Malaysian
Journal Of Analytical Sciences Vol 18 No 2 (2014): 260 – 270
Daun Hibiscus rosa sinensis: Analisis Proksimat, Aktiviti AntiOksidan
dan Kandungan Bahan Inorganik
(Hibiscus rosa sinensis
Leaves: Analysis of Proximate, Antioxidant Activities and
Inorganic Compound)
Saiful Irwan Zubairi* & Nurul Shahreda Jaies
Pusat Pengajian Sains Kimia &
Teknologi Makanan,
Fakulti Sains & Teknologi,
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
*Corresponding author: saiful-z@ukm.edu.my
Abstrak
Sehingga
kini, pelbagai spesies tumbuh-tumbuhan herba banyak digunakan di dalam
perubatan tradisional. Kebanyakan
tumbuh-tumbuhan ini mempunyai bahan bio-aktif dan kandungan nutrisi yang
berpotensi untuk memberikan kesan kesihatan yang positif seperti antioksidan
dan antipiretik. Bunga raya atau nama saintifiknya, Hibiscus rosa sinensis, dikatakan mempunyai khasiat seperti teh
kerana mengandungi bahan antioksidan yang dapat membantu mengawal kolesterol.
Di samping itu, lendir yang terdapat di dalam daunnya boleh menurunkan suhu
badan melampau ketika demam panas (berpotensi sebagai bahan antipiretik). Oleh
yang demikian, kajian awalan terhadap daun H. rosa sinensis segar dan kering dijalankan bagi
menganalisis dan mengenalpasti kandungan nutrisi
penting, aktiviti antioksidan dan kandungan bahan inorganik. Kaedah
penentuan kandungan jumlah fenolik (TPC) digunakan bagi sampel daun segar dan
kering sebelum aktiviti antioksidan penangkapan radikal bebas DPPH dan kuasa
penurunan ion ferik (FRAP) dijalankan bagi tujuan pengesahan komponen
antioksidan. Manakala, komposisi logam berat dikaji menggunakan kaedah spektrometri jisim plasma
berpeningkatan berganda (ICP-MS). Keputusan analisis proksimat daun segar
menunjukkan terdapatnya kandungan lembapan (9.03%), protein (10.44%), lemak
(6.43%), serat kasar (11.55%), abu (11.22%) dan karbohidrat (51.33%). Manakala,
kandungan bahan inorganik adalah seperti berikut: kadmium (Cd), kromium (Cr),
arsenik (As), nikel (Ni), plumbum (Pb), ferum (Fe) dan zink (Zn). Selain
daripada itu, analisis antioksidan menunjukkan daun kering H. rosa sinensis mempunyai nilai
DPPH dan FRAP yang
tinggi berbanding daun segar (p<0.05)
bagi pelarut aseton dan air. Nilai korelasi positif yang tinggi di antara
analisis TPC dan dua ujian aktiviti antioksidan FRAP dan DPPH (p<0.05) menunjukkan kewujudan
komponen penting antioksidan di dalam hasil ekstrak aseton dan air. Secara
keseluruhan, kebolehdapatan komponen nutrisi penting, bahan antioksidan yang
tinggi dan kepekatan bahan inorganik berbahaya yang rendah di dalam daun H. rosa sinensis membolehkan ia
berpotensi besar di dalam pembangunan produk perubatan semulajadi bagi merawat
demam panas (piretik).
Kata
kunci:
Hibiscus rosa sinensis, proksimat, antioksidan, komponen nutrisi
penting, bahan inorganik
Abstract
A
variety of herbal plants species has been used in traditional medicine. Most of
these plants contained several potent bio-active ingredients and nutrients that
could give potential positive effects to the health such as antioxidant and
antipyretic. Hibiscus rosa sinensis,
commonly known as Bunga raya, have
similar concoction characteristic to tea which contain antioxidants that help
to control cholesterol. In addition, mucilage that was found in the leaves
could helps to reduce extreme body heat during fever (which potentially acts as
an antipyretic). Therefore, this preliminary study on the fresh and dried H. rosa sinensis leaves was
carried out to analyze and identify the nutrients content, anti-oxidants and
inorganic material. Total phenolic content (TPC) method was used for both fresh
and dried leaves prior to the antioxidant activities of DPPH free radicals
scavenging and ferric ion reducing antioxidant power (FRAP) as to confirm the
existence of antioxidant constituents. Meanwhile, the composition of heavy
metals was studied using inductively coupled plasma mass spectrometry (ICP-MS). The
proximate analysis of the fresh leaves showed the presence of moisture content
(9.03%), protein (10.44%), fat (6.43%), crude fiber (11.55%), ash (11.22%) and
carbohydrate (51.33%). Meanwhile, the inorganic contents are as follows:
cadmium (Cd), chromium (Cr), arsenic (As), nickel (Ni), lead (Pb), iron (Fe)
and zinc (Zn). Furthermore, the antioxidant activities of FRAP and DPPH showed
that dried leaves of H. rosa sinensis was higher than the fresh leaves (p<0.05) irrespective of any solvent
used. The positive correlation between TPC and two other antioxidant activities
of DPPH and FRAP (p<0.05)
indicates the presence of antioxidant components in the acetone and water
extracts. Therefore, the high availability of essential nutritional component,
anti-oxidants and low concentration of hazardous inorganic matter in H. rosa sinensis leaves enable
it to be used as one of the potential natural products to treat high fever
(pyretic).
Keywords: Hibiscus rosa sinensis, proximate,
antioxidant, essential nutrient component, inorganic materials
References
1.
Kumar, L.,
Chakraborthy, G., Singh, V. & Mazumder, A. (2012). Hibiscus Rosa-Sinensis: A review on divine herb. Journal of Advances in Pharmacy and
Healthcare Research 2(4): 9-18.
2.
Nwachukwu, C.U.
& Mbagwu F.N. (2008). Anatomical features of the roots and leaves of Hibiscus rosa sinensis and abelmoschus
esculenta. Life Science Journal 5(1):
68-71.
3.
Sayed, Z.I.E.,
Ateya, A.-M.M. & Fekry, M. (2012). Macro- and micromorphological study of
the leaf, stem, flower and root of Hibiscus
rosa-sinensis L. Journal of Applied
Sciences Research 8(1): 34-56.
4.
Upadhyay, S. &
Upadhyay, P. (2011). Hibiscus
rosa-sinensis: pharmacological review. International
Journal of Research in Pharmaceutical and Biomedical Sciences. 2(4):
1449-1450.
5.
Soni, D. &
Gupta, A. (2011). An evaluation of antipyretic and analgesic potentials of
aqueous root extract of Hibiscus rosa
sinesis linn. (malvacae). International
Journal of Research in Phytochemistry & Pharmacology 1(3): 184-186.
6.
Sharma, S. &
Sultana, S. (2004). Effect of Hibiscus
rosa sinensis extract on hyperproliferation and oxidative damage caused by
benzoyl peroxide and ultraviolet radiations in mouse skin. Basic & Clinical Pharmacology & Toxicology 95(5): 220-225.
7.
Ghaffar, F.R.A.
& El-Elaimy, I.A. (2012). In vitro,
antioxidant and scavenging activities of Hibiscus
rosa sinensis crude extract. Journal of Applied Pharmaceutical Science 2(1): 51-58.
8.
Diane, L.M.,
Oliver, C.C-Y., Edward, S. & Jeffrey, B.B. (2010). Hibiscus Sabdariffa L. tea (tisane) lowers blood pressure in
prehypertensive and mildly hypertensive adults. J. Nutr. 140(2): 298-303.
9.
Ye,
J.C., Chang, W.C., Hsieh, D.J.Y. & Hsiao, M.W. (2010). Extraction and
analysis of β-sitosterol in herbal medicines. Journal of Medicinal Plants Research. 4(7): 522-527.
10.
Divya,
K., Tripathi J.S., Tiwari S.K. (2013). Study of antiasthmatic properties and
chemical characterization of indigenous ayurvedic compounds (polyherbal
formulations). American Journal of
Phytomedicine and Clinical Therapeutics. 6(1): 457-466.
11.
Kumar,
A.A.S. (2012). Review on Hibiscus rosa
sinensis. International Journal of
Research in Pharmaceutical and Biomedical Sciences. 3(2): p. 534-53.
12.
AOAC (1990).
Official Method of Analysis. 15th Edn. Arlington. Official
Analytical Chemists.
13.
Musa, K.H.,
Abdullah, A., Jusoh, K. & Subramaniam, V. (2011). Antioxidant activity of
pink-flesh guava (Psidium guajava L.):
effect of extraction techniques and solvents. Food Analytical Methods 4(1): 100-107.
14.
Ogre, A.O. &
John, P.A. (2011). Proximate study, mineral
and anti nutrisi composition ofmoringa oleifera leaves harvested from
lafia, Nigeria: potential benefits in poultry nutrition and health. Journal of Microbiology, Biotechnology and
Food Sciences 1(3): 296-308.
15.
Hussain,
J., Bahader, A., Ullah, F., Rehmen, N. U., Khan, A. L., Ullah, W. &
Shinwari, Z. K. (2009). Proximate and
nutrient analysis of the locally manufactured herbal medicines and its raw
material. Journal of American Science
5(6): 1-5.
16.
Champolivier, L. & Merrien,
A. (1996). Effect
of water stress applied at different growth stages to Brassica napus L. var Oleifera on yield components and seed
quality. Eur. J. Agron. 5: 153-160.
17.
Malik, A.H.,
Holm, L. & Johansson, E. (2012). Soil and starter fertilizer and its effect
on yield and protein compositon of malting barley. Journal of Soil Science and Plant Nutrition 12(4): 835-849.
18. Zhang,
G., Chen, J., Wang, J. & Ding, S. (2001). Cultivar and environmental
effects on (1→3, 1→4)-β-d-glucan and protein content in
malting barley. J. Cereal Sci. 34(3):
295-301.
19.
Awad,
A.B., Fink, C.S., Williams, H. & Kim, U. (2001). In vitro and in vivo (SCID
mice) effects of phytosterols on the growth and dissemination of human prostate
cancer PC-3 cells. Eur J Cancer Prev.
10(6): 507-13.
20.
Vickery,
M.L. & Vickery, B. (1981). Secondary plant metabolism. Macmillan Press:
London.
21.
Iqbal,
A., Khalil, I. A., Ateeq, N. & Khan, M. S. (2006). Nutritional quality of
important food legumes. Food Chem. 97: 331–335.
22.
Skerget,
M., Kotnik, P., Hadolin, M., Hras, A.R., Simonic, M. & Knez, Z. (2005).
Phenols, proanthocyanides, flavones and flavonols in some plant materials and
their antioxidant activities. Food Chem.
89: 191-198.
23.
Stoilova,
I., Krastanov, A., Stoyanova, A., Denev, P. and Gargova, S. (2007). Antioxidant
activity of a ginger extracts (Zingiber officinale). Food Chem. 102: 764-770.
24.
Naczk,
M. & Shahidi, F. (2006). Phenolics in cereals, fruits and vegetables:
occurrence, extraction and analysis. J
Pharm Biomed Anal 41: 1523-1542.
25.
Shimada K., Fujikawa K., Yahara K. & Nakamura
T. (1992). Antioxidative properties of xanthone on the auto oxidation of
soybean in cylcodextrin emulsion. J. Agr.
Food Chem. 40: 945–948.
26.
David, C.
& Simon, V. (2009). Does
high antioxidant capacity indicate low oxidative stress?Functional Ecology. 23(3): 506-509.
27.
Berg,
L.R. (1977). Introductory Botany:
Plants, People and the Environment. New York: Saunders College
Publishing.
28.
WHO (2007). Health Risks of Heavy Metals
from Long Range Transboundary Air Pollution. Germany: WHO Regional Office for
Europe.
29.
Itanna,
F. (2002). Metals in leafy vegetables grown in Addis Ababa and toxicological
implications. Ethiop. I. Health Dev 16(3): 295-302.
30.
Garg, N. &
Singla, P. (2011). Arsenic toxicity in crop plants: Physiological effects and
tolerance mechanisms. Environ. Chem.
Lett. 9: 303-321.
31.
Hopkins,
W.G. (1999). Introduction to Plant
Physiology. New York: John Wiley & Sons.
32.
Johnston, W.R.
& Proctor, J. (1997). Metal concentrations in plants and soil from two
British serpentine sites. Plant Soil 46: 275-286.
33.
Moyo, B., Masika,
P.J., Hugo, A. & Muchenje, V. (2011). Nutritional characterization of Moringa (Moringa oleifera Lam.) leaves. Journal
of Biotechnology. 10(60): 12925-12933.
34.
Zhao, H., Dong, J.,
Lu, J., Chen, J., Li, Y., Shan, L., Lin, Y., Fan, W. & Gu, G. (2006).
Effects of extraction solvent mixtures on antioxidant activity evaluation and
their extraction capacity and selectivity for free phenolic compounds in barley
(Hordeum vulgare L.). Journal of Agricultural and Food Chemistry
54: 7277-7286.
35.
Chunhong, Z.,
Qianquan, L., Muxin, Z., N, Z. & Minhui, L. (2013). Effects of rare earth
elements on growth and metabolism of medicinal plants. Acta Pharmaceutica Sinica B. 3(1): 20-24.
36.
Zubairi
S.I., Suradi H., Mutalib S.A.A., Othman
Z.S., Bustaman N. & Wan Musa W.R.M. 2014. Kajian Awalan Terhadap Kinetik
Pengekstrakan Pepejal-Cecair dan Analisis Komponen Bio-Aktif Bagi Daun Hibiscus rosa sinensis. The Malaysian Journal of Analytical
Sciences. 18(1): 43-57.