Malaysian Journal of Analytical Sciences Vol 18 No 2 (2014): 337 – 343

 

 

 

peNILAIAN RISIKO KANSER DARI SAMPEL TANIH DI SEKITAR KAWASAN PERINDUSTRIAN GEBENG, PAHANG DAN SAMPEL AMANG DI PERAK

 

(Assessments of Cancer Risk from Soil Samples in Gebeng Industrial Estate, Pahang and Amang Samples in Perak)

 

Che Nor Aniza Binti Che Zainul Bahri*, Khoo Kok Siong, Amran Ab. Majid, Norafatin binti Khalid

 

Program Sains Nuklear, Jabatan Fizik Gunaan

Fakulti Sains dan Teknologi,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author: anizazainul@gmail.com

 

 

Abstrak

Aktiviti perindustrian seperti industri amang dan industri pemprosesan nadir bumi menyumbang kepada risiko radiologi terhadap kesihatan manusia dan alam sekitar. Aktiviti- aktiviti ini boleh meningkatkan keradioaktifan tabii (NORM) yang signifikan dalam persekitaran. Tujuan kajian ini dijalankan adalah untuk menentukan kepekatan aktiviti Torium-232 (232Th), Uranium-238 (238U) dan Kalium-40 (40K) dalam sampel tanih di sekitar Kawasan Perindustrian Gebeng, Pahang dan sampel ilmenit dan monazit dari tiga buah kilang pemprosesan amang di Perak dengan menggunakan spektrometri sinar gama. Seterusnya kadar dos terserap sinar gama, dos tahunan dan risiko kanser ditentukan. Kepekatan aktiviti 232Th, 238U dan 40K dalam sampel tanih di Gebeng masing - masing telah ditemui dalam julat 14.3 – 102.4, 23.8 – 81.3 dan 73.3 - 451 Bq kg-1. Manakala julat kepekatan aktiviti 232Th, 238U dan 40K bagi sampel ilmenit dan monazit adalah masing - masing 259 - 166500, 194 - 28750 dan 26.4 - 11991 Bq kg-1. Julat kadar dos terserap sinar gama di Kawasan Perindustrian Gebeng adalah 22 - 108 nGy j-1 dan di kawasan pemprosesan amang adalah 390 - 6650 nGy j-1. Dos tahunan di Kawasan Perindustrian Gebeng dan kawasan pemprosesan amang masing - masing adalah 0.02 – 0.15 dan 0.47 - 68  mSv tahun-1. Kajian menunjukan risiko kanser di Kawasan Perindustrian Gebeng adalah 4 per sejuta orang dan 3702 per sejuta orang  di kawasan pemprosesan amang. Kepekatan aktiviti dalam tanih di Kawasan Perindustrian Gebeng berada dalam julat yang dilaporkan oleh UNSCEAR 2000 di Malaysia. Kepekatan aktiviti, kadar dos terserap sinar gama, dos tahunan dan risiko kanser di Kawasan Perindustrian Gebeng lebih rendah daripada kawasan pemprosesan amang kerana kawasan pemprosesan amang mempunyai aktiviti yang tinggi di sekitar kawasannya disebabkan kehadiran monazit yang tinggi dengan torium. Kajian ini mencadangkan pemantauan dos sekitaran perlu dilakukan secara berterusan untuk menjamin kelestarian manusia dan alam sekitar.

 

Kata kunci: kepekatan aktiviti, risiko kanser, amang, keradioaktifan tabii

 

Abstract

Industrial activities such as the tin tailings and rare earth processing contribute to radiological risk to human health and environment. Those activities can accumulate the naturally occurring radioactive materials (NORM) with significant concentration in the environment. The aims of this study was to determine the activities concentration of Thorium -232 ( 232Th ), Uranium -238 ( 238U ) and Potassium - 40 ( 40K ) in soil samples around the Gebeng Industrial Estate, Pahang and in samples of ilmenite and monazite from three tin tailings processing plants in Perak using gamma ray spectrometry. The terrestrial gamma dose rate, the annual dose and cancer risk were also determined. The activities concentration of 232Th, 238U and 40K in the Gebeng soil samples were found in the range of 14.3 - 102.4, 23.8 - 81.3 and 73.3 - 451 Bq kg-1, respectively. While the activities concentration of 232Th, 238U and 40K for ilmenite and monazite samples were in the range of 259 - 166500, 194 - 28750 and 26.4 - 11991 Bq kg-1, respectively. The range terrestrial gamma dose rate at the Gebeng Industrial Estate was 22 - 108 nGy h-1 and the tin tailings processing plants was 390 – 6650 nGy h-1. Whereas the annual dose at the Gebeng Industrial Estate and tin tailings processing plants were 0.02 – 0.15 and 0.47 - 68 mSv y-1, respectively. The study showed that the cancer risk in the Gebeng industrial area were 4 peoples per million and 3702 peoples per million in the tin tailings processing plants. The activity concentration of soil from industrial area reported by UNSCEAR 2000 was in range of the Malaysia soil background. The activity concentration, the terrestrial gamma dose rate, the annual dose and the cancer risk were lower in the industrial area compared to tin tailings processing plants due to the high activity among the tin tailings processing area due to the high content of thorium in monazite. This study is recommended to monitor the environmental dose continuously in order to ensure the sustainability of human and environment.to ensure the sustainability of human and environment.

 

Keywords: activity concentration, cancer risk, amang, natural radionuclide

 

References

1.       UNSCEAR (2000). Exposures from natural radiation sources. United Nations Scientific Committee on the Effects of Atomic Radiation.Report to General Assembly, With Annexes.New York: United Nations.

2.       International Atomic Energy Agency (IAEA). 1987. IAEA handbook on nuclear activation data. Technical series report No. 273.

3.       Krmar, M., J.Sliviska, E. Varga, I. Bikit and M. Veskovic.(2009). Correlations of natural radionuclides in sediment from Danube. Journal of Geochemical Exploration., 100(1): 20-24.

4.       Ramli, A. T. (2007). Kajian Radiologi ke Atas Kesan Amang di Negeri Perak.Laporan akhir Projek Penyelidikan Vot 68878.Universiti Teknologi Malaysia dan Lembaga Perlesenan Tenaga Atom.

5.       Willson, M.J. (1993). Anthropogenic and naturally occurring radioactive materials detected on radiological survey of properties in Monticello, Utah. EnvironmentalHealth Physics ; 26th midyear topical meeting, 24-28 Januari : 564. Idaho : Coeur d’Alene.

6.       IAEA. (2004). Soil Sampling for Environmental Contaminants. IAEA- TECDOC- 1415: 20- 26. Vienna: International Atomic Energy Agency.

7.       Yasir, M.S., Majid, A. Ab., Ibrahim, F., Tap, M.S.Q  & Abidin, M.R.Z. (2006). Analisis 238U, 232Th, 226Ra dan 40K dalam sampel amang, tanah dan air di Dengkil, Selangor menggunakan spektrometri sinar gama .Malaysia Journal of Analytical Sciences.10 (1) : 35- 40.

8.       Selvaskarapandian, S., Sivakumar, R., Manikandan, N.M., Meenakshisundaram, V., Raghunanth, V.M. & Gajendran,V.  (2000). Natural Radionuclide Distribution in Soil of Gudalore India. Applied Radiation and Isotopes 52 : 299- 306.

9.       UNSCEAR. (1987). Ionizing radiation. Sources, effects and risk of ionizing radiation.United Nations Scientific Committee on the Effects of Atomic Radiation. Report to the General Assembly. United Nation, New York.

10.    International Commission Radiation Protection (ICRP) (2007). Recommendations of the ICRP: Annals of the ICRP volume 37/2-4.

11.    Nasirian, M., Bahari, I. & Abdullah, P. (2008). Assessment of Natural Radioactivity in water and sediment from amang (Tin Tailing) processing Ponds. Malaysian Journal of Analytical Sciences 12 (1): 150 - 159.

12.    Australian Radiation Protection and Nuclear Safety Agency (ARPANSA). (2005). Naturally Occurring Radioactive Materials (NORM) in Australian Industries – Review of Current inventories and Future Generation. EnviroRad Services Pty. Ltd.

13.    Robert Mikkelson. (2008). Managing Potassium for Organic Production. Vol. 92. No. 2. Page 26 – 29.  Better Corporation

14.    Mohanty, A. K., Sangupta, D., Das, S. K., Saha, S. K., Van, K.V, (2004). Natural radioactivity and radiation exposure in high background area at Chhatraputra beach placer deposit of Orissa India. Journal of Environmental Radioactive 75(1):15-33.

15.    Abbaspour, M., Moattar, F., Okhovatian, A. & Kharrat, M.S. (2010). Relationship of soil terrestrial radionuclide concentrations and the excess life time cancer risk in Newstern Mazandran Province, Iran. Radiation Protection Dosimetry 142: 265 - 272.

16.    Taskin, H., M. Karavus P. Ay, A. Topuzoglu, S. Hindiroglu and G. Karahan.(2009). Radionuclides concentration in soil and lifetime cancer risk due to the gamma radioactivity in Kirklareli, Turkey. Journal of Environmental Radioactivity 70: 223-235.

17.    Kapdan, E., Varinlioglu, A., and Karahan, G. (2011).Radioactive Levels and Health Risk due to Radionuclides in the Soil of Yolova, Northwestern Turkey International Journal Environment. 5 (4): 837-846.

18.    IAEA (2009). Radiation Workers Handbook: Radiation Control in the Mining & Mineral Processing Industry. Vienna: International Atomic Energy Agency.

19.    International Commission Radiation Protection (ICRP). 1990. Recommendations of the ICRP: ICRP Publication 60. Pergamon Press. New York.

20.    Jibiri. N. N. (2001). Assessment of Heaith Risk Levels Associated with terrestrial gamma radiation dose rates in Nigeria. Environment International 27 (2001): 21- 26.

 

 

Previous                    Content                    Next