Malaysian Journal of Analytical Sciences, Vol 27 No 3 (2023): 552 - 562

 

COMPARATIVE STUDY ON THE EFFECT OF GAMMA RADIATION ON BIOPLASTICS

 

(Kajian Perbandingan Tentang Kesan Sinaran Gamma Terhadap Bioplastik)

 

Nurul Fathihah Abu Bakar, and Siti Amira Othman*

 

Faculty of Applied Sciences and Technology,

Universiti Tun Hussein Onn Malaysia, 84600, Pagoh, Johor, Malaysia

 

*Corresponding author: sitiamira@uthm.edu.my

 

 

Received: 20 January 2023; Accepted: 9 May 2023; Published:  23 June 2023

 

Abstract

Conventional plastic is made from petrochemical substances. Its non-biodegradable properties negatively impact the environment, causing landfill pollution and affecting wildlife and aquatic life. It uses non-renewable sources that will be depleted in a few years if there is no solution to this situation. This study was carried out to produce bio-plastic made from renewable sources: 10 g of corn starch, 5 ml of glycerol and vinegar, and 60 ml of distilled water. The produced bio-plastic was exposed to gamma radiation to observe the difference between irradiated and non-irradiated bio-plastics. Surface morphology and chemical properties like absorption spectra, functional group and chemical bonding were characterized using Opto Digital Microscope, Ultra-Violate Visible (UV-Vis) Spectrophotometer and Fourier Transform Infrared Spectroscopy (FTIR). The results indicate that exposure to gamma radiation causes the bio-plastic surface to be darker with some degradation. Irradiated bio-plastic degrades faster than the ones not irradiated. The samples were characterized using UV-Vis, prepared in different glycerol concentrations to determine which concentration gave the best absorption peak. The absorption peaked at 270 nm wavelength in the highest glycerol concentration. Functional groups like alcohols, carbonyl and ester were also found in the sample’s solution. All functional groups that contribute to the bio-plastic properties could be stretched and bent to enhance their performances as a packaging application. Overall, exposure to gamma radiation improves the bio-plastic quality as a packaging application that can be used in the food and pharmaceutical industries.

 

Keywords: Effect of gamma radiation, bioplastics, radiation, ionizing

 

Abstrak

Plastik konvensional diperbuat daripada bahan petrokimia. Sifat tidak terbiodegradasinya memberi kesan negatif kepada alam sekitar, menyebabkan pencemaran tapak pelupusan dan menjejaskan hidupan liar dan akuatik. Ia menggunakan sumber tidak boleh diperbaharui yang akan habis dalam beberapa tahun jika tiada penyelesaian kepada keadaan ini. Kajian ini dijalankan untuk menghasilkan bio-plastik yang diperbuat daripada sumber boleh diperbaharui: 10 g kanji jagung, 5 ml gliserol dan cuka, dan 60 ml air suling. Bio-plastik yang dihasilkan telah didedahkan kepada sinaran gamma untuk melihat perbezaan antara bio-plastik yang disinari dan tidak disinari. Morfologi permukaan dan sifat kimia seperti spektrum serapan, kumpulan berfungsi dan ikatan kimia telah dicirikan menggunakan Mikroskop Opto Digital, Spektrofotometer Cahaya Nampak-Ultraungu (UV-Vis) dan Inframerah Transformasi Fourier (FTIR). Keputusan menunjukkan bahawa pendedahan kepada sinaran gamma menyebabkan permukaan bio-plastik menjadi lebih gelap dengan sedikit degradasi. Bio-plastik yang disinari merosot lebih cepat daripada yang tidak disinari. Sampel telah dicirikan menggunakan UV-Vis, disediakan dalam kepekatan gliserol yang berbeza untuk menentukan kepekatan yang memberikan puncak penyerapan terbaik. Penyerapan memuncak pada panjang gelombang 270 nm dalam kepekatan gliserol tertinggi. Kumpulan berfungsi seperti alkohol, karbonil dan ester juga ditemui dalam larutan sampel. Semua kumpulan berfungsi yang menyumbang kepada sifat bio-plastik boleh diregangkan dan dibengkokkan untuk meningkatkan prestasi mereka sebagai aplikasi pembungkusan. Secara keseluruhan, pendedahan kepada sinaran gamma meningkatkan kualiti bio-plastik sebagai aplikasi pembungkusan yang boleh digunakan dalam industri makanan dan farmaseutikal.

 

Kata kunci: Kesan sinaran gama, bioplastik, sinaran, pengionan

 


References

1.       Aquino, K. A. d. S. (2012). Sterilization by gamma irradiation. Gamma Radiation, 51(5): 978-953.

2.       Ansari, I., A. and Datta, A., K. (2003). An overview of sterilization methods for packaging materials used in aseptic packaging systems. Trans IChem, 81(3): 57-65.

3.       Ojumu, T. V., Yu, J. and Solomon, B. O. (2004) Production of polyhydroxyalkanoates, a bacterial biodegradable polymer. Africa Journal of Biotechnology, 43(8):18-24.

4.       Zinn, M, Witholtb B. and Eglia T. (2001). Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Advance Drug Delivery, 53(7): 5-21.

5.       Marina, C.V., Salvador, C. N., Eduardo, M., N. and Elaine, A. (2017). Gamma radiation effect on sisal/polyurethane composites without coupling agents. Polimeros, 27(2): 43-47.

6.       Haji-Saeid, M., Sampa, M. H. O. and Chmielewski, A. G. (2007). Radiation treatment for sterilization of packaging materials. Radiation Physics and Chemistry, 76(8-9): 1535-1541.

7.       Boreen, A. L., Arnold, W. A. and McNeill, K. (2003). Photodegradation of pharmaceuticals in the aquatic environment: A review. Aquatic Sciences. 65(4): 320-341.

8.       Riebel, M. J. (2014). Biooptical and biofunctional properties, applications and methods of polylactic acid films. US Patent, 01628828, 8(6): 996-998.

9.       Silvestre, C., Duraccio, D. and Cimmino, S. (2011). Food packaging based on polymer nanomaterials. Progress in Polymer Science, 36(12): 1766-1782.

10.    Zhang, Q. X., Yu, Z. Z. and Xie, X. L. (2007) Preparation and crystalline morphology of biodegradable starch/clay nanocomposites, Polymer, 48(2): 7193-7200.

11.    Madison, L. L. and Huisman, G. W. (2000). Microbial: A review. Journal of Industrial Engineering, 63(8): 21-53.

12.    Marjadi, D. and Dharaiya, N. (2012). Potential materials for food nanoclay. Everyman’s Science, 57(2): 70-73.

13.    Balser, K., Hoppe, L., Eicher, T., Wandel, M., Astheimer, H., J. and Steinmeier, H. (2004). Cellulose esters. Ullmann’s Encyclopaedia of Industrial Chemistry, 7(24): 23-29.

14.    Saraswat, Y., Patel, M., Sagar, T. and Shil, S. (2005). Bio-plastics from Starch. Journal of Food Science, 1(73): 385-387.

15.    Stevens, E. S. (2002). Green plastics: an introduction to the new science of biodegradable plastics. Princeton University Press, 78(2): pp. 57-65.

16.    Gáspár, M., Benko, Z., Dogossy, G., Réczey, K. and Czigány, T. (2005). Reducing water absorption in compostable starch-based plastics. Polymer Degradation and Stability, 90(3): 563-569.

17.    Wellfair, S. T. (2008). Testing the degradation rates of degradable, non-degradable and bio-degradable plastics within simulated marine environments. Journal of Marine Science, 76(2): 243-301.

18.    Deanin, R. D. (1975). Additives in plastics. Environmental Health Perspectives, 95(11): 35-39.

19.    Rojas De Gante, C. and Pascat, B. (1990). Effects of b-ionizing radiation on the properties of flexible packaging materials. Packaging Technology Science, 3: 97-105.

20.    Parparita, E., Zaharescu, T., Darie, R.N. and Vasile, C. (2015). Biomass effect on gamma-irradiation behavior of some polypropylene biocomposites. Industrial Engineering Chemical, 54(12): 2404-2413.

21.    Gáspár, M., Benko, Z., Dogossy, G., Réczey, K. and Czigány, T. (2005). Reducing water absorption in compostable starch-based plastics. Polymer Degradation and Stability, 90(3): 563-569.

22.    Stark, N. M. and Matuana, L. M. (2007). Characterization of weathered wood e plastic composite surfaces using FTIR spectroscopy, contact angle, and XPS. Journal of Composites, 92(8): 1883-1890.

23.    Bajer, D. and Kaczmarek, H. (2010). Study of the influence of UV radiation on biodegradable blends based on chitosan and starch. Journal of Advanced Science, 107(6): 17-24.

24.    Szczepanowska H. and Wilson W. (2000). Permanancy of reprographic images on polyester film. Journal of American Institute for Conservation, 39(3): 234-240.

25.    Ismail, N. A. (2016). Synthesis and characterization of biodegradable starch-based bioplastics. Polymer Science, 87(2): 77-83.

26.    Lomelí-ramírez, M. G., Kestur, S. G., Manríquez-gonzález, R., Iwakiri, S., Bolzon, G. and Muniz, D. (2014). Bio-composites of cassava starch-green coconut fiber. Structure and properties, 102(1): 576-583.

27.    Santos, D. S., Bardi, M. A. G., Machado, L. D. B., Dias, D. B. D., Leonardo, G. A. and Kodama, K. (2009). Influence of thermoplastic starch plasticized with biodiesel glycerol on thermal properties of pp blends. Journal of Thermal Analysis and Calorimetry, 97(2): 565-570.

28.    Wang, N., Yu, J., Chang, P. R. and Ma, X. (2009). Influence of formaide and water on properties of thermoplastic starch/poly (lactic) blends. Carbohydrate Polymers, 75(1): 1-8.

29.    Sinha, D. (2012). Structural modifications of gamma irradiated polymers. FTIR Study, 3(3): 1365-1371.

30.    Alp, D. and Bulantekin, Ö. (2021). The microbiological quality of various foods dried by applying different drying methods: A review. European Food Research Technology, 247(6): 1333-1343.