Malaysian
Journal of Analytical Sciences Vol 25 No 2
(2021): 193 - 202
BIODEGRADATION OF OIL AND GREASE FROM AGRO-FOOD INDUSTRY BY IMMOBILISED Serratia marcescens SA30
(Biodegradasi
Minyak dan Gris dari Industri Agro-Makanan oleh Serratia marcescens SA30
yang Dipegunkan)
Shakila
Abdullah1*, Farhah Husna Mohd Nor1, Mohd
Hairul Khamidun2
1Department of Physics
and Chemistry, Faculty of Applied Sciences and Technology,
Universiti Tun Hussein Onn Malaysia,
Educational Hub Pagoh, 84600 Muar, Johor, Malaysia
2Department of Civil
Engineering, Faculty of Civil Engineering and Built Environment,
Universiti Tun Hussein Onn Malaysia, 86400 Batu
Pahat, Johor, Malaysia
*Corresponding author: shakilaa@uthm.edu.my
Received: 20 July 2020;
Accepted: 10 March 2021; Published: 25
April 2021
Abstract
The agro-food industrial wastewater (AFIW)
contains high concentrations of oils and grease (O&G), which are
significant threats to aquatic environments. In the context of the removal of
contaminants from wastewater, the capability of Serratia marcescens SA30
immobilized in a packed-bed column reactor (PBCR) of O&G removal from AFIW
needs to be verified. This study analyses the Serratia marcescens SA30
immobilized on oil palm frond (OPF) in PBCR in order to elucidate its removal
ability of O&G from AFIW. The physicochemical parameters of the AFIW
samples collected from the agro-food industry were analyzed according to Standard
Methods for Examination of Water and Wastewater. The PBCR treatment system was set up using
immobilized Serratia marcescens SA30 onto OPF for the removal of O&G
from AFIW. The AFIW samples were collected at the inlet and outlet of the PBCR,
and the respective concentrations of O&G were determined. These values
assert that the parameters does not comply the production limit set in
Environmental Environment Quality B (Industrial Effluent Regulations, 2009).
The performance of the PBCR realized 100% efficiency, with the population
ranging from 108 – 107 with the immobilized Serratia marcescens
SA30 acting as a biosurfactant-producing bacteria, which was achieved by
experiments ran at a volumetric flow rate of 3 mL/min during treatment using
concentrations of O&G at 100% v/v after 144 hours operation in the PBCR.
The data obtained would provide a green and sustainable pathway for the removal
of O&G from water.
Keywords: Agro-food industrial wastewater, packed-bed column reactor, Serratia
marcescens SA30, oil and grease, immobilized
Abstrak
Sisa air
perindustrian agro-makanan (AFIW) mengandungi kepekatan minyak dan gris
(O&G) yang boleh memberikan ancaman kepada persekitaran akuatik. Dalam
konteks penyingkiran bahan bukan organik dan organik dari air sisa, keupayaan Serratia
marcescens SA30 yang dipegunkan dalam reaktor turus terpadat tunggal (PBCR)
perlu disahkan. Kajian ini menganalisis Serratia marcescens SA30 yang
dipegunkan di pelepah kelapa sawit (OPF) dalam PBCR untuk menjelaskan kemampuan
penyingkiran O&G dari AFIW. Parameter fizikokimia sampel AFIW yang diambil
dari industri agro-makanan dianalisis berdasarkan Kaedah Piawai untuk
Pemeriksaan Air dan Air Sisa. Sistem rawatan PBCR dibentuk menggunakan Serratia
marcescens SA30 yang dipegunkan ke OPF untuk penyingkiran O&G dari
AFIW. Sampel AFIW dikumpulkan di saluran masuk dan keluar PBCR, dan kepekatan
O&G masing-masing ditentukan. Nilai-nilai tersebut menegaskan bahawa
parameter tersebut tidak mencapai limit pengeluaran yang telah ditetapkan dalam
Kualiti Persekitaran Lingkungan B (Peraturan Efluen Industri, 2009). Prestasi
PBCR mencapai kecekapan 100% dengan populasi antara 108-107
dengan Serratia marcescens SA30 yang dipegunkan bertindak sebagai
bakteria penghasil biosurfaktan, yang dicapai dengan eksperimen yang dijalankan
pada kadar aliran volumetric 3 mL/min semasa rawatan menggunakan kepekatan
O&G pada 100% v/v setelah 144 jam beroperasi dalam PBCR. Kajian ini akan
memberikan laluan hijau dan lestari untuk menyingkirkan O&G dari air.
Kata kunci: Sisa air perindustrian agro-makanan, reaktor
turus terpadat tunggal, Serratia
marcescens SA30, minyak dan gris, dipegunkan
References
1.
Preisner, M. (2020). Surface water pollution by untreated municipal
wastewater discharge due to a sewer failure. Environmental Processes, 7: 767-780.
2.
Emara, M. M., El-Razek,
M. A. A. and Ahmed, A. A. M. S. (2017). Industrial food processing wastewater
treatment by modified moving bed biofilm reactor (MBBR). International
Journal of Scientific & Engineering Research, 8(1): 929-934.
3.
Olajire, A. A. (2020).
Recent advances on the treatment technology of oil and gas produced water for
sustainable energy industry-mechanistic aspects and process chemistry
perspectives. Chemical Engineering Journal Advances, 4: 100049.
4.
Kuyukina, M. S.,
Krivoruchko, A.V., Ivshina, I. B. (2020). Advanced bioreactor treatments of
hydrocarbon-containing wastewater. Applied Sciences, 10: 831.
5.
Wei, X., Zhang, S., Han,
Y. and Wolfe, F. A. (2019). Treatment of petrochemical wastewater and produced
water from oil and gas. Water Environment Research, 91: 1025-1033.
6.
Dors, G., Mendes, A. A.,
Pereira, E. B., Castro, H. F. and Furigo, A. (2013). Simultaneous enzymatic
hydrolysis and anaerobic biodegradation of lipid-rich wastewater from poultry
industry. Applied Water Science, 3: 343-349.
7.
Zur, J., Wojcieszynska, D
and Guzik, U. (2016). Metabolic responses of bacterial cells to immobilization.
Molecules, 21: 958.
8.
Fenibo, E.O., Ijoma, G.
N., Selvarajan, R. and Chikere, C. B. (2019). Microbial surfactants: The next
generation multifunctional biomolecules for applications in the petroleum
industry and its associated environmental remediation. Microorganism,
7(581): 1-29.
9.
Parthipan, P., Preetham,
E., Machuca, L. L., Rahman, P. K. S. M., Murugan, K. and Rajasekar, A. (2017).
Biosurfactant and degradative enzymes mediated crude oil degradation by
bacterium Bacillus subtilis A1. Frontiers in Microbiology, 8:
193.
10.
Shen, T., Pi, Y., Bao,
M., Xu, N., Li, Y. and Lu, J. (2015).
Biodegradation of different petroleum hydrocarbons by free and
immobilized microbial consortia. Environmental Science Processes &
Impacts, 17: 2022-2033.
11.
Marchut‑Mikolajczyk,
O., Drożdżyński, P., Pietrzyk, D. and Antczak, T. (2018).
Biosurfactant production and hydrocarbon degradation activity of endophytic
bacteria isolated from Chelidonium majus L. Microbial Cell Factories,
17: 171.
12.
American Public Health
Association (2005). Standard methods for the examination of water and
wastewater, 21st edition, APHA, Washington DC.
13.
Fulazzaky, M. A., Abdullah,
S., Salim, M. R. (2015). Fundamentals of mass transfer and kinetics for
biosorption of oil and grease from agro-food industrial effluent by Serratia
marcescens SA30. RSC Advances, 5: 104666-104673.
14.
Fulazzaky, M. A.,
Abdullah, S. and Salim, M. R. (2016). Supporting data for identification of
biosurfactant-producing bacteria isolated from agro-food industrial effluent. Data
in Brief, 7: 834 - 838.
15.
Environmental Quality Act
and Regulations Handbook (2009). Laws of Malaysia: Details on Environmental
Quality Act 1974 and Regulations Amendments up to June 2009: Act 127 with Inde.
Kuala Lumpur: MDC Publishers: pp. 34 – 35.
16.
Hisham, N. H. M. B.,
Ibrahim, M. F., Ramli, N. and Abd Aziz, S. (2019). Production of biosurfactant
produced from used cooking oil by Bacillus sp. HIP3 for heavy metals
removal. Molecules, 24(2617): 1 - 16.
17.
Paşka, O. M.,
Păcurariu C. and Muntean, S. G. (2014). Kinetic and thermodynamic studies
on methylene blue biosorption using corn-husk. RSC Advances, 4:
62621-6263.
18.
Liu, W-J., Tian, K.,
Jiang H. and Yu, H-Q. (2014). Harvest of Cu NP anchored magnetic carbon
materials from Fe/Cu preloaded biomass: Their pyrolysis, characterization, and
catalytic activity on aqueous reduction of 4-Nitrophenol. Green Chemistry,
16: 4198-4205.
19.
Samuel, J., Pulimi, M.,
Paul, M.L., Maurya, A., Chandrasekaran, N. and Mukherjee, A. (2013). Batch and
continuous flow studies of adsorptive removal of Cr(VI) by adapted bacterial
consortia immobilized in alginate beads. Bioresource Technology, 128: 423-430.
20.
Teixeira, P. D., Silva,
V. S. and Tenreiro, R. (2019). Integrated selection and identification of
bacteria from polluted sites for biodegradation of lipids. International
Microbiology, 23(3): 1-14.
21.
Ittrat, P., Chacho, T.,
Pholprayoon, J., Suttiwarayanon, N. and Charoenpanich, J. (2014). Application
of agriculture waste as a support for lipase immobilization. Biocatalysis
and Agricultural Biotechnology, 3: 77-82.
22.
Bao, M., Chen, Q., Gong,
Y., Li, Y., Wang, H. and Jiang, G. (2013). Removal efficiency of heavy oil by
free and immobilised microorganisms on laboratory-scale. The Canadian
Journal of Chemical Engineering, 91: 1-8.
23.
Kathiravan, M. N.,
Praveen, S. A., Gim, G. H., Han, G. H. and Kim, S. W. (2014). Biodegradation of
methyl orange by alginate-immobilized Aeromonas sp. in a packed bed
reactor: External mass transfer modelling. Bioprocess and Biosystem
Engineering, 37: 2149-2162.
24.
Agarry, S. E. and Aremu,
M. O. (2012). Batch equilibrium and kinetic studies of simultaneous adsorption
and biodegradation of naphthalene by orange peels immobilized Pseudomonas
aeruginosa NCIB 950. Journal of Bioremediation and Biodegradation, 3(2): 1-12.
25.
Xiong, Q., Baychev, T. G.
and Jivkov, A. P. (2016). Review of pore network modelling of porous media:
Experimental characterisations, network constructions and applications to
reactive transport. Journal of Contaminant Hydrology, 192: 101-117.
26.
Li, L. B., Vorobyov I.
and Allen, T. W. (2012). The role of membrane thickness in charged
protein-lipid interactions. Biochimica et Biophysica Acta Biomembranes,
1818: 135-145.
27.
Kureel, M. K., Geed, S.
R., Giri, B. S., Shukla, A. K., Rai, B. N. and Singh, R. S. (2016). Removal of
aqueous benzene in the immobilized batch and continuous packed bed bioreactor
by isolated bacillus sp. M1. Resources-Efficient Technologies, 2:
S87-S95.
28.
Shehzadi, M., Afzal, M.,
Khan, M. U., Islam, E., Mobin, A., Anwar, S. and Khan, Q. M. (2014). Enhanced
degradation of textile effluent in constructed wetland system using Typha
domingensis and textile effluent-degrading endophytic bacteria. Water
Research, 58: 152-159.