Malaysian Journal Of Analytical Sciences Vol 18 No 2 (2014): 260 – 270

 

 

 

Daun Hibiscus rosa sinensis: Analisis Proksimat, Aktiviti AntiOksidan dan Kandungan Bahan Inorganik

 

(Hibiscus rosa sinensis Leaves: Analysis of Proximate, Antioxidant Activities and Inorganic Compound)

 

Saiful Irwan Zubairi* & Nurul Shahreda Jaies

 

Pusat Pengajian Sains Kimia & Teknologi Makanan,

Fakulti Sains & Teknologi,
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author: saiful-z@ukm.edu.my

 

 

Abstrak

Sehingga kini, pelbagai spesies tumbuh-tumbuhan herba banyak digunakan di dalam perubatan tradisional.  Kebanyakan tumbuh-tumbuhan ini mempunyai bahan bio-aktif dan kandungan nutrisi yang berpotensi untuk memberikan kesan kesihatan yang positif seperti antioksidan dan antipiretik. Bunga raya atau nama saintifiknya, Hibiscus rosa sinensis, dikatakan mempunyai khasiat seperti teh kerana mengandungi bahan antioksidan yang dapat membantu mengawal kolesterol. Di samping itu, lendir yang terdapat di dalam daunnya boleh menurunkan suhu badan melampau ketika demam panas (berpotensi sebagai bahan antipiretik). Oleh yang demikian, kajian awalan terhadap daun H. rosa sinensis segar dan kering dijalankan bagi menganalisis dan mengenalpasti kandungan nutrisi penting, aktiviti antioksidan dan kandungan bahan inorganik. Kaedah penentuan kandungan jumlah fenolik (TPC) digunakan bagi sampel daun segar dan kering sebelum aktiviti antioksidan penangkapan radikal bebas DPPH dan kuasa penurunan ion ferik (FRAP) dijalankan bagi tujuan pengesahan komponen antioksidan. Manakala, komposisi logam berat dikaji menggunakan kaedah spektrometri jisim plasma berpeningkatan berganda (ICP-MS). Keputusan analisis proksimat daun segar menunjukkan terdapatnya kandungan lembapan (9.03%), protein (10.44%), lemak (6.43%), serat kasar (11.55%), abu (11.22%) dan karbohidrat (51.33%). Manakala, kandungan bahan inorganik adalah seperti berikut: kadmium (Cd), kromium (Cr), arsenik (As), nikel (Ni), plumbum (Pb), ferum (Fe) dan zink (Zn). Selain daripada itu, analisis antioksidan menunjukkan daun kering H. rosa sinensis mempunyai nilai DPPH dan FRAP yang tinggi berbanding daun segar (p<0.05) bagi pelarut aseton dan air. Nilai korelasi positif yang tinggi di antara analisis TPC dan dua ujian aktiviti antioksidan FRAP dan DPPH (p<0.05) menunjukkan kewujudan komponen penting antioksidan di dalam hasil ekstrak aseton dan air. Secara keseluruhan, kebolehdapatan komponen nutrisi penting, bahan antioksidan yang tinggi dan kepekatan bahan inorganik berbahaya yang rendah di dalam daun H. rosa sinensis membolehkan ia berpotensi besar di dalam pembangunan produk perubatan semulajadi bagi merawat demam panas (piretik).

 

Kata kunci: Hibiscus rosa sinensis, proksimat, antioksidan, komponen nutrisi penting, bahan inorganik

 

Abstract

A variety of herbal plants species has been used in traditional medicine. Most of these plants contained several potent bio-active ingredients and nutrients that could give potential positive effects to the health such as antioxidant and antipyretic. Hibiscus rosa sinensis, commonly known as Bunga raya, have similar concoction characteristic to tea which contain antioxidants that help to control cholesterol. In addition, mucilage that was found in the leaves could helps to reduce extreme body heat during fever (which potentially acts as an antipyretic). Therefore, this preliminary study on the fresh and dried H. rosa sinensis leaves was carried out to analyze and identify the nutrients content, anti-oxidants and inorganic material. Total phenolic content (TPC) method was used for both fresh and dried leaves prior to the antioxidant activities of DPPH free radicals scavenging and ferric ion reducing antioxidant power (FRAP) as to confirm the existence of antioxidant constituents. Meanwhile, the composition of heavy metals was studied using inductively coupled plasma mass spectrometry (ICP-MS). The proximate analysis of the fresh leaves showed the presence of moisture content (9.03%), protein (10.44%), fat (6.43%), crude fiber (11.55%), ash (11.22%) and carbohydrate (51.33%). Meanwhile, the inorganic contents are as follows: cadmium (Cd), chromium (Cr), arsenic (As), nickel (Ni), lead (Pb), iron (Fe) and zinc (Zn). Furthermore, the antioxidant activities of FRAP and DPPH showed that dried leaves of H. rosa sinensis was higher than the fresh leaves (p<0.05) irrespective of any solvent used. The positive correlation between TPC and two other antioxidant activities of DPPH and FRAP (p<0.05) indicates the presence of antioxidant components in the acetone and water extracts. Therefore, the high availability of essential nutritional component, anti-oxidants and low concentration of hazardous inorganic matter in H. rosa sinensis leaves enable it to be used as one of the potential natural products to treat high fever (pyretic).

 

Keywords: Hibiscus rosa sinensis, proximate, antioxidant, essential nutrient component, inorganic materials

 

References

1.       Kumar, L., Chakraborthy, G., Singh, V. & Mazumder, A. (2012). Hibiscus Rosa-Sinensis: A review on divine herb. Journal of Advances in Pharmacy and Healthcare Research  2(4): 9-18.

2.       Nwachukwu, C.U. & Mbagwu F.N. (2008). Anatomical features of the roots and leaves of Hibiscus rosa sinensis and abelmoschus esculenta.  Life Science Journal  5(1): 68-71.

3.       Sayed, Z.I.E., Ateya, A.-M.M. & Fekry, M. (2012). Macro- and micromorphological study of the leaf, stem, flower and root of Hibiscus rosa-sinensis L. Journal of Applied Sciences Research  8(1): 34-56.

4.       Upadhyay, S. & Upadhyay, P. (2011). Hibiscus rosa-sinensis: pharmacological review. International Journal of Research in Pharmaceutical and Biomedical Sciences. 2(4): 1449-1450.

5.       Soni, D. & Gupta, A. (2011). An evaluation of antipyretic and analgesic potentials of aqueous root extract of Hibiscus rosa sinesis linn. (malvacae). International Journal of Research in Phytochemistry & Pharmacology  1(3): 184-186.

6.       Sharma, S. & Sultana, S. (2004). Effect of Hibiscus rosa sinensis extract on hyperproliferation and oxidative damage caused by benzoyl peroxide and ultraviolet radiations in mouse skin. Basic & Clinical Pharmacology & Toxicology  95(5): 220-225.

7.       Ghaffar, F.R.A. & El-Elaimy, I.A. (2012). In vitro, antioxidant and scavenging activities of Hibiscus rosa sinensis crude extract.  Journal of Applied Pharmaceutical Science  2(1): 51-58.

8.       Diane, L.M., Oliver, C.C-Y., Edward, S. & Jeffrey, B.B. (2010). Hibiscus Sabdariffa L. tea (tisane) lowers blood pressure in prehypertensive and mildly hypertensive adults. J. Nutr. 140(2): 298-303.

9.       Ye, J.C., Chang, W.C., Hsieh, D.J.Y. & Hsiao, M.W. (2010). Extraction and analysis of β-sitosterol in herbal medicines. Journal of Medicinal Plants Research. 4(7): 522-527.

10.    Divya, K., Tripathi J.S., Tiwari S.K. (2013). Study of antiasthmatic properties and chemical characterization of indigenous ayurvedic compounds (polyherbal formulations). American Journal of Phytomedicine and Clinical Therapeutics. 6(1): 457-466.

11.    Kumar, A.A.S. (2012). Review on Hibiscus rosa sinensis. International Journal of Research in Pharmaceutical and Biomedical Sciences. 3(2): p. 534-53.

12.    AOAC (1990). Official Method of Analysis. 15th Edn. Arlington. Official Analytical Chemists.

13.    Musa, K.H., Abdullah, A., Jusoh, K. & Subramaniam, V. (2011). Antioxidant activity of pink-flesh guava (Psidium guajava L.): effect of extraction techniques and solvents. Food Analytical Methods 4(1): 100-107.

14.    Ogre, A.O. & John, P.A. (2011). Proximate study, mineral and anti nutrisi composition ofmoringa oleifera leaves harvested from lafia, Nigeria: potential benefits in poultry nutrition and health. Journal of Microbiology, Biotechnology and Food Sciences 1(3): 296-308.

15.    Hussain, J., Bahader, A., Ullah, F., Rehmen, N. U., Khan, A. L., Ullah, W. & Shinwari, Z. K. (2009). Proximate and nutrient analysis of the locally manufactured herbal medicines and its raw material. Journal of American Science 5(6): 1-5.

16.    Champolivier, L. & Merrien, A. (1996). Effect of water stress applied at different growth stages to Brassica napus L. var Oleifera on yield components and seed quality. Eur. J. Agron. 5: 153-160.

17.    Malik, A.H., Holm, L. & Johansson, E. (2012). Soil and starter fertilizer and its effect on yield and protein compositon of malting barley. Journal of Soil Science and Plant Nutrition 12(4): 835-849.

18.    Zhang, G., Chen, J., Wang, J. & Ding, S. (2001). Cultivar and environmental effects on (1→3, 1→4)-β-d-glucan and protein content in malting barley. J. Cereal Sci. 34(3): 295-301. 

19.    Awad, A.B., Fink, C.S., Williams, H. & Kim, U. (2001). In vitro and in vivo (SCID mice) effects of phytosterols on the growth and dissemination of human prostate cancer PC-3 cells. Eur J Cancer Prev. 10(6): 507-13.

20.    Vickery, M.L. & Vickery, B. (1981). Secondary plant metabolism. Macmillan Press: London.

21.    Iqbal, A., Khalil, I. A., Ateeq, N. & Khan, M. S. (2006). Nutritional quality of important food legumes. Food Chem. 97: 331–335.

22.    Skerget, M., Kotnik, P., Hadolin, M., Hras, A.R., Simonic, M. & Knez, Z. (2005). Phenols, proanthocyanides, flavones and flavonols in some plant materials and their antioxidant activities. Food Chem. 89: 191-198.

23.    Stoilova, I., Krastanov, A., Stoyanova, A., Denev, P. and Gargova, S. (2007). Antioxidant activity of a ginger extracts (Zingiber officinale). Food Chem. 102: 764-770.

24.    Naczk, M. & Shahidi, F. (2006). Phenolics in cereals, fruits and vegetables: occurrence, extraction and analysis. J Pharm Biomed Anal 41: 1523-1542.

25.    Shimada K., Fujikawa K., Yahara K. & Nakamura T. (1992). Antioxidative properties of xanthone on the auto oxidation of soybean in cylcodextrin emulsion. J. Agr. Food Chem. 40: 945–948.

26.    David, C. & Simon, V. (2009).  Does high antioxidant capacity indicate low oxidative stress?Functional Ecology. 23(3): 506-509.

27.    Berg, L.R. (1977). Introductory Botany: Plants, People and the Environment. New York: Saunders College Publishing.

28.    WHO (2007). Health Risks of Heavy Metals from Long Range Transboundary Air Pollution. Germany: WHO Regional Office for Europe.

29.    Itanna, F. (2002). Metals in leafy vegetables grown in Addis Ababa and toxicological implications. Ethiop. I. Health Dev 16(3): 295-302.

30.    Garg, N. & Singla, P. (2011). Arsenic toxicity in crop plants: Physiological effects and tolerance mechanisms. Environ. Chem. Lett. 9: 303-321.

31.    Hopkins, W.G. (1999). Introduction to Plant Physiology. New York: John Wiley & Sons.

32.    Johnston, W.R. & Proctor, J. (1997). Metal concentrations in plants and soil from two British serpentine sites. Plant Soil 46: 275-286.

33.    Moyo, B., Masika, P.J., Hugo, A. & Muchenje, V. (2011). Nutritional characterization of Moringa (Moringa oleifera Lam.) leaves. Journal of Biotechnology. 10(60): 12925-12933.

34.    Zhao, H., Dong, J., Lu, J., Chen, J., Li, Y., Shan, L., Lin, Y., Fan, W. & Gu, G. (2006). Effects of extraction solvent mixtures on antioxidant activity evaluation and their extraction capacity and selectivity for free phenolic compounds in barley (Hordeum vulgare L.). Journal of Agricultural and Food Chemistry 54: 7277-7286.

35.    Chunhong, Z., Qianquan, L., Muxin, Z., N, Z. & Minhui, L. (2013). Effects of rare earth elements on growth and metabolism of medicinal plants. Acta Pharmaceutica Sinica B. 3(1): 20-24.

36.    Zubairi S.I., Suradi H., Mutalib S.A.A., Othman Z.S., Bustaman N. & Wan Musa W.R.M. 2014. Kajian Awalan Terhadap Kinetik Pengekstrakan Pepejal-Cecair dan Analisis Komponen Bio-Aktif Bagi Daun Hibiscus rosa sinensis. The Malaysian Journal of Analytical Sciences. 18(1): 43-57.

 

 

Previous                    Content                    Next