Malaysian Journal of Analytical Sciences, Vol 27 No 4 (2023): 876 - 889

 

APPLICATION OF MAGNETIC BIO-POLYMER SPOROPOLLENIN AS LOW-COST ADSORBENT FOR REMEDIATION OF METHYLENE BLUE FROM AQUEOUS SOLUTION

 

(Aplikasi Magnetik Bio-Polimer Sporopollenin Sebagai Penjerap Kos-Rendah untuk Pemulihan Metilena Biru daripada Larutan Akueus)

 

Syed Fariq Fathullah Syed Yaacob1,3*, Muhamad Zulfikry Shamsudin1, Arniza Khairani Mohd Jamil1,

Faiz Bukhari Mohd Suah3, and Sharifah Mohamad1,2*

 

1Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia

2University Malaya Centre for Ionic Liquids (UMCiL), University of Malaya, 50603 Kuala Lumpur, Malaysia

3School of Chemical Sciences, Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia

 

*Corresponding author: syedfariq@usm.my; sharifahm@um.edu.my

 

 

Received: 28 September 2022; Accepted: 21 June 2023; Published: 22 August 2023

 

 

Abstract

Adsorption processes using low-cost sorbents such as bio-polymer adsorbents are an attractive option for removing methylene blue from wastewater. This study involved magnetic sporopollenin (MSp) synthesis and its application for removing methylene blue (MB) from an aqueous solution via adsorption process. The synthesized MSp was characterized by FT-IR and FESEM analyses. The effects of pH 2 - pH 8, sorbent dosage (10 mg - 50 mg), and contact time (0 - 60 min) were studied in batch mode and optimized. Adsorption isotherms models, Langmuir and Freundlich were used to simulate the equilibrium data. The Freundlich isotherm model is best fitted with the experimental data compared to the Langmuir model. A maximum absorption capacity ( ) of 6.357 mg/g was obtained for MB. In addition, pseudo-first-order and pseudo-second-order were used to study the kinetics of MB adsorption onto MSp. The dye adsorption process obeyed the pseudo-second-order kinetic expression as proven by the high correlation coefficient (R2 = 0.999). Overall, these findings confirmed the potential of MSp as an alternative and efficient sorbent for the removal of MB dye, offering promising prospects for wastewater treatment applications.

 

Keywords: magnetic nanoparticles, sporopollenin, methylene blue, isotherm, kinetics

 

Abstrak

Proses penjerapan menggunakan penjerap kos rendah seperti penjerap bio-polimer merupakan pilihan yang menarik untuk penyingkiran metilena biru daripada air sisa. Kajian ini melibatkan sintesis sporopollenin magnetik (MSp) dan aplikasinya untuk penyingkiran metilena biru (MB) daripada larutan akueus melalui proses penjerapan. MSp yang disintesis dicirikan oleh analisis FT-IR dan FESEM. Kesan pH 2 - pH 8, dos sorben (10 mg - 50 mg), dan masa dikaji (0 - 60 min) dalam mod kelompok dan dioptimumkan. Model isoterma penjerapan, Langmuir dan Freundlich digunakan untuk mensimulasikan data keseimbangan. Model isoterma Freundlich paling sesuai dengan data eksperimen berbanding dengan model Langmuir. Kapasiti penyerapan maksimum ( ) sebanyak 6.357 mg/g diperolehi untuk MB. Di samping itu, pseudo-tertib pertama dan pseudo-tertib-kedua digunakan untuk mengkaji kinetik penjerapan MB ke MSp. Proses penjerapan pewarna mematuhi ekspresi kinetik pseudo-tertib-kedua seperti yang dibuktikan oleh pekali korelasi tinggi (R2 = 0.999). Secara keseluruhan, penemuan ini mengesahkan potensi MSp sebagai sorben alternatif dan cekap untuk penyingkiran pewarna MB, menawarkan prospek yang menjanjikan untuk aplikasi rawatan air sisa.

 

Kata kunci: magnetik nanopartikel, sporopollenin, metilena biru, isoterma, kinetik

 


References

1.       Mazzeo, L., Marzi, D., Bavasso, I., Bracciale, M. P., Piemonte, V., and Di Palma, L. (2022). Characterization of waste roots from the as hyperaccumulator Pteris vittata as low-cost adsorbent for methylene blue removal. Chemical Engineering Research and Design, 186: 13-21.

2.       Lade, H., Kadam, A., Paul, D., and Govindwar, S. (2015). Biodegradation and detoxification of textile azo dyes by bacterial consortium under sequential microaerophilic/aerobic processes. EXCLI Journal, 14: 158-174.

3.       Durrani, W. Z., Nasrullah, A., Khan, A. S., Fagieh, T. M., Bakhsh, E. M., Akhtar, K., Khan, S. B., Din, I. U., Khan, M. A., and Bokhari, A. (2022). Adsorption efficiency of date palm based activated carbon-alginate membrane for methylene blue. Chemosphere, 302: 134793.

4.       Sadri Moghaddam, S., Alavi Moghaddam, M. R., and Arami, M. (2010). Coagulation/flocculation process for dye removal using sludge from water treatment plant: Optimization through response surface methodology. Journal of Hazardous Materials, 175(1): 651-657.

5.       Sripiboon, S., and Suwannahong, K. (2018). Color removal by ozonation process in biological wastewater treatment from the breweries. IOP Conference Series: Earth and Environmental Science, 167: 012010.

6.       Khalaf, R. M., Kariem, N. O., and Khudhair, A. A. M. (2018). Removal of textile dye from aqueous media using an advanced oxidation process with UV/H2O2. IOP Conference Series: Materials Science and Engineering, 433: 012039.

7.       Soltani, N., Saion, E., Hussein, M.Z., Erfani, M., Abedini, A., Bahmanrokh, G., Navasery, M., and Vaziri, P. (2012). Visible light-induced degradation of methylene blue in the presence of photocatalytic ZnS and CdS nanoparticles. International Journal of Molecular Sciences, 13(10): 12242-12258.

8.       Huang, R., Zhang, Q., Yao, H., Lu, X., Zhou, Q., and Yan, D. (2021). Ion-exchange resins for efficient removal of colorants in bis(hydroxyethyl) terephthalate. ACS Omega, 6(18): 12351-12360.

9.       Son, G., and Lee, H. (2016). Methylene blue removal by submerged plasma irradiation system in the presence of persulfate. Environmental Science and Pollution Research, 23(15): 15651-15656.

10.    Cheng, S., Oatley, D. L., Williams, P. M., and Wright, C. J. (2012). Characterization and application of a novel positively charged nanofiltration membrane for the treatment of textile industry wastewaters. Water Research, 46(1): 33-42.

11.    Tharaneedhar, V., Senthil Kumar, P., Saravanan, A., Ravikumar, C., and Jaikumar, V. (2017). Prediction and interpretation of adsorption parameters for the sequestration of methylene blue dye from aqueous solution using microwave assisted corncob activated carbon. Sustainable Materials and Technologies, 11: 1-11.

12.    Ighalo, J. O., Omoarukhe, F. O., Ojukwu, V. E., Iwuozor, K. O., and Igwegbe, C. A. (2022). Cost of adsorbent preparation and usage in wastewater treatment: A review. Cleaner Chemical Engineering, 3: 100042.

13.    Kaith, B. S., Dhiman, J., and Kaur Bhatia, J. (2015). Preparation and application of grafted Holarrhena antidycentrica fiber as cation exchanger for adsorption of dye from aqueous solution. Journal of Environmental Chemical Engineering, 3(2): 1038-1046.

14.    Hazzaa, R., and Hussein, M. (2015). Adsorption of cationic dye from aqueous solution onto activated carbon prepared from olive stones. Environmental Technology & Innovation, 4: 36-51.

15.    Djilani, C., Zaghdoudi, R., Djazi, F., Bouchekima, B., Lallam, A., Modarressi, A., and Rogalski, M. (2015). Adsorption of dyes on activated carbon prepared from apricot stones and commercial activated carbon. Journal of the Taiwan Institute of Chemical Engineers, 53: 112-121.

16.    Güzel, F., Sayğılı, H., Akkaya Sayğılı, G., Koyuncu, F., and Yılmaz, C. (2017). Optimal oxidation with nitric acid of biochar derived from pyrolysis of weeds and its application in removal of hazardous dye methylene blue from aqueous solution. Journal of Cleaner Production, 144: 260-265.

17.    Dil, E. A., Ghaedi, M., Ghaedi, A. M., Asfaram, A., Goudarzi, A., Hajati, S., Soylak, M., Agarwal, S., and Gupta, V. K. (2016). Modeling of quaternary dyes adsorption onto ZnO–NR–AC artificial neural network: Analysis by derivative spectrophotometry. Journal of Industrial and Engineering Chemistry, 34: 186-197.

18.    Nodehi, R., Shayesteh, H., and Rahbar-Kelishami, A. (2022). Fe3O4@NiO core–shell magnetic nanoparticle for highly efficient removal of Alizarin red S anionic dye. International Journal of Environmental Science and Technology, 19(4): 2899-2912.

19.    Yaacob, S. F. F. S., Jamil, A. K. M., Kamboh, M. A., Ibrahim, W. A. W., and Mohamad, S. (2018). Fabrication of calixarene-grafted bio-polymeric magnetic composites for magnetic solid phase extraction of non-steroidal anti-inflammatory drugs in water samples. PeerJ, 6: e5108.

20.    Yaacob, S. F. F. S., Abd Razak, N. S., Aun, T. T., Rozi, S. K. M., Jamil, A. K. M., and Mohamad, S. (2018). Synthesis and characterizations of magnetic bio-material sporopollenin for the removal of oil from aqueous environment. Industrial Crops and Products, 124: 442-448.

21.    Yaacob, S. F. F. S., Jamil, R. Z. R., and Suah, F. B. M. (2022). Sporopollenin based materials as a versatile choice for the detoxification of environmental pollutants—A review. International Journal of Biological Macromolecules, 207: 900-1004.

22.    Bişgin, A. T., Nalvuran, Z., and Gezici, O. (2021). Simultaneous preconcentration and spectrophotometric determination of two colorants (E110 and E133) in some foodstuffs using a new mussel-inspired adsorbent. Journal of AOAC International, 104(1): 137-147.

23.    Ayar, A., Gezici, O., and Küçükosmanoğlu, M. (2007). Adsorptive removal of methylene blue and methyl orange from aqueous media by carboxylated diaminoethane sporopollenin: On the usability of an aminocarboxilic acid functionality-bearing solid-stationary phase in column techniques. Journal of Hazardous Materials, 146(1): 186-193.

24.    Gezici, O., Küçükosmanoğlu, M., and Ayar, A. (2006). The adsorption behavior of crystal violet in functionalized sporopollenin-mediated column arrangements. Journal of Colloid and Interface Science, 304(2): 307-316.

25.    Ecer, Ü., Şahan, T., Zengin, A., and Gubbuk, İ. H. (2022). Decolorization of Rhodamine B by silver nanoparticle–loaded magnetic sporopollenin: characterization and process optimization. Environmental Science and Pollution Research, 29(52): 79375-79387.

26.    Ahmad, N. F., Kamboh, M. A., Nodeh, H. R., Halim, S. N. B. A., and Mohamad, S. (2017). Synthesis of piperazine functionalized magnetic sporopollenin: a new organic-inorganic hybrid material for the removal of lead(II) and arsenic(III) from aqueous solution. Environmental Science and Pollution Research, 24(27): 21846-21858.

27.    Kamboh, M. A., and Yilmaz, M. (2013). Synthesis of N-methylglucamine functionalized calix [4] arene based magnetic sporopollenin for the removal of boron from aqueous environment. Desalination, 310: 67-74.

28.    Yilmaz, E. (2012). Enantioselective enzymatic hydrolysis of racemic drugs by encapsulation in sol–gel magnetic sporopollenin. Bioprocess and Biosystems Engineering, 35(4): 493-502.

29.    Khoeini Sharifabadi, M., Saber-Tehrani, M., Waqif Husain, S., Mehdinia, A., and Aberoomand-Azar, P. (2014). Determination of residual nonsteroidal anti-inflammatory drugs in aqueous sample using magnetic nanoparticles modified with cetyltrimethylammonium bromide by high performance liquid chromatography. The Scientific World Journal, 2014: 127835.

30.    Dąbrowski, A. (2001). Adsorption—from theory to practice. Advances in Colloid and Interface Science, 93(1-3): 135-224.

31.    Mehmood, T., Khan, A. U., Raj Dandamudi, K. P., Deng, S., Helal, M. H., Ali, H. M., and Ahmad, Z. (2022). Oil tea shell synthesized biochar adsorptive utilization for the nitrate removal from aqueous media. Chemosphere, 307: 136045.

32.    Gao, Z., Wang, J., Muhammad, Y., Hu, P., Hu, Y., Chu, Z., Zhao, Z., and Zhao, Z. (2022). Hydrophobic shell structured NH2-MIL(Ti)-125@mesoporous carbon composite via confined growth strategy for ultra-high selective adsorption of toluene under highly humid environment. Chemical Engineering Journal, 432: 134340.

33.    Boukhemkhem, A., and Rida, K. (2017).

Improvement adsorption capacity of methylene blue onto modified Tamazert kaolin. Adsorption Science & Technology35(9-10): 753-773.

34.    Mosleh, N., Najmi, M., Parandi, E., Nodeh, H. R., Vasseghian, Y., and Rezania, S. (2022). Magnetic sporopollenin supported polyaniline developed for removal of lead ions from wastewater: Kinetic, isotherm and thermodynamic studies. Chemosphere300: 134461.

35.    Algethami, J. S., Yadav, K. K., Gacem, A., Ali, I. H., Rezania, S., Alhar, M. S. O., Mezni, A., Jeon, B. H., and Chaiprapat, S. (2023). Magnetic sporopollenin supported magnesium nanoparticles for removal of tetracycline as an emerging contaminant from water. Environmental Science and Pollution Research, 2023: 1-12.

36.    Ho, Y. S., and McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34(5): 451-465.

37.    Reçber, Z. B., Burhan, H., Bayat, R., Nas, M. S., Calimli, M. H., Demirbas, Ö., Şen, F., and Hassan, K.-M. (2022). Fabrication of activated carbon supported modified with bimetallic-platin ruthenium nano sorbent for removal of azo dye


from aqueous media using enhanced ultrasonic wave. Environmental Pollution, 302: 119033.

38.    Lyu, F., Niu, S., Wang, L., Liu, R., Sun, W., and He, D. (2021). Efficient removal of Pb(II) ions from aqueous solution by modified red mud. Journal of Hazardous Materials406: 124678.

39.    Dai, H., Huang, Y., and Huang, H. (2018). Eco-friendly polyvinyl alcohol/carboxymethyl cellulose hydrogels reinforced with graphene oxide and bentonite for enhanced adsorption of methylene blue. Carbohydrate Polymers185: 1-11.

40.    Varaprasad, K., Jayaramudu, T., and Sadiku, E. R. (2017). Removal of dye by carboxymethyl cellulose, acrylamide and graphene oxide via a free radical polymerization process. Carbohydrate Polymers164: 186-194.

41.    Melo, B. C., Paulino, F. A., Cardoso, V. A., Pereira, A. G., Fajardo, A. R., and Rodrigues, F. H. (2018). Cellulose nanowhiskers improve the methylene blue adsorption capacity of chitosan-g-poly (acrylic acid) hydrogel. Carbohydrate Polymers181: 358-367.

42.    Chakrabarti, S., and Dutta, B. K. (2005). On the adsorption and diffusion of methylene blue in glass fibers. Journal of Colloid and Interface Science, 286(2): 807-811.

43.    Senthil Kumar, P., Abhinaya, R.V., Gayathri Lashmi, K., Arthi, V., Pavithra, R., Sathyaselvabala, V., Dinesh Kirupha, S., and Sivanesan, S. (2011). Adsorption of methylene blue dye from aqueous solution by agricultural waste: Equilibrium, thermodynamics, kinetics, mechanism and process design. Colloid Journal, 73(5): 651.

44.    Aroguz, A. Z., Gulen, J., and Evers, R. H. (2008). Adsorption of methylene blue from aqueous solution on pyrolyzed petrified sediment. Bioresource Technology, 99(6): 1503-1508.

45.    Rehman, M. S. U., Kim, I., and Han, J.-I. (2012). Adsorption of methylene blue dye from aqueous solution by sugar extracted spent rice biomass. Carbohydrate Polymers, 90(3): 1314-1322.

46.    Kavitha, D., and Namasivayam, C. (2007). Experimental and kinetic studies on methylene blue adsorption by coir pith carbon. Bioresource Technology, 98(1): 14-21.

47.    Ofomaja, A. E. (2008). Kinetic study and sorption mechanism of methylene blue and methyl violet onto mansonia (Mansonia altissima) wood sawdust. Chemical Engineering Journal, 143(1): 85-95.

48.    Mahini, R., Esmaeili, H., and Foroutan, R. (2018). Adsorption of methyl violet from aqueous solution using brown algae Padina sanctae-crucis. Turkish Journal of Biochemistry, 43(6): 623-631.

49.    Sharafzad, A., Tamjidi, S., and Esmaeili, H. (2021). Calcined lotus leaf as a low-cost and highly efficient biosorbent for removal of methyl violet dye from aqueous media. International Journal of Environmental Analytical Chemistry, 101(15): 2761-2784.

50.    Halysh, V., Sevastyanova, O., Riazanova, A. V., Pasalskiy, B., Budnyak, T., Lindström, M. E., and Кartel, M. (2018). Walnut shells as a potential low-cost lignocellulosic sorbent for dyes and metal ions. Cellulose, 25(8): 4729-4742.