Malaysian Journal of Analytical
Sciences, Vol 27
No 4 (2023): 876 - 889
APPLICATION OF MAGNETIC BIO-POLYMER SPOROPOLLENIN
AS LOW-COST ADSORBENT FOR REMEDIATION OF METHYLENE BLUE FROM AQUEOUS SOLUTION
(Aplikasi Magnetik Bio-Polimer Sporopollenin Sebagai Penjerap
Kos-Rendah untuk Pemulihan Metilena Biru daripada Larutan Akueus)
Syed Fariq
Fathullah Syed Yaacob1,3*, Muhamad
Zulfikry Shamsudin1, Arniza Khairani Mohd Jamil1,
Faiz Bukhari Mohd Suah3, and Sharifah
Mohamad1,2*
1Department of Chemistry, Faculty of
Science, Universiti Malaya, 50603 Kuala
Lumpur, Malaysia
2University
Malaya Centre for Ionic Liquids (UMCiL), University of Malaya, 50603 Kuala
Lumpur, Malaysia
3School of Chemical Sciences, Universiti Sains Malaysia, Pulau
Pinang 11800, Malaysia
*Corresponding
author: syedfariq@usm.my; sharifahm@um.edu.my
Received: 28 September 2022;
Accepted: 21 June 2023; Published: 22 August 2023
Abstract
Adsorption processes
using low-cost sorbents such as bio-polymer adsorbents are an attractive option
for removing methylene blue from wastewater. This study involved magnetic
sporopollenin (MSp) synthesis and its application for removing methylene blue
(MB) from an aqueous solution via adsorption process. The synthesized MSp was
characterized by FT-IR and FESEM analyses. The effects of pH 2 - pH 8, sorbent
dosage (10 mg - 50 mg), and contact time (0 - 60 min) were studied in batch
mode and optimized. Adsorption isotherms models, Langmuir and Freundlich were
used to simulate the equilibrium data. The Freundlich isotherm model is best
fitted with the experimental data compared to the Langmuir model. A maximum
absorption capacity (
Keywords: magnetic nanoparticles,
sporopollenin, methylene blue, isotherm, kinetics
Abstrak
Proses
penjerapan menggunakan penjerap kos rendah seperti penjerap bio-polimer
merupakan pilihan yang menarik untuk penyingkiran metilena biru daripada air
sisa. Kajian ini melibatkan sintesis sporopollenin magnetik (MSp) dan
aplikasinya untuk penyingkiran metilena biru (MB) daripada larutan akueus
melalui proses penjerapan. MSp yang disintesis dicirikan oleh analisis FT-IR
dan FESEM. Kesan pH 2 - pH 8, dos sorben (10 mg - 50 mg), dan masa dikaji (0 -
60 min) dalam mod kelompok dan dioptimumkan. Model isoterma penjerapan, Langmuir
dan Freundlich digunakan untuk mensimulasikan data keseimbangan. Model isoterma
Freundlich paling sesuai dengan data eksperimen berbanding dengan model
Langmuir. Kapasiti penyerapan maksimum (
Kata kunci: magnetik nanopartikel, sporopollenin, metilena biru,
isoterma, kinetik
References
1.
Mazzeo, L., Marzi, D.,
Bavasso, I., Bracciale, M. P., Piemonte, V., and Di Palma, L. (2022). Characterization of waste
roots from the as hyperaccumulator Pteris
vittata as low-cost adsorbent for methylene blue removal. Chemical Engineering Research and Design, 186:
13-21.
2.
Lade, H., Kadam, A., Paul, D., and Govindwar, S.
(2015). Biodegradation and detoxification of textile azo dyes by bacterial
consortium under sequential microaerophilic/aerobic processes. EXCLI Journal, 14: 158-174.
3.
Durrani, W. Z., Nasrullah, A., Khan, A. S., Fagieh,
T. M., Bakhsh, E. M., Akhtar, K., Khan, S. B., Din, I. U., Khan, M. A., and Bokhari,
A. (2022). Adsorption efficiency of date palm based activated carbon-alginate
membrane for methylene blue. Chemosphere,
302: 134793.
4.
Sadri Moghaddam, S., Alavi Moghaddam, M. R., and
Arami, M. (2010). Coagulation/flocculation process for dye removal using sludge
from water treatment plant: Optimization through response surface methodology. Journal of Hazardous Materials, 175(1):
651-657.
5.
Sripiboon, S., and Suwannahong, K. (2018). Color
removal by ozonation process in biological wastewater treatment from the
breweries. IOP Conference Series: Earth
and Environmental Science, 167: 012010.
6.
Khalaf, R. M., Kariem, N. O., and Khudhair, A. A. M.
(2018). Removal of textile dye from aqueous media using an advanced oxidation
process with UV/H2O2. IOP
Conference Series: Materials Science and Engineering, 433: 012039.
7.
Soltani, N., Saion, E., Hussein, M.Z., Erfani, M.,
Abedini, A., Bahmanrokh, G., Navasery, M., and Vaziri, P. (2012). Visible
light-induced degradation of methylene blue in the presence of photocatalytic
ZnS and CdS nanoparticles. International
Journal of Molecular Sciences, 13(10): 12242-12258.
8.
Huang, R., Zhang, Q., Yao, H., Lu, X., Zhou, Q., and
Yan, D. (2021). Ion-exchange resins for efficient removal of colorants in
bis(hydroxyethyl) terephthalate. ACS
Omega, 6(18): 12351-12360.
9.
Son, G., and Lee, H. (2016). Methylene blue removal
by submerged plasma irradiation system in the presence of persulfate. Environmental Science and Pollution
Research, 23(15): 15651-15656.
10.
Cheng, S., Oatley, D. L., Williams, P. M., and
Wright, C. J. (2012). Characterization and application of a novel positively
charged nanofiltration membrane for the treatment of textile industry
wastewaters. Water Research, 46(1):
33-42.
11.
Tharaneedhar, V., Senthil Kumar, P., Saravanan, A.,
Ravikumar, C., and Jaikumar, V. (2017). Prediction and interpretation of
adsorption parameters for the sequestration of methylene blue dye from aqueous
solution using microwave assisted corncob activated carbon. Sustainable Materials and Technologies, 11:
1-11.
12.
Ighalo, J. O., Omoarukhe, F. O., Ojukwu, V. E.,
Iwuozor, K. O., and Igwegbe, C. A. (2022). Cost of adsorbent preparation and
usage in wastewater treatment: A review. Cleaner
Chemical Engineering, 3: 100042.
13.
Kaith, B. S., Dhiman, J., and Kaur Bhatia, J.
(2015). Preparation and application of grafted Holarrhena antidycentrica fiber
as cation exchanger for adsorption of dye from aqueous solution. Journal of Environmental Chemical
Engineering, 3(2): 1038-1046.
14.
Hazzaa, R., and Hussein, M. (2015). Adsorption of
cationic dye from aqueous solution onto activated carbon prepared from olive
stones. Environmental Technology &
Innovation, 4: 36-51.
15.
Djilani, C., Zaghdoudi, R., Djazi, F., Bouchekima,
B., Lallam, A., Modarressi, A., and Rogalski, M. (2015). Adsorption of dyes on
activated carbon prepared from apricot stones and commercial activated carbon. Journal of the Taiwan Institute of Chemical
Engineers, 53: 112-121.
16.
Güzel, F., Sayğılı, H., Akkaya
Sayğılı, G., Koyuncu, F., and Yılmaz, C. (2017). Optimal
oxidation with nitric acid of biochar derived from pyrolysis of weeds and its
application in removal of hazardous dye methylene blue from aqueous solution. Journal of Cleaner Production, 144:
260-265.
17.
Dil, E. A., Ghaedi, M., Ghaedi, A. M., Asfaram, A.,
Goudarzi, A., Hajati, S., Soylak, M., Agarwal, S., and Gupta, V. K. (2016).
Modeling of quaternary dyes adsorption onto ZnONRAC artificial neural
network: Analysis by derivative spectrophotometry. Journal of Industrial and Engineering Chemistry, 34: 186-197.
18.
Nodehi, R., Shayesteh, H., and Rahbar-Kelishami, A.
(2022). Fe3O4@NiO coreshell magnetic nanoparticle for
highly efficient removal of Alizarin red S anionic dye. International Journal of Environmental Science and Technology, 19(4):
2899-2912.
19.
Yaacob, S. F. F. S., Jamil, A. K. M., Kamboh, M. A.,
Ibrahim, W. A. W., and Mohamad, S. (2018). Fabrication of calixarene-grafted
bio-polymeric magnetic composites for magnetic solid phase extraction of
non-steroidal anti-inflammatory drugs in water samples. PeerJ, 6: e5108.
20.
Yaacob, S. F. F. S., Abd Razak, N. S., Aun, T. T.,
Rozi, S. K. M., Jamil, A. K. M., and Mohamad, S. (2018). Synthesis and
characterizations of magnetic bio-material sporopollenin for the removal of oil
from aqueous environment. Industrial
Crops and Products, 124: 442-448.
21.
Yaacob, S. F. F. S., Jamil, R. Z. R., and Suah, F.
B. M. (2022). Sporopollenin based materials as a versatile choice for the
detoxification of environmental pollutantsA review. International Journal of Biological Macromolecules, 207: 900-1004.
22.
Bişgin, A. T., Nalvuran, Z., and Gezici, O.
(2021). Simultaneous preconcentration and spectrophotometric determination of
two colorants (E110 and E133) in some foodstuffs using a new mussel-inspired
adsorbent. Journal of AOAC International,
104(1): 137-147.
23.
Ayar, A., Gezici, O., and Küçükosmanoğlu, M.
(2007). Adsorptive removal of methylene blue and methyl orange from aqueous
media by carboxylated diaminoethane sporopollenin: On the usability of an
aminocarboxilic acid functionality-bearing solid-stationary phase in column
techniques. Journal of Hazardous
Materials, 146(1): 186-193.
24.
Gezici, O., Küçükosmanoğlu, M., and Ayar, A.
(2006). The adsorption behavior of crystal violet in functionalized
sporopollenin-mediated column arrangements. Journal
of Colloid and Interface Science, 304(2): 307-316.
25.
Ecer, Ü., Şahan, T., Zengin, A., and Gubbuk,
İ. H. (2022). Decolorization of Rhodamine B by silver nanoparticleloaded
magnetic sporopollenin: characterization and process optimization. Environmental Science and Pollution Research,
29(52): 79375-79387.
26.
Ahmad, N. F., Kamboh, M. A., Nodeh, H. R., Halim, S.
N. B. A., and Mohamad, S. (2017). Synthesis of piperazine functionalized
magnetic sporopollenin: a new organic-inorganic hybrid material for the removal
of lead(II) and arsenic(III) from aqueous solution. Environmental Science and Pollution Research, 24(27): 21846-21858.
27.
Kamboh, M. A., and Yilmaz, M. (2013). Synthesis of
N-methylglucamine functionalized calix [4] arene based magnetic sporopollenin
for the removal of boron from aqueous environment. Desalination, 310: 67-74.
28.
Yilmaz, E. (2012). Enantioselective enzymatic
hydrolysis of racemic drugs by encapsulation in solgel magnetic sporopollenin.
Bioprocess and Biosystems Engineering, 35(4):
493-502.
29.
Khoeini Sharifabadi, M., Saber-Tehrani, M., Waqif
Husain, S., Mehdinia, A., and Aberoomand-Azar, P. (2014). Determination of
residual nonsteroidal anti-inflammatory drugs in aqueous sample using magnetic
nanoparticles modified with cetyltrimethylammonium bromide by high performance
liquid chromatography. The Scientific
World Journal, 2014: 127835.
30.
Dąbrowski, A. (2001). Adsorptionfrom theory to
practice. Advances in Colloid and
Interface Science, 93(1-3): 135-224.
31.
Mehmood, T., Khan, A. U., Raj Dandamudi, K. P.,
Deng, S., Helal, M. H., Ali, H. M., and Ahmad, Z. (2022). Oil tea shell
synthesized biochar adsorptive utilization for the nitrate removal from aqueous
media. Chemosphere, 307: 136045.
32.
Gao, Z., Wang, J., Muhammad, Y., Hu, P., Hu, Y.,
Chu, Z., Zhao, Z., and Zhao, Z. (2022). Hydrophobic shell structured
NH2-MIL(Ti)-125@mesoporous carbon composite via confined growth strategy for
ultra-high selective adsorption of toluene under highly humid environment. Chemical Engineering Journal, 432:
134340.
33.
Boukhemkhem, A., and Rida, K. (2017).
Improvement adsorption capacity of methylene blue
onto modified Tamazert kaolin. Adsorption Science & Technology, 35(9-10): 753-773.
34.
Mosleh, N., Najmi, M.,
Parandi, E., Nodeh, H. R., Vasseghian, Y., and Rezania, S. (2022). Magnetic sporopollenin
supported polyaniline developed for removal of lead ions from wastewater: Kinetic,
isotherm and thermodynamic studies. Chemosphere, 300: 134461.
35.
Algethami, J. S., Yadav, K. K., Gacem, A., Ali, I.
H., Rezania, S., Alhar, M. S. O., Mezni, A., Jeon, B. H., and Chaiprapat, S.
(2023). Magnetic sporopollenin supported magnesium nanoparticles for removal of
tetracycline as an emerging contaminant from water. Environmental
Science and Pollution Research, 2023: 1-12.
36.
Ho, Y. S., and McKay, G.
(1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34(5): 451-465.
37.
Reçber, Z. B., Burhan, H., Bayat, R., Nas, M. S.,
Calimli, M. H., Demirbas, Ö., Şen, F., and Hassan, K.-M. (2022).
Fabrication of activated carbon supported modified with bimetallic-platin
ruthenium nano sorbent for removal of azo dye
from aqueous media using enhanced ultrasonic wave. Environmental Pollution, 302: 119033.
38.
Lyu, F., Niu, S., Wang, L., Liu, R., Sun, W., and
He, D. (2021). Efficient removal of Pb(II) ions from aqueous solution by
modified red mud. Journal of Hazardous Materials, 406: 124678.
39.
Dai, H., Huang, Y., and
Huang, H. (2018). Eco-friendly polyvinyl alcohol/carboxymethyl
cellulose hydrogels reinforced with graphene oxide and bentonite for enhanced
adsorption of methylene blue. Carbohydrate Polymers, 185: 1-11.
40.
Varaprasad, K.,
Jayaramudu, T., and Sadiku, E. R. (2017). Removal of dye by
carboxymethyl cellulose, acrylamide and graphene oxide via a free radical
polymerization process. Carbohydrate Polymers, 164: 186-194.
41.
Melo, B. C., Paulino, F.
A., Cardoso, V. A., Pereira, A. G., Fajardo, A. R., and Rodrigues, F. H.
(2018). Cellulose nanowhiskers improve the methylene blue adsorption capacity of
chitosan-g-poly (acrylic acid) hydrogel. Carbohydrate Polymers, 181: 358-367.
42.
Chakrabarti, S., and
Dutta, B. K. (2005). On the adsorption and diffusion of methylene blue in
glass fibers. Journal of Colloid and
Interface Science, 286(2): 807-811.
43.
Senthil Kumar, P., Abhinaya, R.V., Gayathri Lashmi,
K., Arthi, V., Pavithra, R., Sathyaselvabala, V., Dinesh Kirupha, S., and
Sivanesan, S. (2011). Adsorption of methylene blue dye from aqueous solution by
agricultural waste: Equilibrium, thermodynamics, kinetics, mechanism and
process design. Colloid Journal, 73(5):
651.
44.
Aroguz, A. Z., Gulen, J., and Evers, R. H. (2008).
Adsorption of methylene blue from aqueous solution on pyrolyzed petrified
sediment. Bioresource Technology, 99(6):
1503-1508.
45.
Rehman, M. S. U., Kim, I., and Han, J.-I. (2012).
Adsorption of methylene blue dye from aqueous solution by sugar extracted spent
rice biomass. Carbohydrate Polymers, 90(3):
1314-1322.
46.
Kavitha, D., and Namasivayam, C. (2007).
Experimental and kinetic studies on methylene blue adsorption by coir pith
carbon. Bioresource Technology, 98(1):
14-21.
47.
Ofomaja, A. E. (2008). Kinetic study and sorption
mechanism of methylene blue and methyl violet onto mansonia (Mansonia altissima) wood sawdust. Chemical Engineering Journal, 143(1):
85-95.
48.
Mahini, R., Esmaeili, H.,
and Foroutan, R. (2018). Adsorption of methyl violet from aqueous solution
using brown algae Padina sanctae-crucis.
Turkish Journal of Biochemistry, 43(6):
623-631.
49.
Sharafzad, A., Tamjidi, S., and Esmaeili, H. (2021).
Calcined lotus leaf as a low-cost and highly efficient biosorbent for removal
of methyl violet dye from aqueous media. International
Journal of Environmental Analytical Chemistry, 101(15): 2761-2784.
50.
Halysh, V., Sevastyanova, O., Riazanova, A. V., Pasalskiy,
B., Budnyak, T., Lindström, M. E., and Кartel, M. (2018). Walnut shells
as a potential low-cost lignocellulosic sorbent for dyes and metal ions. Cellulose, 25(8): 4729-4742.