Malaysian Journal of Analytical Sciences Vol 22 No 1
(2018): 72 - 79
DOI:
10.17576/mjas-2018-2201-09
PREPARATION OF EPOXIDIZED
NATURAL RUBBER/ POLY(VINYLIDINE FLUORIDE) MEMBRANE BY USING SOLUTION CASTING
METHOD FOR PALM OIL MILL EFFLUENT TREATMENT
(Penyediaan Membran
Getah Asli Terepoksida/Poli(Vinilidina Fluorida) Dengan Menggunakan Kaedah
Pengacuanan Larutan Untuk Rawatan Efluen Kilang Minyak Sawit)
Norliyana Mod, Farah
Hannan Anuar, Rizafizah Othaman*
School of Chemical Sciences and Food
Technology,
Faculty of Science and Technology,
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
*Corresponding author: rizafizah@ukm.edu.my
Received: 12
April 2017; Accepted: 4 September 2017
Abstract
Poly(vinylidine
fluoride) (PVDF) membrane is generally a chosen membrane for palm oil mill
effluent (POME) treatment. The focus is to make freestanding and robust
PVDF based composite membranes with different ratio of epoxidized natural
rubber (ENR) (ENR/PVDF: 0/100 wt%, 20/80 wt%, 40/60 wt%, 60/40 wt%, 80/20 wt%,
100/0 wt%) by solution casting method. Subsequently, these membranes were
characterized using fourier transform infrared (FTIR), differential scanning
electron (DSC) and vapor pressure scanning electron microscope (VPSEM). The
FTIR spectrums showed that ENR blended well with PVDF and the peak intensity
followed the composition of the membranes. Meanwhile, the ENR and PVDF mixtures
were miscible due to the formation of single peak glass transition temperature
(Tg) as observed in DSC
thermogram. Shifting in peaks of Tg
suggested important interaction taking place between polymers. Surface
morphology by SEM displayed the formation of random pores caused by the nature
of PVDF polymer and phase inversion process. High composition of ENR caused a
dense membrane and vice-versa while phase inversion contributed to the pores
existences. The fluxes during POME treatment were lower than water fluxes.
Higher flux was a sign of higher rejection which is efficient for separation of
water and effluents. Thus, ENR/PVDF 40/60 wt% and 20/80 wt% has been selected as
promising membranes to be applied for POME treatment.
Keywords: membrane, epoxidised natural rubber,
poly(vinylidine fluoride)
Abstrak
Membrane
poli(vinilidina fluorida) (PVDF) umumnya adalah membran terpilih untuk rawatan
efluen kilang minyak sawit (POME). Tumpuan adalah untuk membuat membran
komposit berasaskan yang fleksibel dan PVDF teguh dengan nisbah yang berbeza
getah asli terepoksida (ENR) (ENR/PVDF: 0/100 wt%, 20/80 wt%, 40/60 wt%, 60/40
wt%, 80/20 wt%, 100/0 wt%) dengan kaedah pemutus penyelesaian. Selepas itu,
membran ini dicirikan menggunakan inframerah transformasi Fourier (FTIR),
perbezaan imbasan elektron (DSC) dan tekanan wap imbasan mikroskop elektron
(VPSEM). Spektrum FTIR menunjukkan bahawa ENR dicampur dengan baik
dengan PVDF dan intensiti puncak di ikuti komposisi membran. Sementara itu, ENR
dan PVDF campuran adalah terlarut campur disebabkan oleh pembentukan puncak
tunggal suhu peralihan kaca (Tg)
sebagaimana yang berlaku di DSC termogram. Peralihan di puncak Tg mencadangkan interaksi penting yang
berlaku di antara polimer. Permukaan morfologi oleh SEM dipaparkan pembentukan
liang rawak disebabkan oleh sifat polimer PVDF dan proses penyongsangan fasa. Komposisi
tinggi ENR menyebabkan membran padat dan sebaliknya manakala fasa penyongsangan
menyumbang kepada liang kewujudan. Fluks semasa rawatan POME adalah lebih
rendah daripada fluks air. Fluks tinggi adalah tanda penolakan yang lebih
tinggi yang cekap untuk pemisahan air dan efluen. Oleh itu, ENR/PVDF 40/60 wt% dan 20/80 wt% berat telah dipilih sebagai
membran yang menyakinkan untuk digunakan bagi rawatan POME.
Kata kunci: membran, getah asli terepoksida, poli(vinilidina
fluorida)
References
1.
Salaeh, S., Nakason, C., Boiteu, G. and
Cassagnau, P. (2013). Co-continuous phase structure and properties of
poly(vinylidene fluoride)/epoxidized natural rubber blends. Advanced
Materials Research, 626: 71-74.
2.
Sulaiman, N. M. N. & Ling, C. K. (2004). Membrane ultrafiltration
of treated palm oil mill effluent (POME). Jurnal Teknologi, 41: 113-120.
3.
Shilton, S. J., Ismail, A. F., Gough, P. J.,
Dunkin, I. R. and Gallivan, S. L. (1997). Molecular orientation and the
performance of synthetic polymeric membranes for gas separation. Polymer,
38(9): 2215-2220.
4.
Bottino, A., Camera-Rodab, G., Capannelli, G.
and Munari, S. (1991). The formation of microporous polyvinylidene difluoride
membranes by phase separation. Journal of Membrane Science, 57: l-20.
5.
Yan, L., Honga, S., Li, M. L. and Li, Y. S.
(2009). Application of the Al2O3–PVDF nanocomposite
tubular ultrafiltration (UF) membrane for oily wastewater treatment and its
antifouling research. Separation and Purification Technology, 66:
347-352.
6.
Yoksan, R. (2008). Epoxidized natural rubber for adhesive applications. Kasetsart
Journal (Nat. Sci.), 42: 325-332.
7.
Ismail, H. and Chia, H. H. (1998). The effects
of multifunctional additive and epoxidation in silica filled natural rubber
compounds. Polymer Testing, 17: 199-210.
8.
Hasegawa, R., Takahashi, Y., Chatani, Y. and
Tadokoro, H. (1972). Crystal structures of three crystalline forms of
poly(vinylidine fluoride). Polymer Journal, 3(5): 600-610.
9.
Salaeh, S., Boiteux, G., Gain, O., Cassagnau,
P. and Nakason, C. (2014). Dynamic mechanical and dielectric properties of
poly(vinylidene fluoride) and epoxidized natural rubber blends. Advanced
Materials Research, 844: 97-100.
10.
Tao, M.-M., Liu, F., Ma, B.-R. and Xue, L.-X.
(2013). Effect of solvent power on PVDF membrane polymorphism during phase
inversion. Desalination, 316: 137-145.
11.
Wang, X., Zhang, L., Sun, D., An, Q. and Chen,
H. (2009). Formation mechanism and crystallization of poly(vinylidene fluoride)
membrane via immersion precipitation method. Desalination, 236: 170-178.
12.
Cao, X., Ma, J., Shi, X. and Ren, Z. (2006).
Effect of TiO2 nanoparticle size on the performance of PVDF membrane.
Applied Surface Science, 253: 2003-2010.
13.
Freire, E., Bianchi, O., Monteiro, E. E. C.,
Nunes, R. C. R. and Forte, M. C. (2009). Processability of PVDF/PMMA blends
studied by torque rheometry. Materials Science and Engineering C, 29:
657-661.
14.
Wang, P., Tan, K. L., Kangb, E. T. and Neohb,
K. G. (2002). Plasma-induced immobilization of poly(ethylene glycol) onto
poly(vinylidene fluoride) microporous membrane. Journal of Membrane Science,
195: 103-114.
15.
Zhong, Z., Cao, Q., Jing, B., Wang, X., Li, X. and
Deng, H. (2012). Electrospun PVdF–PVC nanofibrous polymer electrolytes for
polymer lithium-ion batteries. Materials Science and Engineering B, 177:
86-91.
16.
Igwe,
J. C. and Onyegbado, C.C. (2007). A review of palm
oil mill effluent (POME) water treatment. Global Journal of Environmental
Research 1(2): 54-62.
17.
Malaysia
Palm Oil Board (MPOB) (2014). Access online http://www.mpob.gov.my/ms/info-sawit/alam-sekitar/520-achievements.
18.
Chin,
K. K., Lee, S. W. and Mohammad, H. H. (1996). A study of palm
oil mill effluent treatment using a pond system. Water Science Technology, 34(11):
119-123.
19.
Saljoughi, E., Sadrzadeh, M. and Mohammadi, T.
(2009). Effect of preparation variables on morphology and pure water permeation
flux through asymmetric cellulose acetate membranes. Journal of Membrane
Science, 326: 627-634.
20.
Zurina, M., Ismail, H. and Bakar, A. A. (2004).
Rice husk powder–filled polystyrene/styrene butadiene rubber blends. Journal
of Applied Polymer Science, 92: 3320-3332.
21.
Boccaccio, T., Bottino, A., Capannelli, G. and
Piaggio, P. (2002). Characterization of PVDF membranes by vibrational
spectroscopy. Journal of Membrane Science, 210: 315-329.
22.
Ma,
W., Yuan, H. and Wang, X. (2014). The effect of chain
structures on the crystallization behavior and membrane formation of
poly(vinylidene fluoride) copolymers. Membranes, 4: 243-256.
23.
Bourara, H., Hadjout, S., Benabdelghani, Z. and
Etxeberria, A. (2014). Miscibility and hydrogen bonding in blends of
poly(4-vinylphenol)/poly(vinyl methyl ketone). Polymers, 6: 2752-2763.
24.
Bottino, A., Capannelli, G., Munari, S. and Turturro, A. (1988). High performance
ultrafiltration membranes cast from LiCI doped solutions. Desalination,
68: 167-177.