Malaysian Journal of Analytical Sciences
Vol 18 No 2 (2014): 271 – 283
REMOVAL OF
SELECTED HEAVY METALS FROM GREEN MUSSEL VIA CATALYTIC OXIDATION
(Penyigkiran
Logam-Logam Tertentu Daripada Kupang Melalui Pengoksidaan Bermangkin)
Faizuan Abdullah, Abdull Rahim Mohd Yusoff, Wan
Azelee Wan Abu Bakar*, Razali Ismail, Dwi Priya Hadiyanto
Department of Chemistry,
Faculty of Science,
Universiti Teknologi Malaysia,81310
UTM Johor Bahru, Johor Darul Ta’zim, Malaysia.
*Corresponding author: wazelee@kimia.fs.utm.my
Abstract
Perna viridis or green mussel
is a potentially an important aquaculture product along the South Coast of
Peninsular Malaysia especially Johor Straits. As the coastal population
increases at tremendous rate, there was significant effect of land use changes
on marine communities especially green mussel, as the heavy metals input to the
coastal area also increase because of anthropogenic activities. Heavy metals
content in the green mussel exceeded the Malaysian Food Regulations (1985) and
EU Food Regulations (EC No: 1881/2006). Sampling was done at Johor Straits from
Danga to Pendas coastal area for green mussel samples. This research introduces
a catalytic oxidative technique for demetallisation in green mussel using
edible oxidants such as peracetic acid (PAA) enhanced with alumina beads supported
CuO, Fe2O3, and ZnO catalysts. The lethal dose of LD50
to rats of PAA is 1540 mg kg-1 was verified by National Institute of
Safety and Health, United State of America. The best calcination temperature
for the catalysts was at 1000 ºC as shown in the X-Ray Diffraction (XRD),
Nitrogen Adsorption (BET surface area) and Field Emission Scanning Electron
Microscopy (FESEM) analyses. The demetallisation process in green mussel was
done successfully using only 100 mgL-1 PAA and catalyzed with Fe2O3/Al2O3
for up to 90% mercury (Hg) removal. Using
PAA with only 1 hour of reaction time, at room temperature (30-35ºC), pH 5-6
and salinity of 25-28 ppt, 90% lead (Pb) was removed from life mussel without
catalyst. These findings have a great prospect for developing an efficient and
practical method for post-harvesting heavy metals removal in green mussel.
Keywords: Green mussel (Perna viridis), heavy metals, catalytic oxidative demetallisation,
peracetic acid
Abstrak
Perna viridis
atau kupang adalah produk akuakultur penting dan berpotensi tinggi di selatan Semenanjung
Malaysia terutama di Selat Johor. Akibat kepesatan peningkatan populasi manusia
dan aktiviti pembangunan di sekitar selat tersebut, kesan signifikan yang
berlaku menyebabkan hidupan marin terutama kupang turut tercemar dengan peningkatan
kandungan logam berat. Kandungan logam tersebut telah melebihi had yang
dibenarkan Peraturan Makanan Malaysia 1985 dan Peraturan Makanan Kesatuan Eropah
(EU) (EC No:1881/2006). Pensampelan telah dilakukan di Selat Johor dari Teluk Danga
hingga ke Pendas untuk sampel kupang. Kajian ini memperkenalkan teknik pengoksidaan
bermangkin untuk penyingkiran logam dalam kupang menggunakan agen pengoksidaan
yang selamat dimakan seperti asid perasetik (PAA) dimangkinkan oleh CuO, Fe2O3,
dan ZnO yang disokong pada permukaan manik alumina (Al2O3).
LD50 utk PAA ialah 1540 mgkg-1, telah disahkan Institut Keselamatan
dan Kesihatan Kebangsaan (NIOSH) Amerika Syarikat. Bagi mangkin yang digunakan,
suhu kalsinasi terbaik ialah pada suhu 1000 ºC seperti yang dibuktikan dengan analisa
XRD, Analisis Penjerapan Nitrogen (keluasan permukaan BET) dan mikrograf FESEM. Proses penyingkiran logam
dari kupang telah dilakukan dengan hanya menggunakan 100 mgL-1 PAA
dimangkinkan oleh Fe2O3/Al2O3 untuk
penyingkiran hampir 90% merkuri (Hg), dan menggunakan PAA tanpa mangkin untuk penyingkiran
hampir 90% plumbum (Pb) dengan masa tindakbalas hanya 1 jam, dalam suhu sekitar
30-35 ºC, pH 5-6 dan kemasinan air 25-28 ppt. Penemuan ini memberikan prospek
yang sangat baik dalam membangunkan kaedah yang efisyen dan praktikal untuk menyingkirkan
logam dari kupang yang masih hidup sebelum dipasarkan.
Kata kunci: Kupang
(Perna viridis), logam berat, penyingkiran
logam pengoksidaan bermangkin, asid perasitik
References
1. Bondad-Reantaso
M.G., Subasinghe R.P., Arthur J.R., Ogawa K., Chinabut S., Adlard R., Tan Z.,
Shariff M. (2005). Desease and Health Management in Asian Aquaculture. Veterinary Parasitology, 132: 249 – 272.
2. Chua T.E., Paw
J.H., Guarin F.Y. (1989). The Environmental Impact of Aquaculture and the
Effects of Pollution on Coastal Aquaculture Development in Southeast Asia. Mar. Poll. Bull, 20 (7): 335-343.
3. Hertler H.,
Boettner A.R., Ramrez-Toro G.I., Minnigh H., (1989). The Environmental Impact
of Aquaculture and the Effects of Pollution on Coastal Aquaculture Development
in Southeast Asia. Mar. Poll. Bull, 20(7):
335-343.
4. Hung
C.L.H., Xu Y., Lan J.C.W., Connel D.W., Lam M.H.W., Nicholson S., Richardson
B.J., Lam P.K.S., (2006) A preliminary Risk Assessment of Organochlorines Accumulated
in Fish to The Indo-Pacific Humpback Dolphin (Sousa chinensis) in the Northwestern Waters of Hong Kong. Environmental Pollution, 144: 190-196.
5. Waldichuck
M. (1974). Coastal Marine Pollution and Fish. Ocean Management, 2: 1-60.
6. Monaghan
R.M., Wilcock R.J., Smith L.C., Tikkisetty B., Thorrold B.S., Coastall D.
(2007). Linkages Between Land Management Activities and Water Quality in an Intensively
Farmed Catchment in Southern New Zealand. Agriculture
Ecosystem & Environment, 118: 211-222.
7. Tuteja
N.K., Beale G., Dawes W., Vaze J., Murphy B., Barnett P., Rancic A., Evans R.,
Geeves G., Rassam D.W., Miller M. (2003). Predicting the Effects of Landuse Change
on Water and Salt Balance- A Case Study of A Catchment Affected by Dryland Salinity
in NSW, Australia. Journal of Hydrology, 283:
67-90.
8. Tal
Y., Schreier H.J., Sowers K.R., Stubbefield J.D., Place A.R., Zohar Y. (2009).
Environmentally Sustainable Land-based Marine Aquaculture. Aquaculture, 286: 28-35.
9. Yap
C.K., Ismail A., Tan S.G., Omar H. (2002). Correlations Between Speciation of Cd,
Cu, Pb and Zn in Sediment and Their Concentrations in Total Soft Tissue of
Green-Lipped Mussel Pernaviridis from The West Coast of Peninsular Malaysia. Environmental International, 28:
117-126.
10. Al-Barwani
S.M., Arshad A., Nurul Amim S.M., Japar S.B., Siraj S.S., Yap C.K. (2007).
Population Dynamics of The Green Mussel Perna
Viridis from The High Spat-Fall Coastal Water of Malacca, Peninsular
Malaysia. Fisheries Research, 84:
147-152.
11. Nicholson
S., (2003). Lysosomal Membrane Stability, Phagocytosis and Tolerance to
Emersion in The Mussel Perna viridis
(Bivalvia: Mytilidae) followingexposure to acute, sublethal, copper. Chemoephere, 52: 1147-1151
12. Nicholson
S. and Lam P.K.S., (2005). Pollution Monitoring in Southeast Asia Using
Biomarkers in The Mytilid Mussel Perna viridis
(Mytilidae: Bivalvia). Cement
Environmental International, 31: 121-1.
13. Tanabe
S., Prudente M.S., Kan-atireklap S., Subramanian A. (2000). Mussel Watch:
Marine Pollution Monitoring of Butyltins and Organochlorines in Coastal Waters
of Thailand, Philippines and India. Ocean
& Coastal Management, 43: 819-839.
14. Yap
C.K., Ismail A., Tan S.G. (2003). Background Concentrations of Cd, Cu, Pb And Zn
In The Green-Lipped Mussel Perna Viridis (Linnaeus) from Peninsular Malaysia. Mar. Poll. Bull., 46: 1035-1048.
15. Monirith
I., Ueno D., Takahashi S., Nakata H., Sudaryanto A., Subramanian A., Karuppiah S., Ismail A., Muchtar M., Jinshu Zheng,
Richardson B.J., Prudente M., Hue N.D., Tana T.S., Tkalin A.V., Tanabe S.
(2003). Asia-Pacific Mussel Watch: Monitoring Contamination of Persistent
Organochlorine Compounds in Coastal Waters of Asian Countries. Mar. Poll. Bull., 46: 281-300.
16. Yap
C.K., Ismail A., Omar H., Tan S.G. (2004a). Toxicities and Tolerances of Cd, Cu,
Pb And Zn In a Primary Producer (Isochrysis
Galbana) and in a Primary Consumer (Perna viridis). Environmental International, 29: 1097-1104.
17. Rajagopal
S., Venugopalan V.P., nair K.V.K., Jenner H.A., den Hartog C., (1998).
Reproduction, Growth Rate And Culture Potential Of The Green Mussel, Perna viridis L./ In Edaiyur Backwaters, East Coast of India. Aquaculture, 162: 187-202.
18. LokmanShamsudin
(1992). Lipid and Fatty Acid
Composition of Microalgae Used in Malaysian Aquaculture as Live Food for the
Early Stage of Penaeid Larvae. Journal of Applied Physicology. 4:
371-378.
19. Okay
O.S., Donkin P., Peters L.D., Livingstone D.R. (1999). The Role Of Algae (Isochrysisgalbana)
Enrichment on The Bioaccumulation of Benzo[a]Pyrene
and Its Effects on The Blue Mussel Mytilusedulis. Environ. Poll, 110: 103-113.
20. Nicholson
S., (1999). Cardiac and Lysosomal Responses to Periodic Copper in the Mussel
Pernaviridis (Bivalvia: Mytilidae). Mar.
Poll. Bull, 38(12): 1157-1162.
21. Krishnakumar
P.K., Asokan P.K., Pillai V.K., (1990). Physiological And Cellular Responses To
Copper And Mercury In The Green Mussel Perna
viridis (Linnaeus). Aquatic Toxicology,
18: 163-174.
22. Fernley
P.W., Moore M.N., Lowe D.M., Donkin P., Evans S., (2000). Impact Of The Sea
Empress Oil Spill on Lysosomal Stability in Mussel Blood Cells. Marine Environmental Research, 50:
451-455.
23. Fang
J.K.H., Wu R.S.S., Zheng P.G.J., Lam P.K.S., Shin P.K.S., (2008a). Induction, Adaptation
and Recovery of Lysosomal Integrity in Green-lipped Mussel Perna viridis. Mar. Poll.
Bull., 57, 467-472.
24. Moore
M.N., Viarengo A., Donkin P., Hawkins A.J.S., (2007). Autophagic and Lysosomal Reactions
to Stress in The Hepatopancreas of Blue Mussels. Aquatic Toxicology, 84:
80-91.