Malaysian Journal of Analytical Sciences Vol 25 No 2 (2021): 311 - 323

 

 

 

 

INFLUENCE OF MINERALS ON CONTROL MEASUREMENT OF AMMONIUM, NITRITE, NITRATE AND PHOSPHATE USING UV-SPECTROPHOTOMETER

 

(Pengaruh Mineral Terhadap Pengukuran Kawalan bagi Ammonium, Nitrit, Nitrat dan Fosfat Menggunakan Spektrofotometer UV)

 

Md. Salatul Islam Mozumder*, Shehab Shahreyar, Saiful Islam, Md. Delowar Hossain

 

Department of Chemical Engineering and Polymer Science,

Shahjalal University of Science and Technology, Sylhet-3114, Bangladesh

 

*Corresponding author:  salatul-cep@sust.edu

 

 

Received: 12 February 2021; Accepted: 30 March 2021; Published:  25 April 2021

 

 

Abstract

Interference of different minerals on UV-spectrophotometric determination of ammonium nitrogen (NH4+-N), nitrite-nitrogen (NO2-N), nitrate-nitrogen (NO3-N) and phosphate (PO43-) was investigated in this study. Iron, magnesium and sodium acetate had significant interference in Nesslerization of NH4+-N which was needed to adopt standard protocol for the accurate determination of NH4+-N. However, adding 5 times higher Nessler reagent compared to standard method was used to overcome the limitations due to interference of minerals. In determination of NO2-N through sulphanilmide method, magnesium and iron did not show any significant affect. Presence of 5 g/L sodium acetate reduced the slope of calibration curve of NO2-N from 0.603 to 0.224. Presence of sodium, either in form of sodium acetate or sodium chloride, reduced the absorbance of sulphanilmide method for NO2-N determination. Increasing sodium acetate concentration from 2 to 10 g/L, the absorbance of 4 mg/L NO2-N was reduced by 5 times: 1.50 to 0.34. Identical absorbance for 4 mg/L NO2-N was found in the presence of 0.84 g/L NaCl (≈ 0.33 g/L Na+) and 2 g/L Na-acetate (≈ 0.56 g/L Na+) which indicated that chlorine also had interference on NO2-N measurement. The complex formed by nitration of salicylic acid was not interfered by the presence of potassium, phosphate, sodium, magnesium, iron and sodium acetate; almost the same slope (0.0095) was observed for both with and without presence of minerals. In addition, Ammonium molybdate method for the determination of PO43- was a robust method since the measurement was not affected in the presence of minerals.

 

Keywords:   UV-spectrophotometer, Nesslerization, sulphanilmide method, salicylic acid method, ammonium-molybdate method

 

Abstrak

Gangguan mineral berbeza dalam penentuan ammonium nitrogen (NH4+-N), nitrit-nitrogen (NO2-N), nitrat-nitrogen (NO3-N) dan fosfat (PO43-) melalui spektrofotometrik-UV telah disiasat dalam kajian ini. Ferum, magnesium dan natrium asetat menghasilkan gangguan yang signifikan tindak balas Nessler bagi NH4+-N yang perlu di adaptasi dalam protokol piawai bagi penentuan tepat NH4+-N. Walau bagaimanapun, penambahan 5 kali ganda reagen Nessler berbanding kaedah piawai telah digunakan untuk mengatasi kelemahan iaitu gangguan dari mineral. Dalam penentuan NO2-N menggunakan kaedah sulfanilmida, magnesium dan ferum tidak menunjukkan kesan yang signifikan. Kehadiran 5 g/L natrium asetat mengurangkan cerun lengkung kalibrasi NO2-N dari julat 0.603 hingga 0.224. Kehadiran sodium, sama ada dalam bentuk natrium asetat atau natrium klorida, mengurangkan  serapan  bagi  kaedah sulfanilmida dalam penentuan NO2-N.  Peningkatan  kepekatan  natrium  asetat  dari  julat 2 hingga 10 g/L, serapan 4 mg/L NO2-N menurun sebanyak 5 kali ganda: 1.50 hingga 0.34. Serapan sama bagi 4 mg/L NO2-N diperolehi dengan kehadiran 0.84 g/L NaCl (≈ 0.33 g/L Na+) dan 2 g/L Na-asetat (≈ 0.56 g/L Na+) telah menjelaskan klorin memberi gangguan kepada pengukuran NO2-N. Kompleks yang terhasil melalui penitratan oleh asid salisilik tidak diganggu oleh kehadiran kalium, fosfat, natrium, magnesium, ferum dan natrium asetat, kecerunan yang sama (0.0095) telah diperhatikan bagi kehadiran mineral atau sebaliknya. Selanjutnyam kaedah ammonium molibidat bagi penentuan PO43- diketahui kaedah teguh kerana pengukuran tidak diganggu dengan kehadiran mineral.

 

Kata kunci:     spektrofotometer UV, tindak balas Nessler, kaedah sulfanilmida, kaedah asid salisilik, kaedah ammonium-molibdat

 

References

1.      Rezende, D.,  Nishi, L.,  Coldebella, P. F.,  Silva, M. F.,  Vieira, M. F.,  Vieira, A. M. S.,  Bergamasco, R.  and Fagundes‐Klen, M. R. (2016). Groundwater nitrate contamination: assessment and treatment using moringa oleifera lam. Seed extract and activated carbon filtration. The Canadian Journal of Chemical Engineering, 94: 725-732.

2.      Ramos, A. C., Regan, S., McGinn, P. J. and Champagne, P. (2019). Feasibility of a microalgal wastewater treatment for the removal of nutrients under non-sterile conditions and carbon limitation. The Canadian Journal of Chemical Engineering, 97: 1289-1298.

3.      Foulon, E., Rousseau, A. N., Benoy, G. and North, R. L. (2020). A global scan of how the issue of nutrient loading and harmful algal blooms is being addressed by governments, non-governmental organizations, and volunteers. Water Quality Research Journal, 55 (1): 1-23.

4.      Yaqoop, M., Nabi, A. and Worsfold, P. J. (2004). Determination of nanomolar concentrations of phosphate in freshwaters using flow injection with luminol chemiluminescence detection. Analytica Chimica Acta, 510: 213-218.

5.      Gamon, F., Tomaszewski, M. and Ziembińska-Buczyńska, A. (2019). Ecotoxicological study of landfill leachate treated in the ANAMMOX process. Water Quality Research Journal, 54 (3): 230-241.

6.      Brezinski, K., Gorczyca, B. and Sadrnourmohammadi, M. (2019). Ion-exchange for trihalomethane control in potable water treatment - a municipal water treatment case study in Rainy River, Ontario, Canada. Water Quality Research Journal, 54(2): 142-160.

7.      Moorcroft, M. J., Davis, J. and Compton, R. G. (2001). Detection and determination of nitrate and nitrite: a review. Talanta, 54: 785-803.

8.      Fukushi, K., Tada, K., Takeda, S., Wakida, S., Yamane, M., Higashi, K. and Hiiro, K. (1999). Simultaneous determination of nitrate and nitrite ions in seawater by capillary zone electrophoresis using artificial seawater as the carrier solution. Journal of Chromatography A, 838: 303-311.

9.      Okemgbo, A. A., Hill, H. H. and Siems, W. F. (1999). Reverse polarity capillary zone electrophoretic analysis of nitrate and nitrite in natural water samples. Analytical Chemistry, 71: 2725-2731.

10.   American Public Health Association (2005). Standard methods for the examination of water and wastewater. Access from https://www. standardmethods.org/

11.   He, X., Sun, Q., Xu, T., Dai, M. and Wei, D. (2019). Removal of nitrogen by heterotrophic nitrification–aerobic denitrification of a novel halotolerant bacterium Pseudomonas mendocina TJPU04. Bioprocess Biosystems Engineering, 42: 853-866.

12.   Mozumder, M. S. I., De Wever, H., Volcke, E. I. P. and Garcia-Gonzalez, L. (2014). A robust fed-batch feeding strategy independent of the carbon source for optimal polyhydroxybutyrate production. Process Biochemistry, 49: 365-373.

13.   Zhao, J., Wang, X., Li, X., Jia, S., Wang, Q. and Peng, Y. (2019). Improvement of partial nitrification endogenous denitrification and phosphorus removal system: balancing competition between phosphorus and glycogen accumulating organisms to enhance nitrogen removal without initiating phosphorus removal deterioration. Bioresource Technology, 281: 382-391.

14.   Crosby, N. T. (1968). Determination of ammonia by the Nessler method in waters containing hydrazine. Analyst, 93: 406-408.

15.   Cataldo, D. A., Haroon, M., Schrader, L. E. and Youngs, V. L. (1975). Rapid colorimetric determination of nitrate in plant-tissue by nitration of salicylic-acid. Communications in Soil Science and Plant Analysis, 6(1): 71-80.

16.   Jeong, H., Park, J. and Kim, H. (2013). Determination of NH4+ in environmental water with interfering substances using the modified nessler method. Journal of Chemistry, 2013: 1-9.

17.   Boopathy, R. (2003). Use of anaerobic soil slurry reactors for the removal of petroleum hydrocarbons in soil. International Biodeterioration and Biodegradation, 52: 161-166.

18.   Hach, C. C., Brayton, S. V. and Kopelove, A. B. (1985). A powerful kjeldahl nitrogen method using peroxymonosulfuric acid. Journal of Agricultural & Food Chemistry, 33: 1117-1123. 

19.   Gulsoy, G., Tayanc, M. and Erturk, F. (1999). Chemical analyses of the major ions in the precipitation of Istanbul, Turkey. Environmental Pollution, 105: 273-280.

20.   Foyn, E. (1950). Ammonia determination in sea water. ICES Journal of Marine Science, 16: 175-178.

21.   Colman, B. P. (2010). Understanding and eliminating iron interference in colorimetric nitrate and nitrite analysis. Environmental Monitoring and Assessment, 165: 633-641.

22.   Norwitz, G. and Keliher, P. N. (1985). Study of interferences in the spectrophotometric determination of nitrite using composite diazotisation - coupling reagents. Analyst, 110: 689-694.

23.   Tarafder, P. K. and Rathore, D. P. S. (1988). Spectrophotometric determination of nitrite in water, Analyst, 113: 1073-1076.

24.   Cataldo, D. A., Maroon, M., Schrader, L. E. and Youngs, V. L. (1975). Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Communications in Soil Science and Plant Analysis, 6(1): 71-80.

25.   Ganesh, S., Khan, F., Ahmed, M. K., Velavenda, P., Pandey, N. K. and Mudali, U. K. (2012). Spectrophotometric determination of trace amounts of phosphate in water and soil. Water Science and Technology, 66(12): 2653-2658.

26.   Mahadevaiah, Kumar, M. S. Y., Galil, M. S. A., Suresha, M. S., Sathish, M. A. and Nagendrappaa, G. (2007). A simple  spectrophotometric  determination  of  phosphate  in  sugarcane  juices,  water  and detergent samples.  E-Journal of Chemistry, 4(4): 467-473.