava, F. (2018). Optimization of
washing conditions with biogenic mobilizing agents for marine fuel-contaminated
beach sands. New Biotechnology, 43: 13-22.
14.
Singh, A. K. and
Cameotra, S. S. (2013). Efficiency of lipopeptide biosurfactants in removal of
petroleum hydrocarbons and heavy metals from contaminated soil. Environmental
Science and Pollution Research, 20(10): 7367-7376.
15.
Belhaj, A. F., Elraies,
K. A., Alnarabiji, M. S., Shuhli, J. A., Mahmood, S. M. and Ern, L. W. (2019).
Experimental investigation of surfactant partitioning in pre-CMC and post-CMC
regimes for enhanced oil recovery application. Energies, 12(12): 2319.
16.
Manshad, A. K., Rezaei,
M., Moradi, S., Nowrouzi, I. and Mohammadi, A. H. (2017). Wettability
alteration and interfacial tension (IFT) reduction in enhanced oil recovery
(EOR) process by ionic liquid flooding. Journal of Molecular Liquids, 248:
153-162.
17.
Duan, M., Wang, X., Fang,
S., Zhao, B., Li, C. and Xiong, Y. (2018). Treatment of Daqing oily sludge by
thermochemical cleaning method. Colloids and Surfaces A:
Physicochemical and Engineering Aspects, 554: 272-278.
18.
Bahadori, A.
(2018). Fundamentals of enhanced oil and gas recovery from conventional
and unconventional reservoirs. Gulf Professional Publishing.
19.
Saidy, A. R., Smernik, R.
J., Baldock, J. A., Kaiser, K. and Sanderman, J. (2013). The sorption of
organic carbon onto differing clay minerals in the presence and absence of
hydrous iron oxide. Geoderma, 209: 15-21.
20.
Ferreira, T. M., Bernin,
D. and Topgaard, D. (2013). NMR studies of nonionic surfactants. In Annual
Reports on NMR Spectroscopy. Academic Press, 79: pp. 73-127.
21.
Tang, J., He, J., Xin,
X., Hu, H. and Liu, T. (2018). Biosurfactants enhanced heavy metals removal
from sludge in the electrokinetic treatment. Chemical Engineering
Journal, 334: 2579-2592.
22.
Borghi, C. C., Fabbri,
M., Fiorini, M., Mancini, M. and Ribani, P. L. (2011). Magnetic removal of
surfactants from wastewater using micrometric iron oxide powders. Separation
and Purification Technology, 83: 180-188.
23.
Dehaghani, A. H. S. and
Badizad, M. H. (2018). Effect of magnetic field treatment on interfacial
tension of CTAB nano-emulsion: Developing a novel agent for enhanced oil recovery. Journal
of Molecular Liquids, 261: 107-114.
24.
Para, G., Hamerska-Dudra,
A., Wilk, K. A. and Warszyński, P. (2010). Surface activity of cationic
surfactants, influence of molecular structure. Colloids and Surfaces A:
Physicochemical and Engineering Aspects, 365(1-3): 215-221.
25.
Gu, X., Zhang, F., Li,
Y., Zhang, J., Chen, S., Qu, C. and Chen, G. (2018). Investigation of cationic
surfactants as clean flow improvers for crude oil and a mechanism study. Journal
of Petroleum Science and Engineering, 164: 87-90.
26.
Negin, C., Ali, S. and
Xie, Q. (2017). Most common surfactants employed in chemical enhanced oil
recovery. Petroleum, 3(2): 197-211.
27.
Urum, K., Pekdemir, T.
and Gopur, M. (2003). Optimum conditions for washing of crude oil-contaminated
soil with biosurfactant solutions. Process Safety and Environmental
Protection, 81(3): 203-209.
28.
Khalladi, R., Benhabiles,
O., Bentahar, F. and Moulai-Mostefa, N. (2009). Surfactant remediation of
diesel fuel polluted soil. Journal of Hazardous Materials, 164(2-3):
1179-1184.
29.
Bandala, E. R., Aguilar,
F. and Torres, L. G. (2010). Surfactant-enhanced soil washing for the
remediation of sites contaminated with pesticides. Land Contamination
& Reclamation, 18(2): 2.
30.
Long, A., Zhang, H. and
Lei, Y. (2013). Surfactant flushing remediation of toluene contaminated soil:
Optimization with response surface methodology and surfactant recovery by
selective oxidation with sulfate radicals. Separation and Purification
Technology, 118: 612-619.
31.
Huang, Z., Wang, D.,
Befkadu, A. A., Zhou, J., Srivastava, I., Pan, D. and Chen, Q. (2020).
Enhancement of auxiliary agent for washing efficiency of diesel contaminated
soil with surfactants. Chemosphere, 252: 126494.
32.
Zheng, C., Wang, M.,
Wang, Y. and Huang, Z. (2012). Optimization of biosurfactant-mediated oil
extraction from oil sludge. Bioresource Technology, 110:
338-342.
33.
Kobayashi, T., Kaminaga,
H., Navarro, R. R. and Iimura, Y. (2012). Application of aqueous saponin on the
remediation of polycyclic aromatic hydrocarbons-contaminated soil. Journal
of Environmental Science and Health, Part A, 47(8), 1138-1145.
34.
Zhou, W., Wang, X., Chen,
C. and Zhu, L. (2013). Enhanced soil washing of phenanthrene by a plant-derived
natural biosurfactant, Sapindus saponin. Colloids and Surfaces A:
Physicochemical and Engineering Aspects, 425: 122-128.
35.
Li, G., Guo, S. and Hu,
J. (2016). The influence of clay minerals and surfactants on hydrocarbon
removal during the washing of petroleum-contaminated soil. Chemical
Engineering Journal, 286: 191-197.
36.
Trisunaryanti, W.,
Larasati, S., Bahri, S., lailun Nimah, Y., Efiyanti, L., Amri, K. and Sumbogo,
S. D. (2020). Performance comparison of Ni-Fe loaded on NH2-functionalized
mesoporous silica and beach sand in the hydrotreatment of waste palm cooking
oil. Journal of Environmental Chemical Engineering, 8(6):
104477.
37.
Zhu, Z., Zhang, B., Chen,
B., Cai, Q. and Lin, W. (2016). Biosurfactant production by marine-originated
bacteria Bacillus Subtilis and its application for crude oil removal. Water,
Air, & Soil Pollution, 227(9): 328.
38.
Nandwani, S. K., Malek,
N. I., Lad, V. N., Chakraborty, M. and Gupta, S. (2017). Study on interfacial
properties of Imidazolium ionic liquids as surfactant and their application in
enhanced oil recovery. Colloids and Surfaces A: Physicochemical and
Engineering Aspects, 516: 383-393.
39.
Saad, M. A., Kamil, M.,
Abdurahman, N. H., Yunus, R. M. and Awad, O. I. (2019). An overview of recent
advances in state-of-the-art techniques in the demulsification of crude oil
emulsions. Processes, 7(7): 470.
40.
Yurdem, H., Demir, V. and
Degirmencioglu, A. (2010). Development of a mathematical model to predict clean
water head losses in hydrocyclone filters in drip irrigation systems using
dimensional analysis. Biosystems Engineering, 105(4): 495-506.
41.
Durdevic, P., Pedersen,
S., Bram, M., Hansen, D., Hassan, A. and Yang, Z. (2015). Control oriented
modeling of a de-oiling hydrocyclone. IFAC-PapersOnLine, 48(28):
291-296.
42.
Shi, Y., Zhu, H., Zhang,
J., Yin, B., Xu, R. and Zhao, J. (2017). Investigation of condition parameters
in each stage of a three-stage helico-axial multiphase pump via numerical
simulation. In the 27th
International Ocean and Polar Engineering Conference. International
Society of Offshore and Polar Engineers.
43.
ASTM E11 (2013). Standard
specification for woven wire test sieve cloth and test sieves. West
Conshohocken: ASTM
44.
Arpornpong, N.,
Padungpol, R., Khondee, N., Tongcumpou, C., Soonglerdsongpha, S.,
Suttiponparnit, K. and Luepromchai, E. (2020). Formulation of bio-based washing
agent and its application for removal of petroleum hydrocarbons from drill
cuttings before bioremediation. Frontiers in Bioengineering and
Biotechnology, 8: 961.
45.
Falciglia, P. P.,
Giustra, M. G. and Vagliasindi, F. G. A. (2011). Low-temperature thermal
desorption of diesel polluted soil: Influence of temperature and soil texture
on contaminant removal kinetics. Journal of Hazardous Materials, 185(1):
392-400.
46.
Villalobos, M.,
Avila-Forcada, A. P. and Gutierrez-Ruiz, M. E. (2008). An improved gravimetric
method to determine total petroleum hydrocarbons in contaminated soils. Water,
Air, and Soil Pollution, 194(1-4): 151-161.