Malaysian Journal of Analytical Sciences Vol 18 No 1 (2014): 15 – 20

 

 

 

EFFECTS OF LITHIUM DOPANT ON SIZE AND MORPHOLOGY OF MAGNESIUM OXIDE NANOPOWDERS

 

(Kesan-Kesan Litium Sebagai Pendopan Keatas Saiz dan Morfologi Serbuk Nano Magnesium Oksida)

 

Mohd Sufri Mastuli1,2*, Siti Nur Hazlinda Hasbu1, Noraziahwati Ibrahim1, Mohd Azizi Nawawi1

 

1School of Chemistry and Environmental Studies, Faculty of Applied Sciences,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

2Centre for Nanomaterials Research,

Institute of Science, Level 3 Block C,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

 

*Corresponding author: mohdsufri@salam.uitm.edu.my

 

 

Abstract

Lithium doped of magnesium oxide powders have been synthesized using the sol-gel method with magnesium acetate tetrahydrate, oxalic acid dihydrate and lithium acetate dihydrate used as the starting materials. The dried sol-gel products were calcined at 950 °C for 36 h to form the Li doped-MgO samples. The calcined samples were characterized using X-Ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The present work is investigated the effect of lithium ion on the band gap energy of studied samples. The band gap energies were obtained from a Tauc plot that drawn based on absorption edge of each sample that measured using a UV-Vis spectrophotometer. It is found that the doped and undoped MgO samples showed a slightly different in their band gap energies. The lithium ion that present in the MgO as a dopant affects the crystallite size and morphology of the final products. Our study shows that the lithium dopant can modified optical properties of the metal oxide which to be beneficial in some industrial applications.

 

Keyword: Magnesium oxide, doping, sol-gel method, band gap energy

 

References

1.       Mutreja, V., Singh, S. & Ali, M. (2011). Biodiesel from Mutton Fat using KOH Impregnated MgO as Heterogeneous Catalysts. Renew Energy, 36 (8): 2253 – 2258.

2.       Rakmak, N., Wiyaratn, W., Bunyakan, C. & Chungsiriporn, J. (2010). Synthesis of Fe/MgO Nano-Crystal Catalysts by Sol-Gel Method for Hydrogen Sulfide Removal. Chem Eng J, 162 (1): 84 – 90.

3.       Braulio, M.A.L., Brant, P.O.C., Bitterncourt, L.R.M. & Pandolfelli, V.C. (2009). Microsilica or MgO Grain Size: Which One Mostly Affects the in-situ Spinel Refractory Castable Expansion?. Ceram Int, 35 (8): 3327 – 3334.

4.       Zhang, K., An, Y., Zhang, L. & Dong, Q. (2012). Preparation of Controlled Nano-MgO and Investigation of Its Bactericidal Properties. Chemosphere, 89 (11): 1414 – 1418.

5.       Umar, A., Rahman, M.M. & Hahn, Y. (2009). MgO Polyhedral Nanocages and Nanocrystals Based Glucose Biosensor. Electrochem Commun, 11 (7): 1353 – 1357.

6.       Veldurthi, S., Shin, C., Joo, O. & Jung, K. (2012). Synthesis of Mesoporous MgO Single Crystals Without Templates. Microporous Mesoporous Mater, 152 (1): 31 – 36.

7.       Kumar, A. & Kumar, J. (2008). On the Synthesis and Optical Absorption Studies of Nano-Size Magnesium Oxide Powder. J Phys Chem Solids, 69 (11): 2764 – 2772.

8.       Li, H., Li, M., Wang, X., Wu, X., Liu, F. & Yang, B. (2013). Synthesis and Optical Properties of Single-Crystal MgO Nanobelts. Mater Lett, 102 – 103: 80 – 82.

9.       Selvam, N.C.S., Kumar, R.T., Kennedy, L.J. & Vijaya, J.J. (2011). Comparative Study of Microwave and Conventional Methods for the Preparation and Optical Properties of Novel MgO-Micro and Nano-Structures. J Alloys Compd, 509 (41): 9809 – 9815.

10.    Okuyama, Y., Kurita, N. & Fukatsu, N. (2010). Electrical Conductivity of Calcium-Doped α-Alumina. Solid State Ionics, 181 (3 – 4): 142 – 147.

11.    Rusdi, R., Abd Rahman, A., Mohamed, N.S., Kamarudin, N. & Kamarulzaman, N. (2011). Preparation and Band Gap Energies of ZnO Nanotubes, Nanorods and Spherical Nanostructures. Powder Technol, 210 (1): 18 – 22.

12.    Roessler, D.M. & Walker, W.C. (1967). Electronic Spectrum and Ultraviolet Optical Properties of Crystalline MgO. Phys Rev, 159 (3): 733 – 738.

13.    Al-Gaashani, R., Radiman, S., Al-Douri, Y., Tabet, N. & Daud, A.R. (2012). Investigation of the Optical Properties of Mg(OH)2 and MgO Nanostructures Obtained by Microwave-Assisted Method. J Alloys Compd, 521: 71 – 76.

14.    Jalili, S. & Majidi, R. (2008). The Effect of Impurities on the Electronic Properties of MgO. Physica B: Phys Condens Matter, 403 (19 – 20): 3522 – 3526.

15.    Kumari, L., Li, W.Z., Vannoy, C.H., Leblanc, R.M. & Wang, D.Z. (2009). Synthesis, Characterization and Optical Properties of Mg(OH)2 Micro-/Nanostructure and Its Conversion to MgO. Ceram Int, 35 (8): 3355 – 3364.

16.    Kamarulzaman, N., Yusoff, R., Kamarudin, N., Shaari, N.H., Abdul Aziz, N.A., Bustam, M.A., Blagojevic, N., Elcombe, M., Blackford, M., Avdeev, M. & Arof, A.K. (2009). Investigation of Cell Parameters, Microstructures and Electrochemical Behaviour of LiMn2O4 Normal and Nano Powders. J Power Sources, 188 (1): 274 – 280.   

 

Previous                    Content                    Next