Malaysian
Journal of Analytical Sciences Vol 25 No 2
(2021): 324 - 340
THE REMEDIATION POTENTIAL
OF BIOCHAR DERIVED FROM Morus rubra LINN. BARK
(Potensi Pemulihan oleh Terbitan Arang Bio dari Kulit Kayu Morus
rubra Linn.)
Judith Clarisse Jose1,
Mark Nathaniel Dolina2, Maria Carmen Tan2*
1Biology
Department
2Chemistry
Department
De La Salle University, 2401 Taft Avenue, Manila 0922, Philippines
*Corresponding author: maria.carmen.tan@dlsu.edu.ph
Received: 15 December 2020;
Accepted: 27 March 2021; Published: 25
April 2021
Abstract
Morus rubra L., commonly known as red mulberry, contains a
myriad of phytochemical compounds. Mulberry plants have been previously studied
for their potential in the phytoremediation process of potentially toxic
elements (PTEs). In this study, biochars of red mulberry bark were produced by
hydrothermal carbonization using a hydrothermal autoclave reactor (HAR) with
PTFE liner and a Parr oxygen combustion vessel (POCV). These biochars were
chemically characterized and their remediation potential were also
investigated. Solvent extraction using dichloromethane was performed on the
bark and biochars derived therefrom and the subsequent samples were evaluated
using gas chromatography – electron ionization– mass
spectrometry (GC–EI–MS). Scanning electron
microscopy (SEM) provided the exterior characterization of these biochars,
together with the dried red mulberry bark. Compositional analyses were
determined by an energy dispersive X-ray spectrometer (EDX)
and a Fourier transform infrared spectrometer (FT-IR).
The biochar’s remediation potential of toxic heavy metals was discerned by
atomic absorption spectroscopy. Phytochemical analyses revealed the
constituents of red mulberry bark which included phytosterol, triterpenes, and
triterpenoids, whereas, biochars contained esters, alkanes, alkenes, alkaloids,
diene, and fatty alcohol. Comparing the two carbonization processes, the Parr
oxygen combustion vessel (POCV) was able to carbonize red mulberry bark more
than the hydrothermal autoclave reactor (HAR) with PTFE liner, as observed in
their GC-EI-MS and SEM profiles. Elemental analysis showed high percentages of
oxygen and carbon in red mulberry bark due to the presence of carbohydrates.
Both biochar products effectively absorbed lead (Pb) by almost 60% and minimally
absorbed cadmium (Cd) and iron (Fe) in the heavy metal solution. Copper (Cu)
and chromium (Cr) were not remediated from the heavy metal solution by both
biochar samples.
Keywords: Morus
rubra L., gas chromatography-electron ionization-mass spectrometry,
scanning electron microscopy, Fourier transform infrared spectroscopy, energy
dispersive X-ray analysis
Abstrak
Morus rubra L. umum dikenali sebagai
mulberi merah, kaya dengan kandungan sebatian fitokimia. Pokok mulberi pada
kajian terdahulu melihat potensinya dalam proses fitoremediasi terhadap unsur
toksik (PTEs). Dalam kajian ini, arang bio dari kulit kayu mulberi merah telah dihasilkan
melalui pengkarbonan hidrotermal menggunakan reaktor autoklaf hidrotermal (HAR)
dengan liner PTFE dan vesel pembakaran oksigen Parr (POCV). Arang
bio yang terhasil dicirikan secara kimia dan potensi pemulihannya turut dikaji.
Pengekstrakan pelarut diklorometana digunakan terhadap kulit kayu dan
terbitan arang bio dan diikuti analisis menggunakan spektrometri
jisim-pengionan elektron-kromatografi gas (GC-EI-MS). Mikroskopi imbasan elektron (SEM) menjelaskan pencirian luar arang
bio bersama kayu kulit mulberi merah yang telah dikeringkan. Analisis komposisi telah ditentukan melalui
spektometer sinar-X serakan tenaga (EDX) dan spektrometer inframerah
transformasi Fourier (FT-IR). Potensi
pemulihan arang bio terhadap ketoksikan logam berat telah dianalisa menggunakan
spektroskopi serapan atom. Analisis fitokimia menjelaskan jujukan
kimia bagi kulit kayu mulberi merah termasuklah fitosterol, triterpene, dan
triterpenoid, manakala arang bio mengandungi ester, alkana, alkena, alkaloid,
diena dan lemak alkohol.
Perbandingan dua proses pengkarbonan vesel pembakaran oksigen Parr (POCV) mampu
menghasilkan karbon yang lebih tinggi kandungannya berbanding reaktor autoklaf
hidrotermal (HAR) dengan liner PTFE, diperhatikan dalam profil GC-EI-MS dan
SEM. Analisis unsur telah menunjukkan
peratusan tinggi kehadiran oksigen dan karbon di dalam kulit kayu mulberi merah
disebabkan oleh kandungan karbohidrat. Produk arang bio berkesan menyerap plumbun (Pb) sehingga 60% dan serapan
minima bagi kadmium (Cd) dan ferum (Fe) di dalam larutan logam berat. Kuprum
(Cu) dan kromium (Cr) tidak dapat dipulihkan dari larutan logam berat oleh
kedua-dua sampel arang bio.
Keywords:
Morus rubra L., spektrometri
jisim-pengionan elektron-kromatografi gas, mikroskopi imbasan elektron, spektrometer inframerah transformasi Fourier, spektometer sinar-X serakan tenaga
References
1.
Shaheen, S. M., Niazi, N.
K., Hassan, N. E. E., Bibi, I., Wang, H., Tsang, D. C. W., Ok, Y. S., Bolan, N.
and Rinklebe, J. (2019). Wood-based biochar for the removal of potentially
toxic elements in water and wastewater: a critical review. International Materials
Reviews, 64(4): 216-247.
2.
Oni, B., Oziegbe, O. and Olawole, O. (2019).
Significance of biochar application to the environment and economy. Annals
of Agricultural Sciences, 64(2): 222-236.
3.
Yang, X., Zhang, S., Ju, M. and Liu, L. (2019). Preparation
and modification of biochar materials and their application in soil
remediation. Applied Sciences, 9(7): 1365.
4. Vijayan, K., Tikader,
A., Weiguo, Z., Nair, C., Ercisli, S. and Tsou, C. (2011). Morus. Wild Crop
Relatives: Genomic and Breeding Resources: 75-95.
5.
Jiang, Y., Huang, R.,
Yan, X., Jia, C., Jiang, S. and Long, T. (2017). Mulberry for environmental
protection. Pakistan Journal of Botany, 49: 781-788.
6.
Ercisli, S. and Orhan, E.
(2007). Chemical composition of white (Morus alba), red (Morus rubra),
and black (Morus nigra) mulberry fruits. Food Chemistry, 103:
1380-1384.
7.
Sharma, S. B., Gupta, S.,
Ac, R., Singh, U. R., Rajpoot, R. and Shukla, S. K. (2010).
Antidiabetogenic action of Morus rubra L. leaf extract in streptozotocin-induced
diabetic rats. Journal of Pharmacy and Pharmacology, 62: 247-255.
8.
Dhiman, S., Kumar, V., Mehta, C., Gat, Y. and
Kaur, S. (2019). Bioactive compounds, health benefits and utilisation of Morus
spp.– a comprehensive review. The Journal of Horticultural Science and
Biotechnology, 95(1): 8-18.
9.
Thabti, I., Elfalleh, W., Tlili, N., Ziadi, M.,
Campos, M. and Ferchichi, A. (2013). Phenols, flavonoids, and antioxidant and
antibacterial activity of leaves and stem bark of Morus species. International
Journal of Food Properties, 17(4): 842-854.
10. Demir, S., Turan, I.,
Aliyazicioglu, Y., Kilinc, K., Yaman, S. and Ayazoglu Demir, E. (2016). Morus
rubra extract induces cell cycle arrest and apoptosis in human colon cancer
cells through endoplasmic reticulum stress and telomerase. Nutrition
and Cancer, 69(1): 74-83.
11.
Selina, I. I. (2014). A
comparative study of the amino acid composition of black mulberry (Morus
nigra L.), white mulberry (Morus alba L.) and red mulberry (Morus
rubra L.). Basic Research, 3(4): 770-774.
12.
Ercisli, S., Tosun, M.,
Duralija, B., Voća, S., Sengul, M. and Turan, M. (2010). Phytochemical
content of some black (Morus nigra L.) and purple
(Morus rubra
L.) mulberry genotypes. Food Technology & Biotechnology,
48(1): 102-106.
13.
Nikolova, T. (2015).
Absorption of Pb, Cu, Zn, and Cd type Morus alba L. cultivated on soils
contaminated with heavy metals. Bulgarian Journal of Agricultural Science, 21(4):
747-750.
14.
Rafati, M., Khorasani,
N., Moattar, F., Shirvany, A., Moraghebi, F. and Hosseinzadeh, S. (2011).
Phytoremediation potential of Populus alba and Morus alba for
cadmium, chromium and nickel absorption from polluted soil. International
Journal of Environmental Research, 5: 961-970.
15. Zama, E., Zhu, Y., Reid,
B. and Sun, G. (2017). The role of biochar properties in influencing the
sorption and desorption of Pb(II), Cd(II) and As(III) in aqueous
solution. Journal Of Cleaner Production, 148: 127-136.
16.
Biskup, E.,
Gołębiowski, M., Gniadecki, R., Stepnowski, P. and Łojkowska, E.
(2012). Triterpenoid α-amyrin stimulates proliferation of human
keratinocytes but does not protect them against UVB damage. Acta Biochimica
Polonica, 59(2): 255-260.
17. Santos, F., Frota, J.,
Arruda, B., de Melo, T., da Silva, A. and Brito, G. (2012). Antihyperglycemic
and hypolipidemic effects of α, β-amyrin, a triterpenoid mixture from
Protium heptaphyllum in mice. Lipids in Health and
Disease, 11(1): 98.
18.
Vázquez, LH., Palazon, J.
and Navarro-Ocaña, A. (2012). The pentacyclic triterpenes a,
b-amyrins:
A review of sources and biological activities. In V. Rao (Ed), Phytochemicals
– A Global Perspective of Their Role in Nutrition and Health. InTech:
pp. 487-502.
19. Melo, C., Morais, T.,
Tomé, A., Brito, G., Chaves, M., Rao, V. and Santos, F. (2011).
Anti-inflammatory effect of α, β-amyrin, a triterpene from Protium
heptaphyllum, on cerulein-induced acute pancreatitis in mice. Inflammation
Research, 60(7): 673-681.
20.
Victor, M., David, J., dos Santos, M., Barreiros,
A., Barreiros, M. and Andrade, F. (2017). Synthesis and evaluation of cytotoxic
effects of amino-ester derivatives of natural α, β-amyrin
mixture. Journal of The Brazilian Chemical Society, 28(11):
2155-2162.
21.
National Center for Biotechnology Information.
PubChem Database. Lanosterol, CID=246983,
https://pubchem.ncbi.nlm.nih.gov/compound/Lanosterol [Access online 10 July
2020].
22. Zhao, L., Chen, X., Zhu,
J., Xi, Y., Yang, X. and Hu, L. (2015). Lanosterol reverses protein aggregation
in cataracts. Nature, 523(7562): 607-611.
23. Daszynski, D.,
Santhoshkumar, P., Phadte, A., Sharma, K., Zhong, H., Lou, M. and Kador, P.
(2019). Failure of oxysterols such as lanosterol to restore lens clarity from cataracts. Scientific
Reports, 9(1): 8459.
24. Shanmugam, P., Barigali,
A., Kadaskar, J., Borgohain, S., Mishra, D., Ramanjulu, R. and Minija, C.
(2015). Effect of lanosterol on human cataract nucleus. Indian Journal
of Ophthalmology, 63 (12): 888.
25. Tripathi, N., Kumar, S.,
Singh, R., Singh, C., Singh, P. and Varshney, V. (2013). Isolation and
identification of γ- sitosterol by GC-MS from the leaves of Girardinia
heterophylla (Decne). The Open Bioactive Compounds Journal, 4(1):
25-27.
26. Endrini, S., Rahmat, A.,
Ismail, P. and Taufiq-Yap, Y. (2015). Cytotoxic effect of γ-sitosterol
from Kejibeling (Strobilanthes crispus) and its mechanism of action
towards c-myc gene expression and apoptotic pathway. Medical
Journal of Indonesia, 23(4): 203-208.
27.
Corey, E., Hess, H. and Proskow, S. (1963).
Synthesis of a β-amyrin derivative, olean-11,12;13,18-diene. Journal
of The American Chemical Society, 85(24): 3979-3983.
28.
de Almeida, P., Boleti, A., Rüdiger, A., Lourenço,
G., da Veiga Junior, V. and Lima, E. (2015). Anti-inflammatory activity of
triterpenes isolated from Protium paniculatum oil-resins. Evidence-Based
Complementary and Alternative Medicine, 2015: 1-10.
29.
Belakhdar, G., Benjouad, A. and Abdennebi, E.H.
(2015). Determination of some bioactive chemical constituents from Thesium
humile vahl. Journal of Materials and Environmental Science, 6(10):
2778- 2783.
30.
Quarta, A., Novais, R., Bettini, S., Iafisco, M.,
Pullar, R. and Piccirillo, C. (2019). A sustainable multi-function biomorphic
material for pollution remediation or UV absorption: Aerosol assisted
preparation of highly porous ZnO-based materials from cork templates. Journal
of Environmental Chemical Engineering, 7(2): 102936.
31.
Yashvanth, S., Shobha Rani, S. and Madhavendra,
SS. (2015). Morus alba L., A New Perspective: Scan-ning electron
microscopic, micro chemical, GC-MS and UPLC-MS characterisation. International
Journal of Research in Pharmacy and Chemistry, 5(1): 106-115.
32.
InfoPlease (2020). Carbon (element): Biological
importance. Access from https://www. infoplease.com/encyclopedia/science/chemistry/
elements/carbon/biological-importance. [Access online 13 July 2020].
33.
Chantuma, P., Lacointe,
A., Kasemsap, P., Thanisawanyangkura, S., Gohet, E. and Clement, A. (2009).
Carbohydrate storage in wood and bark of rubber trees submitted to different
level of C demand induced by latex tapping. Tree Physiology, 29(8):
1021-1031.
34.
Krutul, D.,
Zielenkiewicz, T., Radomski, A., Zawadzki, J., Antczak, A., Drożdżek,
M. and Makowski, T. (2011). Metals accumulation in scots pine (Pinus
sylvestris L.) wood and bark affected with environmental pollution. Wood
Research, 2017(62): 353-364.
35.
Ross, A., Taylor, C., Yaktine, A. and Cook, H.
(2011). Dietary reference intakes for calcium and vitamin D. The National
Academies Press, Washington, DC.
36.
Haas, E. (2011). Role of potassium in
maintaining health. Access from https://hkpp.org/patients/ potassium-health
[Access online 13 July 2020].
37.
National Academies of
Sciences, Engineering, and Medicine (2019). Dietary reference intakes for
sodium and potassium. The National Academies Press, Washington, DC.
38.
Schwalfenberg, G. and Genuis, S. (2017). The
importance of magnesium in clinical healthcare. Scientifica, 2017:
1-14.
39.
Institute of Medicine
(1997). Dietary reference intakes: Calcium, phosphorus, magnesium, vitamin D
and fluoride. National Academy Press, Washington, DC.
40.
Institute of Medicine
Panel (US) on Micronutrients (2001). Dietary reference intakes for vitamin A,
vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese,
molybdenum, nickel, silicon, vanadium, and zinc. The National Academies Press,
Washington, DC.
41.
National
Research Council (US) Committee on Copper in Drinking Water (2000). Copper in
drinking water. National Academy Press, Washington,
DC.
42.
Jose, J. C., Oyong, G., Ajero, M. D., Chiong, I.,
Cabrera, E., Tan, M. C. S. (2020). Insights on the chemical constituents and
hydrothermal carbonization of Crescentia cujete L.. Malaysian Journal
of Analytical Sciences, 24(1): 134-145.
43.
Naron, D., Collard, F., Tyhoda, L. and Görgens, J.
(2019). Production of phenols from pyrolysis of sugarcane bagasse lignin:
Catalyst screening using thermogravimetric analysis – thermal desorption – gas
chromatography – mass spectroscopy. Journal of Analytical and Applied
Pyrolysis, 138: 120-131.
44.
Pourrut, B., Shahid, M., Dumat, C., Winterton, P.
and Pinelli, E. (2011). Lead uptake, toxicity, and detoxification in
plants. Reviews of Environmental Contamination and Toxicology, 213:113-136.
45.
Centers for Disease Control and Prevention (2020).
CDC - immediately dangerous to life or health concentrations (IDLH): Lead
compounds (as Pb) - NIOSH publications and products. Access from
https://www.cdc.gov/ niosh/idlh/7439921.html. [Accessed online 16 July 2020].
46.
Sharma, P. and Dubey, R. S. (2005). Lead toxicity
in plants. Brazilian Journal of Plant Physiology, 17(1): 35-52.
47. Zhou, L., Zhao, Y.,
Wang, S., Han, S. and Liu, J. (2015). Lead in the soil–mulberry (Morus alba
L.)–silkworm (Bombyx mori) food chain: Translocation and detoxification.
Chemosphere, 128: 171-177.
48. Micić, R., Dimitrijević,
D., Kostić, D., Stojanović, G., Mitić, S. and Mitić, M.
(2013). Content of heavy metals in mulberry fruits and their
extracts-correlation analysis. American Journal of Analytical
Chemistry, 4(11): 674-682.
49.
Benavides, M. P., Gallego, S. M. and Tomaro, M. L.
(2005). Cadmium toxicity in plants. Brazilian Journal of Plant Physiology, 17(1):
21-34.
50.
Bull, S. (2010). Cadmium toxicological overview.
Access from https://assets.publishing.service. gov.uk/
government/uploads/system/uploads/attachment_data/file/337542/hpa_cadmium_toxicological_overview_v3.pdf [Accessed online 16 July 2020].
51.
Baruah, K. K. and Bharali, A. (2015). Physiological basis of
iron toxicity and its management in crops. In: Amrit L.S. Recent advances in
crop physiology. Daya Publishing House®, New Delhi, India
52.
Abhilash, K., Arul, J. and Bala, D. (2013). Fatal
overdose of iron tablets in adults. Indian Journal of Critical Care
Medicine, 17(5): 311-313.
53.
Shanker, A., Cervantes, C., Lozatavera, H. and Avudainayagam, S. (2005).
Chromium toxicity in plants. Environment International, 31(5):
739-753.