Malaysian Journal of Analytical Sciences Vol 18 No 2 (2014): 391 – 397

 

 

 

FLEXURAL PROPERTIES OF ACTIVATED CARBON FILLED EPOXY NANOCOMPOSITES

 

(Sifat Lenturan Nanokomposit Epoksi Berpengisi Karbon Teraktif)

 

H.P.S. Abdul Khalil1,2, M. Jawaid2,3*, P. Firoozian1, Othman Y. Alothman3, M. T. Paridah2, E.S. Zainudin2

 

1School of Industrial Technology,

Universiti Sains Malaysia, 11800 USM Penang, Malaysia

2Department of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP),

Universiti Putra Malaysia, 43400 Serdang, Malaysia

3Faculty of Chemical Engineering,

King Saud University, Riyadh 11451, Saudi Arabia

 

*Corresponding author: jawaid_md@yahoo.co.in

 

 

Abstract

Activated carbon (AC) filled epoxy nanocomposites obtained by mixing the desired amount of nano AC  viz., bamboo stem, oil palm empty fruit bunch, and coconut shell from agricultural biomass with the epoxy resin. Flexural properties of activated carbons filled epoxy nanocomposites with 1%, and 5% filler loading were measured.  In terms of flexural strength and modulus, a significant increment was observed with addition of 1% vol and 5% vol nano-activated carbon as compared to neat epoxy. The effect of activated carbon treated by two chemical agents (potassium hydroxide and phosphoric acid) on the flexural properties of epoxy nanocomposites were also investigated. Flexural strength of activated carbon-bamboo stem, activated carbon-oil palm, and activated carbon-coconut shell reinforced epoxy nanocomposites showed almost same value in case of 5%  potassium hydroxide activated carbón. Flexural strength of potassium hydroxide activated carbon-based epoxy nanocomposites was higher than phosphoric acid activated carbon. The flexural toughness of both the potassium hydroxide and phosphoric acid activated carbon reinforced composites range between 0.79 – 0.92 J. It attributed that developed activated carbon filled epoxy nanocomposites can be used in different applications.

 

Keywords: epoxy matrix; activated carbon; nanocomposites; flexural properties

 

Abstrak

Nanokomposit epoksi berpengisi karbon teraktif diperoleh dengan mencampurkan sejumlah nano karbon teraktif iaitu buluh, kelapa sawit tandan buah kosong, dan tempurung kelapa yang dikehendaki daripada biomas pertanian dengan resin epoksi. Sifat lenturan nanokomposit epoksi berpengisi karbon teraktif dengan 1% dan 5% muatan pengisi telah diukur. Dari segi kekuatan lenturan dan modulus, peningkatan ketara diperhatikan dengan jumlah penambahan 1% dan 5% nano-karbon teraktif berbanding epoksi tanpa pengisi. Kesan karbon teraktif menggunakan dua bahan kimia (kalium hidroksida dan asid fosforik) terhadap sifat lenturan terawat juga dikaji. Kekuatan lenturan karbon teraktif-batang buluh, karbon teraktif-kelapa sawit, dan karbon teraktif-tempurung kelapa diperkukuh nanokomposit epoksi menunjukkan nilai yang hampir sama seperti 5% kalium hidroksida karbon teraktif. Kekuatan lenturan kalium hidroksida karbon teraktif berasaskan nanokomposit epoksi adalah lebih tinggi daripada asid fosforik karbon teraktif. Ketahanan lenturan bagi kedua-dua kalium hidroksida dan asid  fosforik karbon teraktif diperkukuh komposit epoksi adalah di antara 0.79 – 0.92 J. Ia menyifatkan bahawa pembangunan nanokomposit epoksi berpengisi karbon teraktif boleh digunakan  dalam aplikasi yang berbeza.

 

Kata kunci: matrik epoksi; karbon teraktif; nanokomposit; sifat lenturan

 

References

1.       Rahman, S. H. A., Choudhury, J. P., Ahmad, A. L. & kamaruddin, A. H. (2007). Optimization studies on acid hydrolysis of oil palm empty fruit bunch fiber for production of xylose. Bioresource Technology, 98(3): 554-559.

2.       Umikalsom, M. S., Ariff, A. B., Zulkifli, H. S., Tong, C. C., Hassan, M. A. & Karim, M. I. A. (1997). The treatment of oil palm empty fruit bunch fibre for subsequent use as substrate for cellulase production by Chaetomium globosum Kunze. Bioresource Technology, 62(1-2): 1-9.

3.       Qiao, W., Korai, Y., Mochida, I., Hori, Y. & Maeda, T. (2002). Preparation of an activated carbon artifact: oxidative modification of coconut shell-based carbon to improve the strength. Carbon, 40(3): 351-358.

4.       Sekar, M., Sakthi, V. & Rengaraj, S. (2004). Kinetics and equilibrium adsorption study of lead(II) onto activated carbon prepared from coconut shell. Journal Colloid Interface Science, 279(2): 307-313.

5.       Youssef, A. M., Radwan, N. R. E., Abdel-Gawad, I. & Singer, G. A. A. (2005). Textural properties of activated carbons from apricot stones. Colloid Surface A: Physicochem Engineering Aspects, 252(2-3): 143-151.

6.       Zhang, T., Walawender, W. P., Fan, I. T., Fan, M., Daugaard, D. & Brown, R. C. (2004). Preparation of activated carbon from forest and agricultural residues through CO2 activation. Chemical Engineering Journal, 105(1-2): 53-59.

7.       Guo, J., Xu, W. S., Chen, Y. L. & Lua, A. C. (2004). Adsorption of NH3 onto activated carbon prepared from palm shells impregnated with H2SO4. J ournal Colloid Interface Science, 281(2): 285-290.

8.       Ko, D. C. K., Mui, E. L. K., Lau, K. S. T. & Mckay, G. (2004). Production of activated carbons from waste tire-process design and economical analysis. Waste Management, 24(9): 875-888.

9.       Hayashi, J., Yamamoto, N., Horikawa, T., Muroyama, K. & Gomes, V. G. (2005). Preparation and characterization of high specific surface area activated carbons from K2CO3 treated waste polyurethane. J. Colloid Interface Sci, 281(2): 437-443.

10.    Mirmohseni, A. & Zavareh, S. (2010). Preparation and characterization of an epoxy nanocomposite toughened by a combination of thermoplastic, layered and particulate nano-fillers. Materials & Design, 31(6): 2699-2706.

11.    Bakar, M., Kostrzewa, M., Hausnerova, B. & Sar, K. (2010). Preparation and property evaluation of nanocomposites based on polyurethane-modified epoxy/montmorillonite systems. Advances in Polymer Technology, 29(4): 237-248.

12.    Palencia, C., Mazo, M. A., Nistal, A., Rubio, F., Rubio, J. & Oteo, J. L. (2011). Processing and properties of carbon nanofibers reinforced epoxy powder composites. Journal of Nanoparticle Research, 13(11), 6021-6034.

13.    Abdul Khalil, H.P..S.Firoozian, P.Jawaid, M.Akil, H.M.Hassan, A. (2013a). Preparation of    activated carbon filled epoxy nanocomposites: Morphological and thermal properties. Journal of Thermal Analysis and Calorimetry, 113(2): 623-631.

14.    Abdul Khalil, H.P.S.Jawaid, M.Firoozian, P.Zainudin, E.S.Paridah, M.T. (2013b). Dynamic Mechanical Properties of Activated Carbon–Filled Epoxy Nanocomposites. International Journal of Polymer Analysis and Characterization, 18(4): 247-256.

15.    Abdul Khalil, H.P..S.Firoozian, P. Bakare, I.O., Akil, H.M., Noor, A. M. (2010). Exploring biomass based carbon black as filler in epoxy composites: flexural and thermal properties. Material & Design, 31(7): 3419-3425.

16.    Firoozian, P., Bhat, I.U.H., Abdul Kahlil, H.P.S., Noor, A.M., Akil, H.M., Bhat, A.H. (2011). High surface area activated carbon prepared from agricultural biomass: empty fruit bunch (EFB), bamboo stem and coconut shells by chemical activation with H3PO4. Material Technology, 26: 222-228.

17.    Teh, P. L., Mariatti, M., Akil, H. M., Seetharamu, K. N., Wagiman, A. N. R. & Beh, K. S. (2008). Effect of Ethanol as Diluent on the Properties of Mineral Silica Filled Epoxy Composites. Journal of Composite Materials, 42(2): 129-142.

18.    Selvin, T. P., Kuruvilla, J. & Sabu, T. (2004). Mechanical properties of titanium dioxide-filled polystyrene microcomposites. Materials Letters, 58(3-4): 281-289.

19.    Debnath, S., Ranade, R., Wunder, S. L., Mccool, J., Boberick, K. & Baran, G. (2004). Interface effects on mechanical properties of particle-reinforced composites. Dental Materials, 20(7): 677-686.

20.    Teh, P. L., Mariatti, M., Akil, H. M., Yeoh, C. K., Seetharamu, K. N., Wagiman, A. N. R. & Beh, K. S. 2007. The properties of epoxy resin coated silica fillers composites. Materials Letters, 61(11-12): 2156-2158.

21.    Moodley, V. K. (2007). The Synthesis, Structure And Properties Of Polypropylene Nanocomposites. MSc., Durban university of technology.

22.    Rothon, R. N. (2003). Particulate-Filled Polymer Composites. In: ROTHON, R. N. (ed.) R.N. Rothon. Second Edition ed. Shawbury, Shrewsbury, Shropshire, SY4 4NR, United Kingdom: Rapra Technology Limited.

23.    Rashid, E. S. A., Ariffin, K.., Kooi, C. C. & Akil, H. M. (2009). Preparation and properties of POSS/epoxy composites for electronic packaging applications. Materials & Design, 30(1): 1-8.

24.    Lee, J. H., Jang, Y. K., Hong, C. E., Kim, N. H., Li, P. & Lee, H. K. (2009). Effect of carbon fillers on properties of polymer composite bipolar plates of fuel cells. Journal of Power Sources, 193(2): 523-529.

25.    Kuan, H.-C., Ma, C.-C. M., Chen, K. H. & Chen, S.-M. (2004). Preparation, electrical, mechanical and  thermal properties of composite bipolar plate for a fuel cell. Journal of Power Sources, 134(1): 7-17.

26.    Zhang, M., Zeng, H., Zhang, L., Lin, G. & Li, R. K. Y. (1993). Fracture characteristics of discontinuous carbon fibre-reinforced PPS and PES-C composites. Polymers and Polymer Composites, 1: 357-365.

27.    Allaoui, A., Bai, S., Cheng, H. M. & Bai, J. B. (2002). Mechanical and electrical properties of a MWNT/epoxy composite. Composites Science and Technology, 62(15): 1993-1998.

28.    Gojny, F. H. & Schulte, K. (2004). Functionalisation effect on the thermo-mechanical behaviour of multi-wall carbon nanotube/epoxy-composites. Composites Science and Technology, 64: 2303-2308.

29.   Kim, B. C., Park, S. W. & Lee, D. G. (2008). Fracture toughness of the nano-particle reinforced epoxy composite. Composite Structures, 86(1-3):  69-77.

 

 

Previous                    Content                    Next