Malaysian Journal of Analytical Sciences Vol 25 No 2 (2021): 324 - 340

 

 

 

 

THE REMEDIATION POTENTIAL OF BIOCHAR DERIVED FROM Morus rubra LINN. BARK

 

(Potensi Pemulihan oleh Terbitan Arang Bio dari Kulit Kayu Morus rubra Linn.)

 

Judith Clarisse Jose1, Mark Nathaniel Dolina2, Maria Carmen Tan2*

 

1Biology Department

2Chemistry Department

De La Salle University, 2401 Taft Avenue, Manila 0922, Philippines

 

*Corresponding author:  maria.carmen.tan@dlsu.edu.ph

 

 

Received: 15 December 2020; Accepted: 27 March 2021; Published:  25 April 2021

 

 

Abstract

Morus rubra L., commonly known as red mulberry, contains a myriad of phytochemical compounds. Mulberry plants have been previously studied for their potential in the phytoremediation process of potentially toxic elements (PTEs). In this study, biochars of red mulberry bark were produced by hydrothermal carbonization using a hydrothermal autoclave reactor (HAR) with PTFE liner and a Parr oxygen combustion vessel (POCV). These biochars were chemically characterized and their remediation potential were also investigated. Solvent extraction using dichloromethane was performed on the bark and biochars derived therefrom and the subsequent samples were evaluated using gas chromatography – electron ionization– mass spectrometry (GC–EI–MS). Scanning electron microscopy (SEM) provided the exterior characterization of these biochars, together with the dried red mulberry bark. Compositional analyses were determined by an energy dispersive X-ray spectrometer (EDX) and a Fourier transform infrared spectrometer (FT-IR). The biochar’s remediation potential of toxic heavy metals was discerned by atomic absorption spectroscopy. Phytochemical analyses revealed the constituents of red mulberry bark which included phytosterol, triterpenes, and triterpenoids, whereas, biochars contained esters, alkanes, alkenes, alkaloids, diene, and fatty alcohol. Comparing the two carbonization processes, the Parr oxygen combustion vessel (POCV) was able to carbonize red mulberry bark more than the hydrothermal autoclave reactor (HAR) with PTFE liner, as observed in their GC-EI-MS and SEM profiles. Elemental analysis showed high percentages of oxygen and carbon in red mulberry bark due to the presence of carbohydrates. Both biochar products effectively absorbed lead (Pb) by almost 60% and minimally absorbed cadmium (Cd) and iron (Fe) in the heavy metal solution. Copper (Cu) and chromium (Cr) were not remediated from the heavy metal solution by both biochar samples.

 

Keywords:     Morus rubra L., gas chromatography-electron ionization-mass spectrometry, scanning electron microscopy, Fourier transform infrared spectroscopy, energy dispersive X-ray analysis

 

Abstrak

Morus rubra L. umum dikenali sebagai mulberi merah, kaya dengan kandungan sebatian fitokimia. Pokok mulberi pada kajian terdahulu melihat potensinya dalam proses fitoremediasi terhadap unsur toksik (PTEs). Dalam kajian ini, arang bio dari kulit kayu mulberi merah telah dihasilkan melalui pengkarbonan hidrotermal menggunakan reaktor autoklaf hidrotermal (HAR) dengan liner PTFE dan vesel pembakaran oksigen Parr (POCV). Arang bio yang terhasil dicirikan secara kimia dan potensi pemulihannya turut dikaji. Pengekstrakan pelarut diklorometana digunakan terhadap kulit kayu dan terbitan arang bio dan diikuti analisis menggunakan spektrometri jisim-pengionan elektron-kromatografi gas (GC-EI-MS). Mikroskopi imbasan elektron (SEM) menjelaskan pencirian luar arang bio bersama kayu kulit mulberi merah yang telah dikeringkan. Analisis komposisi telah ditentukan melalui spektometer sinar-X serakan tenaga (EDX) dan spektrometer inframerah transformasi Fourier (FT-IR). Potensi pemulihan arang bio terhadap ketoksikan logam berat telah dianalisa menggunakan spektroskopi serapan atom.  Analisis fitokimia menjelaskan jujukan kimia bagi kulit kayu mulberi merah termasuklah fitosterol, triterpene, dan triterpenoid, manakala arang bio mengandungi ester, alkana, alkena, alkaloid, diena dan lemak alkohol. Perbandingan dua proses pengkarbonan vesel pembakaran oksigen Parr (POCV) mampu menghasilkan karbon yang lebih tinggi kandungannya berbanding reaktor autoklaf hidrotermal (HAR) dengan liner PTFE, diperhatikan dalam profil GC-EI-MS dan SEM. Analisis unsur telah menunjukkan peratusan tinggi kehadiran oksigen dan karbon di dalam kulit kayu mulberi merah disebabkan oleh kandungan karbohidrat. Produk arang bio berkesan menyerap plumbun (Pb) sehingga 60% dan serapan minima bagi kadmium (Cd) dan ferum (Fe) di dalam larutan logam berat. Kuprum (Cu) dan kromium (Cr) tidak dapat dipulihkan dari larutan logam berat oleh kedua-dua sampel arang bio.

 

Keywords:     Morus rubra L., spektrometri jisim-pengionan elektron-kromatografi gas, mikroskopi imbasan elektron, spektrometer inframerah transformasi Fourier, spektometer sinar-X serakan tenaga

 

References

1.      Shaheen, S. M., Niazi, N. K., Hassan, N. E. E., Bibi, I., Wang, H., Tsang, D. C. W., Ok, Y. S., Bolan, N. and Rinklebe, J. (2019). Wood-based biochar for the removal of potentially toxic elements in water and wastewater: a critical review. International Materials Reviews, 64(4): 216-247.

2.      Oni, B., Oziegbe, O. and Olawole, O. (2019). Significance of biochar application to the environment and economy. Annals of Agricultural Sciences, 64(2): 222-236.

3.      Yang, X., Zhang, S., Ju, M. and Liu, L. (2019). Preparation and modification of biochar materials and their application in soil remediation. Applied Sciences, 9(7): 1365.

4.      Vijayan, K., Tikader, A., Weiguo, Z., Nair, C., Ercisli, S. and Tsou, C. (2011). Morus. Wild Crop Relatives: Genomic and Breeding Resources: 75-95.

5.      Jiang, Y., Huang, R., Yan, X., Jia, C., Jiang, S. and Long, T. (2017). Mulberry for environmental protection. Pakistan Journal of Botany, 49: 781-788.

6.      Ercisli, S. and Orhan, E. (2007). Chemical composition of white (Morus alba), red (Morus rubra), and black (Morus nigra) mulberry fruits. Food Chemistry, 103: 1380-1384.

7.      Sharma, S. B., Gupta, S., Ac, R., Singh, U. R., Rajpoot, R. and Shukla, S. K. (2010). Antidiabetogenic   action   of Morus rubra L.  leaf extract in streptozotocin-induced diabetic rats. Journal of Pharmacy and Pharmacology, 62: 247-255.

8.      Dhiman, S., Kumar, V., Mehta, C., Gat, Y. and Kaur, S. (2019). Bioactive compounds, health benefits and utilisation of Morus spp.– a comprehensive review. The Journal of Horticultural Science and Biotechnology, 95(1): 8-18.

9.      Thabti, I., Elfalleh, W., Tlili, N., Ziadi, M., Campos, M. and Ferchichi, A. (2013). Phenols, flavonoids, and antioxidant and antibacterial activity of leaves and stem bark of Morus species. International Journal of Food Properties, 17(4): 842-854.

10.   Demir, S., Turan, I., Aliyazicioglu, Y., Kilinc, K., Yaman, S. and Ayazoglu Demir, E. (2016). Morus rubra extract induces cell cycle arrest and apoptosis in human colon cancer cells through endoplasmic reticulum stress and telomerase. Nutrition and Cancer, 69(1): 74-83.

11.   Selina, I. I. (2014). A comparative study of the amino acid composition of black mulberry (Morus nigra L.), white mulberry (Morus alba L.) and red mulberry (Morus rubra L.). Basic Research, 3(4): 770-774.

12.   Ercisli, S., Tosun, M., Duralija, B., Voća, S., Sengul, M. and Turan, M. (2010). Phytochemical content of some black (Morus nigra L.) and purple

(Morus rubra L.)  mulberry genotypes.  Food Technology & Biotechnology, 48(1): 102-106.

13.   Nikolova, T. (2015). Absorption of Pb, Cu, Zn, and Cd type Morus alba L. cultivated on soils contaminated with heavy metals. Bulgarian Journal of Agricultural Science, 21(4): 747-750.

14.   Rafati, M., Khorasani, N., Moattar, F., Shirvany, A., Moraghebi, F. and Hosseinzadeh, S. (2011). Phytoremediation potential of Populus alba and Morus alba for cadmium, chromium and nickel absorption from polluted soil. International Journal of Environmental Research, 5: 961-970.

15.   Zama, E., Zhu, Y., Reid, B. and Sun, G. (2017). The role of biochar properties in influencing the sorption and desorption of Pb(II), Cd(II) and As(III) in aqueous solution. Journal Of Cleaner Production, 148: 127-136.

16.   Biskup, E., Gołębiowski, M., Gniadecki, R., Stepnowski, P. and Łojkowska, E. (2012). Triterpenoid α-amyrin stimulates proliferation of human keratinocytes but does not protect them against UVB damage. Acta Biochimica Polonica, 59(2): 255-260.

17.   Santos, F., Frota, J., Arruda, B., de Melo, T., da Silva, A. and Brito, G. (2012). Antihyperglycemic and hypolipidemic effects of α, β-amyrin, a triterpenoid mixture from Protium heptaphyllum in mice. Lipids in Health and Disease, 11(1): 98.

18.   Vázquez, LH., Palazon, J. and Navarro-Ocaña, A. (2012). The pentacyclic triterpenes a, b-amyrins: A review of sources and biological activities. In V. Rao (Ed), Phytochemicals – A Global Perspective of Their Role in Nutrition and Health. InTech: pp. 487-502.

19.   Melo, C., Morais, T., Tomé, A., Brito, G., Chaves, M., Rao, V. and Santos, F. (2011). Anti-inflammatory effect of α, β-amyrin, a triterpene from Protium heptaphyllum, on cerulein-induced acute pancreatitis in mice. Inflammation Research, 60(7): 673-681.

20.   Victor, M., David, J., dos Santos, M., Barreiros, A., Barreiros, M. and Andrade, F. (2017). Synthesis and evaluation of cytotoxic effects of amino-ester derivatives of natural α, β-amyrin mixture. Journal of The Brazilian Chemical Society, 28(11): 2155-2162.

21.   National Center for Biotechnology Information. PubChem Database. Lanosterol, CID=246983, https://pubchem.ncbi.nlm.nih.gov/compound/Lanosterol [Access online 10 July 2020].

22.   Zhao, L., Chen, X., Zhu, J., Xi, Y., Yang, X. and Hu, L. (2015). Lanosterol reverses protein aggregation in cataracts. Nature, 523(7562): 607-611.

23.   Daszynski, D., Santhoshkumar, P., Phadte, A., Sharma, K., Zhong, H., Lou, M. and Kador, P. (2019). Failure of oxysterols such as lanosterol to restore lens clarity from cataracts. Scientific Reports, 9(1): 8459.

24.   Shanmugam, P., Barigali, A., Kadaskar, J., Borgohain, S., Mishra, D., Ramanjulu, R. and Minija, C. (2015). Effect of lanosterol on human cataract nucleus. Indian Journal of Ophthalmology, 63 (12): 888.

25.   Tripathi, N., Kumar, S., Singh, R., Singh, C., Singh, P. and Varshney, V. (2013). Isolation and identification of γ- sitosterol by GC-MS from the leaves of Girardinia heterophylla (Decne). The Open Bioactive Compounds Journal, 4(1): 25-27.

26.   Endrini, S., Rahmat, A., Ismail, P. and Taufiq-Yap, Y. (2015). Cytotoxic effect of γ-sitosterol from Kejibeling (Strobilanthes crispus) and its mechanism of action towards c-myc gene expression and apoptotic pathway. Medical Journal of Indonesia, 23(4): 203-208.

27.   Corey, E., Hess, H. and Proskow, S. (1963). Synthesis of a β-amyrin derivative, olean-11,12;13,18-diene. Journal of The American Chemical Society, 85(24): 3979-3983.

28.   de Almeida, P., Boleti, A., Rüdiger, A., Lourenço, G., da Veiga Junior, V. and Lima, E. (2015). Anti-inflammatory activity of triterpenes isolated from Protium paniculatum oil-resins. Evidence-Based Complementary and Alternative Medicine, 2015: 1-10.

29.   Belakhdar, G., Benjouad, A. and Abdennebi, E.H. (2015). Determination of some bioactive chemical constituents from Thesium humile vahl. Journal of Materials and Environmental Science, 6(10): 2778- 2783.

30.   Quarta, A., Novais, R., Bettini, S., Iafisco, M., Pullar, R. and Piccirillo, C. (2019). A sustainable multi-function biomorphic material for pollution remediation or UV absorption: Aerosol assisted preparation of highly porous ZnO-based materials from cork templates. Journal of Environmental Chemical Engineering, 7(2): 102936.

31.   Yashvanth, S., Shobha Rani, S. and Madhavendra, SS. (2015). Morus alba L., A New Perspective: Scan-ning electron microscopic, micro chemical, GC-MS and UPLC-MS characterisation. International Journal of Research in Pharmacy and Chemistry, 5(1): 106-115.

32.   InfoPlease (2020). Carbon (element): Biological importance. Access from https://www. infoplease.com/encyclopedia/science/chemistry/ elements/carbon/biological-importance. [Access online 13 July 2020].

33.   Chantuma, P., Lacointe, A., Kasemsap, P., Thanisawanyangkura, S., Gohet, E. and Clement, A. (2009). Carbohydrate storage in wood and bark of rubber trees submitted to different level of C demand induced by latex tapping. Tree Physiology, 29(8): 1021-1031.

34.   Krutul, D., Zielenkiewicz, T., Radomski, A., Zawadzki, J., Antczak, A., Drożdżek, M. and Makowski, T. (2011). Metals accumulation in scots pine (Pinus sylvestris L.) wood and bark affected with environmental pollution. Wood Research, 2017(62): 353-364.

35.   Ross, A., Taylor, C., Yaktine, A. and Cook, H. (2011). Dietary reference intakes for calcium and vitamin D. The National Academies Press, Washington, DC.

36.   Haas, E. (2011). Role of potassium in maintaining health. Access from https://hkpp.org/patients/ potassium-health [Access online 13 July 2020].

37.   National Academies of Sciences, Engineering, and Medicine (2019). Dietary reference intakes for sodium and potassium. The National Academies Press, Washington, DC.

38.   Schwalfenberg, G. and Genuis, S. (2017). The importance of magnesium in clinical healthcare. Scientifica, 2017: 1-14.

39.   Institute of Medicine (1997). Dietary reference intakes: Calcium, phosphorus, magnesium, vitamin D and fluoride. National Academy Press, Washington, DC.

40.   Institute of Medicine Panel (US) on Micronutrients (2001). Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. The National Academies Press, Washington, DC.

41.   National Research Council (US) Committee on Copper in Drinking Water (2000). Copper in drinking water. National Academy Press, Washington, DC.

42.   Jose, J. C., Oyong, G., Ajero, M. D., Chiong, I., Cabrera, E., Tan, M. C. S. (2020). Insights on the chemical constituents and hydrothermal carbonization of Crescentia cujete L.. Malaysian Journal of Analytical Sciences, 24(1): 134-145.

43.   Naron, D., Collard, F., Tyhoda, L. and Görgens, J. (2019). Production of phenols from pyrolysis of sugarcane bagasse lignin: Catalyst screening using thermogravimetric analysis – thermal desorption – gas chromatography – mass spectroscopy. Journal of Analytical and Applied Pyrolysis, 138: 120-131.

44.   Pourrut, B., Shahid, M., Dumat, C., Winterton, P. and Pinelli, E. (2011). Lead uptake, toxicity, and detoxification in plants. Reviews of Environmental Contamination and Toxicology, 213:113-136.

45.   Centers for Disease Control and Prevention (2020). CDC - immediately dangerous to life or health concentrations (IDLH): Lead compounds (as Pb) - NIOSH publications and products. Access from https://www.cdc.gov/ niosh/idlh/7439921.html. [Accessed online 16 July 2020].

46.   Sharma, P. and Dubey, R. S. (2005). Lead toxicity in plants. Brazilian Journal of Plant Physiology, 17(1): 35-52.

47.   Zhou, L., Zhao, Y., Wang, S., Han, S. and Liu, J. (2015). Lead in the soil–mulberry (Morus alba L.)–silkworm (Bombyx mori) food chain: Translocation and detoxification. Chemosphere, 128: 171-177.

48.   Micić, R., Dimitrijević, D., Kostić, D., Stojanović, G., Mitić, S. and Mitić, M. (2013). Content of heavy metals in mulberry fruits and their extracts-correlation analysis.  American Journal of Analytical Chemistry, 4(11): 674-682.

49.   Benavides, M. P., Gallego, S. M. and Tomaro, M. L. (2005). Cadmium toxicity in plants. Brazilian Journal of Plant Physiology, 17(1): 21-34.

50.   Bull, S. (2010). Cadmium toxicological overview. Access from https://assets.publishing.service. gov.uk/ government/uploads/system/uploads/attachment_data/file/337542/hpa_cadmium_toxicological_overview_v3.pdf [Accessed online 16 July 2020].

51.   Baruah, K. K. and Bharali, A. (2015). Physiological basis of iron toxicity and its management in crops. In: Amrit L.S. Recent advances in crop physiology. Daya Publishing House®, New Delhi, India

52.   Abhilash, K., Arul, J. and Bala, D. (2013). Fatal overdose of iron tablets in adults. Indian Journal of Critical Care Medicine, 17(5): 311-313.

53.   Shanker, A., Cervantes, C., Lozatavera, H. and Avudainayagam, S. (2005). Chromium toxicity in plants. Environment International, 31(5): 739-753.