Malaysian Journal of Analytical
Sciences, Vol 27
No 3 (2023): 552 - 562
COMPARATIVE STUDY ON THE
EFFECT OF GAMMA RADIATION ON BIOPLASTICS
(Kajian
Perbandingan Tentang Kesan Sinaran Gamma Terhadap Bioplastik)
Nurul Fathihah Abu Bakar, and Siti
Amira Othman*
Faculty of Applied Sciences and Technology,
Universiti Tun Hussein Onn Malaysia,
84600, Pagoh, Johor, Malaysia
*Corresponding author:
sitiamira@uthm.edu.my
Received: 20 January 2023; Accepted: 9
May 2023; Published: 23 June 2023
Abstract
Conventional plastic is made from petrochemical substances. Its
non-biodegradable properties negatively impact the environment, causing
landfill pollution and affecting wildlife and aquatic life. It uses
non-renewable sources that will be depleted in a few years if there is no
solution to this situation. This study was carried out to produce bio-plastic
made from renewable sources: 10 g of corn starch, 5 ml of glycerol and vinegar,
and 60 ml of distilled water. The produced bio-plastic was exposed to gamma radiation
to observe the difference between irradiated and non-irradiated bio-plastics.
Surface morphology and chemical properties like absorption spectra, functional
group and chemical bonding were characterized using Opto
Digital Microscope, Ultra-Violate Visible (UV-Vis) Spectrophotometer and
Fourier Transform Infrared Spectroscopy (FTIR). The results indicate that
exposure to gamma radiation causes the bio-plastic surface to be darker with
some degradation. Irradiated bio-plastic degrades faster than the ones not
irradiated. The samples were characterized using UV-Vis, prepared in different
glycerol concentrations to determine which concentration gave the best
absorption peak. The absorption peaked at 270 nm wavelength in the highest
glycerol concentration. Functional groups like alcohols, carbonyl and ester
were also found in the sample’s solution. All functional groups that contribute
to the bio-plastic properties could be stretched and bent to enhance their
performances as a packaging application. Overall, exposure to gamma radiation
improves the bio-plastic quality as a packaging application that can be used in
the food and pharmaceutical industries.
Keywords: Effect of gamma radiation, bioplastics, radiation, ionizing
Abstrak
Plastik
konvensional diperbuat daripada bahan petrokimia. Sifat tidak
terbiodegradasinya memberi kesan negatif kepada alam sekitar, menyebabkan
pencemaran tapak pelupusan dan menjejaskan hidupan liar dan akuatik. Ia
menggunakan sumber tidak boleh diperbaharui yang akan habis dalam beberapa
tahun jika tiada penyelesaian kepada keadaan ini. Kajian ini dijalankan untuk
menghasilkan bio-plastik yang diperbuat daripada sumber boleh diperbaharui: 10
g kanji jagung, 5 ml gliserol dan cuka, dan 60 ml air suling. Bio-plastik yang
dihasilkan telah didedahkan kepada sinaran gamma untuk melihat perbezaan antara
bio-plastik yang disinari dan tidak disinari. Morfologi permukaan dan sifat
kimia seperti spektrum serapan, kumpulan berfungsi dan ikatan kimia telah
dicirikan menggunakan Mikroskop Opto Digital, Spektrofotometer Cahaya
Nampak-Ultraungu (UV-Vis) dan
Inframerah Transformasi Fourier (FTIR). Keputusan menunjukkan bahawa pendedahan
kepada sinaran gamma menyebabkan permukaan bio-plastik menjadi lebih gelap
dengan sedikit degradasi. Bio-plastik yang disinari merosot lebih cepat
daripada yang tidak disinari. Sampel telah dicirikan menggunakan UV-Vis,
disediakan dalam kepekatan gliserol yang berbeza untuk menentukan kepekatan
yang memberikan puncak penyerapan terbaik. Penyerapan memuncak pada panjang
gelombang 270 nm dalam kepekatan gliserol tertinggi. Kumpulan
berfungsi seperti alkohol, karbonil dan ester juga ditemui dalam larutan
sampel. Semua kumpulan berfungsi yang menyumbang kepada sifat bio-plastik boleh
diregangkan dan dibengkokkan untuk meningkatkan prestasi mereka sebagai
aplikasi pembungkusan. Secara keseluruhan, pendedahan kepada sinaran gamma
meningkatkan kualiti bio-plastik sebagai aplikasi pembungkusan yang boleh
digunakan dalam industri makanan dan farmaseutikal.
Kata kunci: Kesan
sinaran gama, bioplastik, sinaran, pengionan
References
1.
Aquino, K. A. d. S. (2012). Sterilization by gamma irradiation. Gamma Radiation, 51(5): 978-953.
2.
Ansari,
I., A. and Datta, A., K. (2003). An overview of sterilization methods for
packaging materials used in aseptic packaging systems. Trans IChem, 81(3): 57-65.
3.
Ojumu, T. V., Yu, J. and Solomon, B. O. (2004) Production of polyhydroxyalkanoates,
a bacterial biodegradable polymer. Africa
Journal of Biotechnology, 43(8):18-24.
4.
Zinn,
M, Witholtb B. and Eglia T.
(2001). Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Advance
Drug Delivery, 53(7): 5-21.
5. Marina, C.V., Salvador, C.
N., Eduardo, M., N. and Elaine, A. (2017). Gamma radiation effect on
sisal/polyurethane composites without coupling agents. Polimeros, 27(2): 43-47.
6.
Haji-Saeid, M., Sampa, M. H. O. and
Chmielewski, A. G. (2007). Radiation treatment for sterilization of packaging
materials. Radiation Physics and Chemistry, 76(8-9): 1535-1541.
7.
Boreen, A. L., Arnold, W.
A. and McNeill, K. (2003). Photodegradation of pharmaceuticals in the aquatic
environment: A review. Aquatic Sciences. 65(4): 320-341.
8. Riebel, M. J. (2014). Biooptical and biofunctional properties, applications and methods of
polylactic acid films. US Patent, 01628828,
8(6): 996-998.
9.
Silvestre, C., Duraccio, D. and Cimmino, S. (2011). Food packaging based on polymer nanomaterials. Progress
in Polymer Science, 36(12): 1766-1782.
10.
Zhang,
Q. X., Yu, Z. Z. and Xie, X. L. (2007) Preparation
and crystalline morphology of biodegradable starch/clay nanocomposites, Polymer, 48(2): 7193-7200.
11.
Madison,
L. L. and Huisman, G. W. (2000). Microbial: A review. Journal of Industrial Engineering, 63(8): 21-53.
12.
Marjadi, D. and Dharaiya, N.
(2012). Potential materials for food nanoclay. Everyman’s
Science, 57(2): 70-73.
13.
Balser,
K., Hoppe, L., Eicher, T., Wandel, M., Astheimer, H., J. and Steinmeier, H. (2004). Cellulose
esters. Ullmann’s Encyclopaedia of Industrial
Chemistry, 7(24): 23-29.
14.
Saraswat,
Y., Patel, M., Sagar, T. and Shil, S. (2005).
Bio-plastics from Starch. Journal of Food
Science, 1(73): 385-387.
15.
Stevens,
E. S. (2002). Green plastics: an introduction to the new science of
biodegradable plastics. Princeton University Press, 78(2): pp. 57-65.
16.
Gáspár,
M., Benko, Z., Dogossy, G., Réczey,
K. and Czigány, T. (2005). Reducing water absorption
in compostable starch-based plastics. Polymer
Degradation and Stability, 90(3): 563-569.
17.
Wellfair, S. T. (2008). Testing the degradation rates of
degradable, non-degradable and bio-degradable plastics within simulated marine
environments. Journal of Marine Science,
76(2): 243-301.
18.
Deanin, R. D. (1975). Additives in plastics. Environmental
Health Perspectives, 95(11): 35-39.
19.
Rojas De Gante, C. and Pascat,
B. (1990). Effects
of b-ionizing radiation on the properties of flexible packaging materials. Packaging Technology Science, 3: 97-105.
20.
Parparita, E., Zaharescu, T., Darie, R.N. and
Vasile, C. (2015). Biomass
effect on gamma-irradiation behavior of some polypropylene biocomposites.
Industrial Engineering Chemical, 54(12): 2404-2413.
21.
Gáspár, M., Benko, Z., Dogossy,
G., Réczey, K. and Czigány,
T. (2005). Reducing water absorption in compostable starch-based plastics. Polymer
Degradation and Stability, 90(3): 563-569.
22.
Stark, N. M. and Matuana, L. M. (2007).
Characterization of weathered wood e plastic composite surfaces using FTIR spectroscopy,
contact angle, and XPS. Journal of
Composites, 92(8): 1883-1890.
23.
Bajer, D. and Kaczmarek, H. (2010). Study of the influence of UV
radiation on biodegradable blends based on chitosan and starch. Journal of Advanced Science, 107(6):
17-24.
24. Szczepanowska H. and Wilson W. (2000). Permanancy of reprographic images on polyester film. Journal of American Institute for
Conservation, 39(3): 234-240.
25. Ismail, N. A. (2016).
Synthesis and characterization of biodegradable starch-based bioplastics. Polymer Science, 87(2): 77-83.
26.
Lomelí-ramírez, M. G., Kestur, S.
G., Manríquez-gonzález, R., Iwakiri,
S., Bolzon, G. and Muniz, D. (2014). Bio-composites
of cassava starch-green coconut fiber. Structure
and properties, 102(1): 576-583.
27.
Santos, D. S., Bardi, M. A. G., Machado, L. D.
B., Dias, D. B. D., Leonardo, G. A. and Kodama, K. (2009). Influence of
thermoplastic starch plasticized with biodiesel glycerol on thermal properties
of pp blends. Journal of Thermal Analysis
and Calorimetry, 97(2): 565-570.
28.
Wang, N., Yu, J., Chang, P. R. and Ma, X. (2009). Influence of formaide and water on properties of thermoplastic starch/poly
(lactic) blends. Carbohydrate Polymers,
75(1): 1-8.
29.
Sinha, D. (2012). Structural modifications of gamma irradiated polymers.
FTIR Study, 3(3): 1365-1371.
30.
Alp, D. and Bulantekin,
Ö. (2021). The microbiological quality of various foods dried by applying
different drying methods: A review. European
Food Research Technology, 247(6): 1333-1343.