Malaysian Journal of Analytical Sciences Vol 25 No 2 (2021): 193 - 202

 

 

 

 

BIODEGRADATION OF OIL AND GREASE FROM AGRO-FOOD INDUSTRY BY IMMOBILISED Serratia marcescens SA30

 

(Biodegradasi Minyak dan Gris dari Industri Agro-Makanan oleh Serratia marcescens SA30 yang Dipegunkan)

 

Shakila Abdullah1*, Farhah Husna Mohd Nor1, Mohd Hairul Khamidun2

 

1Department of Physics and Chemistry, Faculty of Applied Sciences and Technology,

Universiti Tun Hussein Onn Malaysia, Educational Hub Pagoh, 84600 Muar, Johor, Malaysia

2Department of Civil Engineering, Faculty of Civil Engineering and Built Environment,

Universiti Tun Hussein Onn Malaysia, 86400 Batu Pahat, Johor, Malaysia

 

*Corresponding author:  shakilaa@uthm.edu.my

 

 

Received: 20 July 2020; Accepted: 10 March 2021; Published:  25 April 2021

 

 

Abstract

The agro-food industrial wastewater (AFIW) contains high concentrations of oils and grease (O&G), which are significant threats to aquatic environments. In the context of the removal of contaminants from wastewater, the capability of Serratia marcescens SA30 immobilized in a packed-bed column reactor (PBCR) of O&G removal from AFIW needs to be verified. This study analyses the Serratia marcescens SA30 immobilized on oil palm frond (OPF) in PBCR in order to elucidate its removal ability of O&G from AFIW. The physicochemical parameters of the AFIW samples collected from the agro-food industry were analyzed according to Standard Methods for Examination of Water and Wastewater. The PBCR treatment system was set up using immobilized Serratia marcescens SA30 onto OPF for the removal of O&G from AFIW. The AFIW samples were collected at the inlet and outlet of the PBCR, and the respective concentrations of O&G were determined. These values assert that the parameters does not comply the production limit set in Environmental Environment Quality B (Industrial Effluent Regulations, 2009). The performance of the PBCR realized 100% efficiency, with the population ranging from 108 – 107 with the immobilized Serratia marcescens SA30 acting as a biosurfactant-producing bacteria, which was achieved by experiments ran at a volumetric flow rate of 3 mL/min during treatment using concentrations of O&G at 100% v/v after 144 hours operation in the PBCR. The data obtained would provide a green and sustainable pathway for the removal of O&G from water.

 

Keywords:  Agro-food industrial wastewater, packed-bed column reactor, Serratia marcescens SA30, oil and grease, immobilized

 

Abstrak

Sisa air perindustrian agro-makanan (AFIW) mengandungi kepekatan minyak dan gris (O&G) yang boleh memberikan ancaman kepada persekitaran akuatik. Dalam konteks penyingkiran bahan bukan organik dan organik dari air sisa, keupayaan Serratia marcescens SA30 yang dipegunkan dalam reaktor turus terpadat tunggal (PBCR) perlu disahkan. Kajian ini menganalisis Serratia marcescens SA30 yang dipegunkan di pelepah kelapa sawit (OPF) dalam PBCR untuk menjelaskan kemampuan penyingkiran O&G dari AFIW. Parameter fizikokimia sampel AFIW yang diambil dari industri agro-makanan dianalisis berdasarkan Kaedah Piawai untuk Pemeriksaan Air dan Air Sisa. Sistem rawatan PBCR dibentuk menggunakan Serratia marcescens SA30 yang dipegunkan ke OPF untuk penyingkiran O&G dari AFIW. Sampel AFIW dikumpulkan di saluran masuk dan keluar PBCR, dan kepekatan O&G masing-masing ditentukan. Nilai-nilai tersebut menegaskan bahawa parameter tersebut tidak mencapai limit pengeluaran yang telah ditetapkan dalam Kualiti Persekitaran Lingkungan B (Peraturan Efluen Industri, 2009). Prestasi PBCR mencapai kecekapan 100% dengan populasi antara 108-107 dengan Serratia marcescens SA30 yang dipegunkan bertindak sebagai bakteria penghasil biosurfaktan, yang dicapai dengan eksperimen yang dijalankan pada kadar aliran volumetric 3 mL/min semasa rawatan menggunakan kepekatan O&G pada 100% v/v setelah 144 jam beroperasi dalam PBCR. Kajian ini akan memberikan laluan hijau dan lestari untuk menyingkirkan O&G dari air.

 

Kata kunci: Sisa air perindustrian agro-makanan, reaktor turus terpadat tunggal, Serratia marcescens SA30, minyak dan gris, dipegunkan

 

References

1.      Preisner, M. (2020). Surface water pollution by untreated municipal wastewater discharge due to a sewer failure. Environmental Processes, 7: 767-780.

2.      Emara, M. M., El-Razek, M. A. A. and Ahmed, A. A. M. S. (2017). Industrial food processing wastewater treatment by modified moving bed biofilm reactor (MBBR). International Journal of Scientific & Engineering Research, 8(1): 929-934.

3.      Olajire, A. A. (2020). Recent advances on the treatment technology of oil and gas produced water for sustainable energy industry-mechanistic aspects and process chemistry perspectives. Chemical Engineering Journal Advances, 4: 100049.

4.      Kuyukina, M. S., Krivoruchko, A.V., Ivshina, I. B. (2020). Advanced bioreactor treatments of hydrocarbon-containing wastewater. Applied Sciences, 10: 831.

5.      Wei, X., Zhang, S., Han, Y. and Wolfe, F. A. (2019). Treatment of petrochemical wastewater and produced water from oil and gas. Water Environment Research, 91: 1025-1033.

6.      Dors, G., Mendes, A. A., Pereira, E. B., Castro, H. F. and Furigo, A. (2013). Simultaneous enzymatic hydrolysis and anaerobic biodegradation of lipid-rich wastewater from poultry industry. Applied Water Science, 3: 343-349.

7.      Zur, J., Wojcieszynska, D and Guzik, U. (2016). Metabolic responses of bacterial cells to immobilization. Molecules, 21: 958.

8.      Fenibo, E.O., Ijoma, G. N., Selvarajan, R. and Chikere, C. B. (2019). Microbial surfactants: The next generation multifunctional biomolecules for applications in the petroleum industry and its associated environmental remediation. Microorganism, 7(581): 1-29.

9.      Parthipan, P., Preetham, E., Machuca, L. L., Rahman, P. K. S. M., Murugan, K. and Rajasekar, A. (2017). Biosurfactant and degradative enzymes mediated crude oil degradation by bacterium Bacillus subtilis A1. Frontiers in Microbiology, 8: 193.

10.   Shen, T., Pi, Y., Bao, M., Xu, N., Li, Y. and Lu, J. (2015).  Biodegradation of different petroleum hydrocarbons by free and immobilized microbial consortia. Environmental Science Processes & Impacts, 17: 2022-2033.

11.   Marchut‑Mikolajczyk, O., Drożdżyński, P., Pietrzyk, D. and Antczak, T. (2018). Biosurfactant production and hydrocarbon degradation activity of endophytic bacteria isolated from Chelidonium majus L. Microbial Cell Factories, 17: 171.

12.   American Public Health Association (2005). Standard methods for the examination of water and wastewater, 21st edition, APHA, Washington DC.

13.   Fulazzaky, M. A., Abdullah, S., Salim, M. R. (2015). Fundamentals of mass transfer and kinetics for biosorption of oil and grease from agro-food industrial effluent by Serratia marcescens SA30. RSC Advances, 5: 104666-104673.

14.   Fulazzaky, M. A., Abdullah, S. and Salim, M. R. (2016). Supporting data for identification of biosurfactant-producing bacteria isolated from agro-food industrial effluent. Data in Brief, 7: 834 - 838.

15.   Environmental Quality Act and Regulations Handbook (2009). Laws of Malaysia: Details on Environmental Quality Act 1974 and Regulations Amendments up to June 2009: Act 127 with Inde. Kuala Lumpur: MDC Publishers: pp. 34 – 35.

16.   Hisham, N. H. M. B., Ibrahim, M. F., Ramli, N. and Abd Aziz, S. (2019). Production of biosurfactant produced from used cooking oil by Bacillus sp. HIP3 for heavy metals removal. Molecules, 24(2617): 1 - 16.

17.   Paşka, O. M., Păcurariu C. and Muntean, S. G. (2014). Kinetic and thermodynamic studies on methylene blue biosorption using corn-husk. RSC Advances, 4: 62621-6263.

18.   Liu, W-J., Tian, K., Jiang H. and Yu, H-Q. (2014). Harvest of Cu NP anchored magnetic carbon materials from Fe/Cu preloaded biomass: Their pyrolysis, characterization, and catalytic activity on aqueous reduction of 4-Nitrophenol. Green Chemistry, 16: 4198-4205.

19.   Samuel, J., Pulimi, M., Paul, M.L., Maurya, A., Chandrasekaran, N. and Mukherjee, A. (2013). Batch and continuous flow studies of adsorptive removal of Cr(VI) by adapted bacterial consortia immobilized in alginate beads. Bioresource Technology, 128: 423-430.

20.   Teixeira, P. D., Silva, V. S. and Tenreiro, R. (2019). Integrated selection and identification of bacteria from polluted sites for biodegradation of lipids. International Microbiology, 23(3): 1-14.

21.   Ittrat, P., Chacho, T., Pholprayoon, J., Suttiwarayanon, N. and Charoenpanich, J. (2014). Application of agriculture waste as a support for lipase immobilization. Biocatalysis and Agricultural Biotechnology, 3: 77-82.

22.   Bao, M., Chen, Q., Gong, Y., Li, Y., Wang, H. and Jiang, G. (2013). Removal efficiency of heavy oil by free and immobilised microorganisms on laboratory-scale. The Canadian Journal of Chemical Engineering, 91: 1-8.

23.   Kathiravan, M. N., Praveen, S. A., Gim, G. H., Han, G. H. and Kim, S. W. (2014). Biodegradation of methyl orange by alginate-immobilized Aeromonas sp. in a packed bed reactor: External mass transfer modelling. Bioprocess and Biosystem Engineering, 37: 2149-2162.

24.   Agarry, S. E. and Aremu, M. O. (2012). Batch equilibrium and kinetic studies of simultaneous adsorption and biodegradation of naphthalene by orange peels immobilized Pseudomonas aeruginosa NCIB 950. Journal of Bioremediation and Biodegradation,  3(2): 1-12.

25.   Xiong, Q., Baychev, T. G. and Jivkov, A. P. (2016). Review of pore network modelling of porous media: Experimental characterisations, network constructions and applications to reactive transport. Journal of Contaminant Hydrology, 192: 101-117.

26.   Li, L. B., Vorobyov I. and Allen, T. W. (2012). The role of membrane thickness in charged protein-lipid interactions. Biochimica et Biophysica Acta Biomembranes, 1818: 135-145.

27.   Kureel, M. K., Geed, S. R., Giri, B. S., Shukla, A. K., Rai, B. N. and Singh, R. S. (2016). Removal of aqueous benzene in the immobilized batch and continuous packed bed bioreactor by isolated bacillus sp. M1. Resources-Efficient Technologies, 2: S87-S95.

28.   Shehzadi, M., Afzal, M., Khan, M. U., Islam, E., Mobin, A., Anwar, S. and Khan, Q. M. (2014). Enhanced degradation of textile effluent in constructed wetland system using Typha domingensis and textile effluent-degrading endophytic bacteria. Water Research, 58: 152-159.