Malaysian
Journal of Analytical Sciences Vol 25 No 2
(2021): 311 - 323
INFLUENCE OF MINERALS ON CONTROL
MEASUREMENT OF AMMONIUM, NITRITE, NITRATE AND PHOSPHATE USING UV-SPECTROPHOTOMETER
(Pengaruh Mineral Terhadap Pengukuran Kawalan bagi
Ammonium, Nitrit, Nitrat dan Fosfat Menggunakan Spektrofotometer UV)
Md. Salatul Islam Mozumder*, Shehab Shahreyar, Saiful
Islam, Md. Delowar Hossain
Department of Chemical Engineering and Polymer
Science,
Shahjalal University of Science and Technology,
Sylhet-3114, Bangladesh
*Corresponding author: salatul-cep@sust.edu
Received: 12 February 2021;
Accepted: 30 March 2021; Published: 25
April 2021
Abstract
Interference of different minerals on
UV-spectrophotometric determination of ammonium nitrogen (NH4+-N),
nitrite-nitrogen (NO2−-N), nitrate-nitrogen (NO3−-N)
and phosphate (PO43-) was investigated in this study.
Iron, magnesium and sodium acetate had significant interference in
Nesslerization of NH4+-N which was needed to adopt
standard protocol for the accurate determination of NH4+-N.
However, adding 5 times higher Nessler reagent compared to standard method was
used to overcome the limitations due to interference of minerals. In
determination of NO2−-N through sulphanilmide
method, magnesium and iron did not show any significant affect. Presence of 5
g/L sodium acetate reduced the slope of calibration curve of NO2−-N
from 0.603 to 0.224. Presence of sodium, either in form of sodium acetate or
sodium chloride, reduced the absorbance of sulphanilmide method for NO2−-N
determination. Increasing sodium acetate concentration from 2 to 10 g/L, the
absorbance of 4 mg/L NO2−-N was reduced by 5 times:
1.50 to 0.34. Identical absorbance for 4 mg/L NO2−-N
was found in the presence of 0.84 g/L NaCl (≈ 0.33 g/L Na+)
and 2 g/L Na-acetate (≈ 0.56 g/L Na+) which indicated that
chlorine also had interference on NO2−-N
measurement. The complex formed by nitration of salicylic acid was not
interfered by the presence of potassium, phosphate, sodium, magnesium, iron and
sodium acetate; almost the same slope (0.0095) was observed for both with and
without presence of minerals. In addition, Ammonium molybdate method for the
determination of PO43- was a robust method since the
measurement was not affected in the presence of minerals.
Keywords: UV-spectrophotometer, Nesslerization,
sulphanilmide method, salicylic acid method, ammonium-molybdate method
Abstrak
Gangguan
mineral berbeza dalam penentuan ammonium nitrogen (NH4+-N),
nitrit-nitrogen (NO2−-N), nitrat-nitrogen (NO3−-N)
dan fosfat (PO43-) melalui spektrofotometrik-UV telah
disiasat dalam kajian ini. Ferum, magnesium dan natrium asetat menghasilkan
gangguan yang signifikan tindak balas Nessler bagi NH4+-N
yang perlu di adaptasi dalam protokol piawai bagi penentuan tepat NH4+-N.
Walau bagaimanapun, penambahan 5 kali ganda reagen Nessler berbanding kaedah
piawai telah digunakan untuk mengatasi kelemahan iaitu gangguan dari mineral.
Dalam penentuan NO2−-N menggunakan kaedah
sulfanilmida, magnesium dan ferum tidak menunjukkan kesan yang signifikan.
Kehadiran 5 g/L natrium asetat mengurangkan cerun lengkung kalibrasi NO2−-N
dari julat 0.603 hingga 0.224. Kehadiran sodium, sama ada dalam bentuk natrium
asetat atau natrium klorida, mengurangkan serapan bagi kaedah
sulfanilmida dalam penentuan NO2−-N. Peningkatan
kepekatan natrium asetat dari
julat 2 hingga 10 g/L, serapan 4 mg/L NO2−-N
menurun sebanyak 5 kali ganda: 1.50 hingga 0.34. Serapan sama bagi 4 mg/L NO2−-N
diperolehi dengan kehadiran 0.84 g/L NaCl (≈ 0.33 g/L Na+) dan
2 g/L Na-asetat (≈ 0.56 g/L Na+) telah menjelaskan klorin
memberi gangguan kepada pengukuran NO2−-N. Kompleks
yang terhasil melalui penitratan oleh asid salisilik tidak diganggu oleh
kehadiran kalium, fosfat, natrium, magnesium, ferum dan natrium asetat,
kecerunan yang sama (0.0095) telah diperhatikan bagi kehadiran mineral atau
sebaliknya. Selanjutnyam kaedah ammonium molibidat bagi penentuan PO43-
diketahui kaedah teguh kerana pengukuran tidak diganggu dengan kehadiran
mineral.
Kata kunci: spektrofotometer
UV, tindak balas Nessler, kaedah sulfanilmida, kaedah asid salisilik, kaedah ammonium-molibdat
References
1.
Rezende, D., Nishi, L.,
Coldebella, P. F., Silva, M.
F., Vieira, M. F., Vieira, A. M. S., Bergamasco, R. and Fagundes‐Klen, M. R. (2016).
Groundwater nitrate contamination: assessment and treatment using moringa
oleifera lam. Seed extract and activated carbon filtration. The Canadian
Journal of Chemical Engineering, 94: 725-732.
2.
Ramos, A. C., Regan, S.,
McGinn, P. J. and Champagne, P. (2019). Feasibility of a microalgal wastewater
treatment for the removal of nutrients under non-sterile conditions and carbon
limitation. The Canadian Journal of Chemical Engineering, 97: 1289-1298.
3.
Foulon, E., Rousseau, A.
N., Benoy, G. and North, R. L. (2020). A global scan of how the issue of
nutrient loading and harmful algal blooms is being addressed by governments,
non-governmental organizations, and volunteers. Water Quality Research
Journal, 55 (1): 1-23.
4.
Yaqoop, M., Nabi, A. and
Worsfold, P. J. (2004). Determination of nanomolar concentrations of phosphate
in freshwaters using flow injection with luminol chemiluminescence detection. Analytica
Chimica Acta, 510: 213-218.
5.
Gamon, F., Tomaszewski,
M. and Ziembińska-Buczyńska, A. (2019). Ecotoxicological study of
landfill leachate treated in the ANAMMOX process. Water Quality Research
Journal, 54 (3): 230-241.
6.
Brezinski, K., Gorczyca,
B. and Sadrnourmohammadi, M. (2019). Ion-exchange for trihalomethane control in
potable water treatment - a municipal water treatment case study in Rainy
River, Ontario, Canada. Water Quality Research Journal, 54(2): 142-160.
7.
Moorcroft, M. J., Davis,
J. and Compton, R. G. (2001). Detection and determination of nitrate and
nitrite: a review. Talanta, 54: 785-803.
8.
Fukushi, K., Tada, K.,
Takeda, S., Wakida, S., Yamane, M., Higashi, K. and Hiiro, K. (1999).
Simultaneous determination of nitrate and nitrite ions in seawater by capillary
zone electrophoresis using artificial seawater as the carrier solution. Journal
of Chromatography A, 838: 303-311.
9.
Okemgbo, A. A., Hill, H.
H. and Siems, W. F. (1999). Reverse polarity capillary zone electrophoretic
analysis of nitrate and nitrite in natural water samples. Analytical
Chemistry, 71: 2725-2731.
10.
American Public Health
Association (2005). Standard methods for the examination of water and
wastewater. Access from https://www. standardmethods.org/
11.
He,
X., Sun, Q., Xu, T., Dai, M. and Wei, D. (2019). Removal of nitrogen by
heterotrophic nitrification–aerobic denitrification of a novel halotolerant
bacterium Pseudomonas mendocina TJPU04. Bioprocess Biosystems Engineering,
42: 853-866.
12.
Mozumder, M. S. I., De
Wever, H., Volcke, E. I. P. and Garcia-Gonzalez, L. (2014). A robust fed-batch
feeding strategy independent of the carbon source for optimal
polyhydroxybutyrate production. Process Biochemistry, 49: 365-373.
13.
Zhao, J., Wang, X., Li, X.,
Jia, S., Wang, Q. and Peng, Y. (2019). Improvement of partial nitrification
endogenous denitrification and phosphorus removal system: balancing competition
between phosphorus and glycogen accumulating organisms to enhance nitrogen
removal without initiating phosphorus removal deterioration. Bioresource
Technology, 281: 382-391.
14.
Crosby, N. T. (1968).
Determination of ammonia by the Nessler method in waters containing hydrazine. Analyst,
93: 406-408.
15.
Cataldo, D. A., Haroon,
M., Schrader, L. E. and Youngs, V. L. (1975). Rapid colorimetric determination
of nitrate in plant-tissue by nitration of salicylic-acid. Communications in
Soil Science and Plant Analysis, 6(1): 71-80.
16.
Jeong, H., Park, J. and
Kim, H. (2013). Determination of NH4+ in environmental
water with interfering substances using the modified nessler method. Journal
of Chemistry, 2013: 1-9.
17.
Boopathy, R. (2003). Use
of anaerobic soil slurry reactors for the removal of petroleum hydrocarbons in
soil. International Biodeterioration and Biodegradation, 52: 161-166.
18.
Hach, C. C., Brayton, S.
V. and Kopelove, A. B. (1985). A powerful kjeldahl nitrogen method using
peroxymonosulfuric acid. Journal of Agricultural & Food Chemistry,
33: 1117-1123.
19.
Gulsoy, G., Tayanc, M.
and Erturk, F. (1999). Chemical analyses of the major ions in the precipitation
of Istanbul, Turkey. Environmental Pollution, 105: 273-280.
20.
Foyn, E. (1950). Ammonia
determination in sea water. ICES Journal of Marine Science, 16: 175-178.
21.
Colman, B. P. (2010).
Understanding and eliminating iron interference in colorimetric nitrate and
nitrite analysis. Environmental Monitoring and Assessment, 165: 633-641.
22.
Norwitz, G. and Keliher,
P. N. (1985). Study of interferences in the spectrophotometric determination of
nitrite using composite diazotisation - coupling reagents. Analyst, 110:
689-694.
23.
Tarafder, P. K. and
Rathore, D. P. S. (1988). Spectrophotometric determination of nitrite in water,
Analyst, 113: 1073-1076.
24.
Cataldo, D. A., Maroon,
M., Schrader, L. E. and Youngs, V. L. (1975). Rapid colorimetric determination
of nitrate in plant tissue by nitration of salicylic acid. Communications in
Soil Science and Plant Analysis, 6(1): 71-80.
25.
Ganesh, S., Khan, F.,
Ahmed, M. K., Velavenda, P., Pandey, N. K. and Mudali, U. K. (2012).
Spectrophotometric determination of trace amounts of phosphate in water and
soil. Water Science and Technology, 66(12): 2653-2658.
26.
Mahadevaiah, Kumar, M. S.
Y., Galil, M. S. A., Suresha, M. S., Sathish, M. A. and Nagendrappaa, G.
(2007). A simple spectrophotometric determination of phosphate
in sugarcane juices, water and
detergent samples. E-Journal of
Chemistry, 4(4): 467-473.