Malaysian
Journal of Analytical Sciences Vol 18 No 2 (2014): 376 – 384
CARBOXYMETHYL CELLULOSE FROM KENAF REINFORCED COMPOSITE
POLYMER ELECTROLYTES BASED 49% POLY(METHYL METHACRYLATE)-GRAFTED NATURAL RUBBER
(Komposit Polimer Elektrolit Berasaskan 49% Poli(metil
metakrilat)-cangkukan Getah Asli Diperkuat Karboksimetil Selulosa Daripada
Kenaf)
Serawati
Jafirin1, Ishak Ahmad1,2*, Azizan Ahmad1,2
1School of Chemical Sciences and Food
Technology,
2Polymer Research Centre (PORCE),
Faculty of
Science and Technology
Universiti
Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia
*Corresponding author: gading@ukm.edu.my
Abstract
Composite
polymer electrolytes based 49% poly(methyl methacrylate)-grafted natural rubber
(MG49) incorporating lithium triflate (LiCF3SO3) were
prepared. The study mainly focuses on the ionic conductivity performances and
mechanical properties. Prior to that, carboxymethyl cellulose was synthesized
from kenaf fiber. The films were characterized by electrochemical impedance (EIS)
spectroscopy, linear sweep voltammetry
(LSV), universal testing machine and scanning electron
microscopy (SEM). The conductivity was found to increase with carboxymethyl
cellulose loading. The highest conductivity value achieved was 6.5 × 10-6
Scm-1 upon addition of 6 wt% carboxymethyl cellulose. LSV graph
shows the stability of this film was extended to 2.7 V at room temperature. The
composition with 6 wt% carboxymethyl cellulose composition showed the highest
tensile strength value of 7.9 MPa and 273 MPa of Young’s modulus. The morphology of the electrolytes showed a smooth
surface of films after addition of salt and filler indicating amorphous phase
in electrolytes system. Excellent mechanical properties and good ionic
conductivity are obtained, enlightening that the film is suitable for future
applications as thin solid polymer electrolytes in lithium batteries.
Keywords: carboxymethyl cellulose, ionic conductivity, mechanical properties,
polymer electrolytes
Abstrak
Komposit polimer
elekrolit berasaskan 49% poli(metil metakrilat)-cangkukan getah asli (MG49)
dengan penambahan garam triflat (LiCF3SO3) telah
disediakan. Kajian ini lebih menumpukan kepada ciri-ciri kekonduksian ion dan
kekuaan sifat mekanik sistem elektolit yang dihasilkan. Sebelum itu,
karboksimetil selulosa daripada kenaf disediakan terlebih dahulu. Filem yang
dihasilkan dicirikan menggunakan spekroskopi impedans (EIS), voltametri sapuan
linear (LSV), mesin pengujian universal dan mikroskopi imbasan elektron (SEM).
Nilai kekonduksian ion didapati meningkat dengan penambahan karboksimetil
selulosa. Kekonduksian ion tertinggi diperolehi dengan nilai 6 ×10-6
Scm-1 pada penambahan 6 bt% karboksimetil selulosa. Graf LSV
menunjukkan kestabilan filem yang dihasilkan mencapai sehingga 2.7 V pada suhu
bilik. 6 bt.% karboksimetil selulosa menunjukkan 7.9 MPa kekuatan regangan dan
273 MPa modulus young. Morpologi permukaan elektrolit mempamerkan permukaan
lebih licin selepas penambahan garam dan pengisi yang menunjukkan kawasan
amorfus pada sistem elektrolit. Kekuatan regangan dan kekonduksian ion
memberansangkan yang diperolehi menunjukkan filem yang dihasilkan sesuai
digunakan sebagai filem pepejal elektrolit polimer dalam bateri litium.
Kata
kunci:
karboksimetil selulosa, kekonduksian ion, sifat mekanik, polimer elektrolit
References
1. Su’ait, M. S., Ahmad, A. & Rahman, M. Y. A. (2009).
Ionic Conductivity Studies of 49% poly(methyl methacrylate)-grafted Natural
Rubber-based Solid Polymer Electrolytes.Ionics, 15 (4): 497 - 500.
2. Chiappone, A.,
Nair, J. R., Gerbaldi, C., Jabbour, L., Bongiovanni, R., Zeno, E., Beneventi,
D. & Penazzi, N. (2011). Microfibrillated Cellulose as Reinforcement for
Li-ion Battery Polymer Electrolytes with Excellent Mechanical Stability.Journal
of Power Sources, 196: 10280 - 10288.
3.
Alloin, F.,
D’Apreaa, A., Kissi, N. E., Dufresne, A. & Bossard, F. (2010).
Nanocomposite Polymer Electrolyte Based on Whisker or Microfibrils
Polyoxyethylene Nanocomposites.Electrochimica
Acta, 55 (18): 5186 – 5194.
4. Adinugraha,
M. P., Marseno, D. W. & Haryadi. (2005). Synthesis and Characterization of
Sodium Carboxymethylcellulose from Cavendish Banana Pseudo Stem (Musa cavendishii LAMBERT).Carbohydrate Polymers, 62 (2): 164 - 169.
5.
Mobarak, N. N., Ahmad, A.,
Abdullah, M. P., Ramli, N. & Rahman, M. Y. A. (2013). Conductivity
Enhancement via Chemical Modification of Chitosan Based Green Polymer Electrolyte.
Electrochimica Acta, 92: 161 - 167.
6. Yaacob,
B., Mohd Amin, M. C. I., Hashim, K. & Abu Bakar, B. (2011). Optimization of
Reaction Condition for Carboxymethylated Sago Starch.Iranian Polymer Journal, 20 (3): 195 - 204.
7.
Kargarzadeh, H., Ahmad, I., Abdullah, I., Dufresne, A., Zainudin, S. Y.
& Sheltami, R. M. (2012). Effects of Hydrolysis Conditions on the Morphology,
Crystallinity, and Thermal Stability of Cellulose Nanocrystals Extracted from
Kenaf Bast Fibers.Cellulose, 19 (13):
855 - 866.
8. Bono,
A., Ying, P. H., Yan, F. Y., Muei, C. L., Sarbatly, R. & Krishnaiah, D.
(2009). Synthesis and Characterization of Carboxymethyl Cellulose from Palm Kernel
Cake.Advances in Natural & Applied
Sciences, 3 (11): 5 - 11.
9. Low, S. P.,
Ahmad, A., Hamzah, H. & Rahman, M. Y. A. (2011). Nanocomposite Solid
Polymeric electrolytes of 49% poly(methyl methacrylate)-grafted Natural
Rubber-titanium Dioxide-lithium Tetrafluoroborate (MG49-TiO2-LiBF4).Journal of Solid State Electrochemistry,
15 (11-12): 2611 - 2618.
10. Chang
H. P, Kim, D. W., Prakash, J. & Sun,
Y. K. (2003). Electrochemical Stability and Conductivity Enhancement of
Composite Polymer Electrolytes. Solid
State Ionics, 159 (1-2): 111 - 119.
11. Azizi Samir, M. A. S., Mateos, A. M., Alloin, F.,
Sanchez, J. Y., and Dufresne, A. (2004). Plasticized Nanocomposite Polymer
Blectrolytes based on Poly(oxyethylene) and Cellulose Whiskers.Electrochimica Acta, 49 (26): 4667 - 4677.
12.
Nair, J. R., Chiapponea, A.,
Gerbaldia, C., Ijeri, V. S., Zenod, E.,
Bongiovannia, R., Bodoardoa, S. & Penazzia, N. (2011). Novel Cellulose Reinforcement for Polymer Electrolyte Membranes with Outstanding Mechanical Properties.Electrochimica Acta, 57: 104 - 111.
13.
Nair, J. R., Gerbaldi, C.,
Chiappone, A., Zeno, E., Bongiovanni, R., Bodoardo, S. & Penazzi, N. (2009). UV-cured Polymer Electrolyte Membranes for Li-cells: Improved Mechanical Properties by a Novel Cellulose Reinforcement.Electrochemistry Communications, 11 (9): 1796 - 1798.
14. Schroers,
M., Kokil, A., & Weder, C. (2004). Solid Polymer Electrolytes based on
Nanocomposites of Ethylene oxide-epichlorohydrin Copolymers and Cellulose
Whiskers.Journal of Applied Polymer
Science, 93 (6): 2883 - 2888.