Malaysian Journal of Analytical Sciences, Vol 27 No 3 (2023): 533 - 551

 

FLUOROQUINOLONE RESIDUES IN FOOD: OCCURRENCE AND ANALYTICAL METHODS - A MINI REVIEW FROM 2000 TO 2022

 

(Sisa Fluorokuinolon di dalam Makanan: Kemunculan dan Kaedah Analisis –

Satu Ulasan Mini Tempoh 2000 hingga 2022)

 

Wen Yu Foo, Saw Hong Loh, Wan Mohd Afiq Wan Mohd Khalik, and Marinah Mohd Ariffin*

 

Faculty of Science and Marine Environment,

Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

 

*Corresponding author: erin@umt.edu.my

 

 

Received: 13 March 2023; Accepted: 10 May 2023; Published:  23 June 2023

 

 

Abstract

Fluoroquinolones are used to treat and prevent serious bacterial infections. They are widely applied in the husbandry and veterinary areas as well as in the human medication scope. There is an emerging concern about the residues of fluoroquinolones in the environment. Once in the environment, especially in the water bodies, they will be taken up and accumulated in our livestock, which subsequently enters our body through our food resources. Therefore, the residues of fluoroquinolones in animal-based food are required to be monitored and assessed. The development of existing methods is crucial to provide accurate data on the fluoroquinolone residues in different food samples. This review presents an overview of the proposed methods from 2000 to 2022 for the analysis of fluoroquinolones in food samples. The extraction techniques were mostly combined with liquid chromatography and fluorescent detection. These methods allow for low detection limits and high recovery values. The ideal detection limit is less than 10 μg L-1. The main drawback of the screening test is low sensitivity and it may provide false positive results. A quantitative analytical method is important in giving the most accurate result from the determination of fluoroquinolones residues in different food matrices. One of the important factors to allow a low detection limit is the extraction method used. The solid phase extraction methods are the most widely used method for sample preparation. In addition, the physical and chemical properties, classification, toxicology, side effect of fluoroquinolones and occurrence of these residues in food samples were discussed in this paper.

 

Keywords: antibiotics, fluoroquinolones, food, extraction

 

Abstrak

Fluorokuinolon digunakan untuk merawat dan mencegah jangkitan bakteria yang serius. Ia digunakan secara meluas dalam bidang penternakan dan veterinar serta dalam skop perubatan manusia. Terdapat kebimbangan yang timbul tentang sisa fluorokuinolon di alam sekitar. Apabila berada di alam sekitar, terutamanya di dalam air, ia akan diambil dan terkumpul dalam ternakan kita, dan seterusnya memasuki badan kita melalui sumber makanan kita. Oleh itu, sisa fluorokuinolon dalam makanan berasaskan haiwan perlu dipantau dan dinilai. Pembangunan kaedah sedia ada adalah penting untuk menyediakan data yang tepat tentang sisa fluorokuinolon dalam sampel makanan yang berbeza. Kajian ini membentangkan gambaran keseluruhan kaedah yang dicadangkan terutamanya dari 2000 hingga 2022 untuk analisis fluorokuinolon dalam sampel makanan. Kaedah pengekstrakan yang paling banyak bergabungan dengan kromatografi cecair dan pengesanan pendarfluor. Kaedah ini membenarkan had pengesanan rendah dan nilai pemulihan yang tinggi. Had pengesanan yang ideal adalah kurang daripada 10 μg L-1. Kelemahan utama ujian saringan ialah kepekaan yang rendah dan ia mungkin memberikan keputusan positif palsu. Kaedah analisis kuantitatif adalah penting dalam memberikan hasil yang paling tepat daripada penentuan sisa fluorokuinolon dalam matriks makanan yang berbeza. Salah satu faktor penting untuk membenarkan had pengesanan yang rendah ialah kaedah pengekstrakan yang digunakan. Kaedah pengekstrakan fasa pepejal ialah kaedah yang paling banyak digunakan untuk penyediaan sampel. Di samping itu, sifat fizikal dan kimia, klasifikasi, toksikologi, kesan sampingan fluorokuinolon dan kejadian sisa ini dalam sampel makanan turut dibincangkan dalam kertas ini.

 

Kata kunci: antibiotik, fluorokuinolon, makanan, pengekstrakan


 

References

1.       Gaynes, R. (2017). The discovery of penicillin-new insights after more than 75 years of clinical use. Emerging Infectious Disease, 23(5): 849-853.

2.       Ullah, H. and Ali, S. (2017). Classification of antibacterial agents and their functions, in: antibacterial agents. IntechOpen, United Kingdom: pp. 138.

3.       Meek, R.W., Vyas, H. and Piddock, L. J. V. (2015). Nonmedical uses of antibiotics: Time to restrict their use? PLOS Biology, 13(10): e1002266.

4.       Aiello, A. E., Marshall, B., Levy, S. B., Della-Latta, P., Lin, S. X. and Larson, E. (2005). Antibacterial cleaning products and drug resistance. Emerging Infectious Disease, 11(10):1565-1570.

5.       Grobbel, M., Lübke-Becker, A., Wieler, L. H., Froyman, R., Friederichs, S. and Filios, S. (2007). Comparative quantification of the in vitro activity of veterinary fluoroquinolones. Veterinary Microbiology, 124(1-2):73-81.


6.       Xu, J., Li, X., Li, C., Chen, J. and Xiao, Y. (2018). Hexafluoroisopropanol-induced salt-free catanionic surfactant coacervate extraction method for determination of fluoroquinolones in milk samples. Food Chemistry, 242: 122-130.

7.       Pham, T. D. M., Ziora, Z. M. and Blaskovich, M. A. T. (2019). Quinolone antibiotics. Medicinal Chemistry Communication, 10: 1719-1739.

8.       Herrera-Herrera, A.V., Hernández-Borges, J., Rodríguez-Delgado, M.A., Herrero, M. and Cifuentes, A. (2011). Determination of quinolone residues in infant and young children powdered milk combining solid-phase extraction and ultra-performance liquid chromatography-tandem mass spectrometry. Journal of Chromatography A, 1218(42): 7608-1764.

9.       Schenck, F. J. and Callery, P. S. (1998). Chromatographic methods of analysis of antibiotics in milk. Journal of Chromatography A, 812: 99-109.

10.    Lindgren, P. K., Karlsson, Å. and Hughes, D. (2003). Mutation rate and evolution of fluoroquinolone resistance in escherichia coli isolates from patients with urinary tract infections. Antimicrob Agents Chemotheraphy, 47(10): 3222-3232.

11.    Peixoto, P. S., Tóth, I. V., Segundo, M. A. and Lima, J. L. F. C. (2016). Fluoroquinolones and sulfonamides: Features of their determination in water. A review. International Journal of Environmental Analytical Chemistry, 96(2): 1-18.

12.    Brouwers, J. R. B. J. (1987). Pharmacokinetics of the newer fluoroquinolones. Pharmaceutish Weekblad, 9: S16-22.

13.    United States Food and Drug Administration. (2009). CIPRO® Tablets CIPRO® Oral Suspension. https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/019537s073,020780s030lbl.pdf. [Access online 27 April 2023].

14.    National Library of Medicine. Flumequine. https://pubchem.ncbi.nlm.nih.gov/compound/Flumequine. [Access online 27 April 2023].

15.    Almalki, Z. S., Yue, X., Xia, Y., Wigle, P. R. and Guo, J. J. (2017). Utilization, spending, and price trends for quinolones in the US medicaid programs: 25 years’ experience 1991-2015. PharmacoEconomics-Open, 1(2):123-131.

16.    Mohammed, H., Abdou, A., Eid, A. and Zakaria, A. (2016). Rapid tests for detection of ciprofloxacin residues in liquid milk. Benha Veterinary Medical Journal, 30(1): 246-253.

17.    Domagala, J.M. (1994). Structure-activity and structure-side-effect relationships for the quinolone antibacterials. Journal of Antimicrobial Chemotherapy, 33: 685-706.

18.    King, D. E., Malone, R. and Lilley, S. H. (2000). New classification and update on the quinolone antibiotics. American Family Physician, 61(9): 2741-2748.

19.    Pitman, S. K., Hoang, U. T. P. Wi, C. H., Alsheikh, A. Hiner, D. A. and Percival, K. M. (2019). Revisiting oral fluoroquinolone and multivalent cation drug-drug interactions: Are they still relevant? Antibiotics (Basel), 8(3): 108-115.

20.    Drusano, G., Labro, M. T., Cars, O., Mendes, P., Shah, P., Sörgel, F. and Webel, W. (1998). Pharmacokinetics and pharmacodynamics of fluoroquinolones. Clinical Microbiology and Infection, 4(2): S27-S41.

21.    Mathew, J. L. (2004). Effect of maternal antibiotics on breastfeeding infants. Postgraduate Medical Journal, 80: 196-200.

22.    Bourget, P., Quinquis-Desmaris, V. and Fernandez, H. (1993). Ceftriaxone distribution and protein binding between maternal blood and milk postpartum. The Annals of Pharmacotherapy, 27(3): 94-97.

23.    Ward, R. M., Bates, B. A., Benitz, W. E., Burchfield, D. J., Ring, J. C. and Walls, R. P. (2001). The transfer of drugs and other chemicals into human milk. Pediatrics, 108: 776-789.

24.    Gardner, D. K., Gabbe, S. G. and Harter, C. (1992). Simultaneous concentrations of ciprofloxacin in breast milk and in serum in mother and breast-fed infant. Clinical Pharmacy, 11(4): 352-354.

25.    Mehdi, Y., Létourneau-Montminy, M.P., Gaucher, M. L., Chorfi, Y., Suresh, G., Rouissi, T., Brar, S.K., Côté, C. Ramirez, A. A. and Godbouat, S. (2018). Use of antibiotics in broiler production: Global impacts and alternatives. Animal Nutrition, 4: 170-178.  


26.    Wegener, H.C. (2012). Antibiotic resistance-linking human and animal health, in: Improving food safety through a one health approach: workshop summary. National Academy of Sciences, United States. Access from https://www.ncbi.nlm.nih.gov/books/NBK114485/?report=printable. [Access online 30 April 2023].

27.    Hughes, P. and Heritage, J. (2004). Antibiotic growth-promoters in food animals. Access from https://www.fao.org/3/y5159e/y5159e08.htm. [Access online 30 April 2023].

28.    Torok, V. A., Allison, G. E., Percy, N. J., Ophel-Keller, K. and Hughes, R. J. (2011). Influence of antimicrobial feed additives on broiler commensal post hatch gut microbiota development and performance. Applied and Environmental Microbiology, 77(10): 3380-3390.

29.    Abutarbush, S. M., Schunicht, O. C., Wildman, B. K., Hannon, S. J., Jim, G. K., Ward, T. I. and Booker, C.W. (2012). Comparison of enrofloxacin and ceftiofur sodium for the treatment of relapse of undifferentiated fever/bovine respiratory disease in feedlot cattle. The Canadian Veterinary Journal, 53(1): 57-62.

30.    European Union (2009). Commission Regulation (EU) No 37/2010 of 22 December 2009 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin. Access from https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32010R0037. [Access online 28 April 2023].

31.    Filip, C., Ceană, D. E. and Tero Vescan, A. (2014). Clinical aspects HPLC method with fluorescence detection for the identification and quantitative determination of fluoroquinolones in milk. Acta Medica Transilvanica, 11(1): 151-153.

32.    Food and Drug Administrative. (2018). FDA updates warnings for fluoroquinolone antibiotics on risks of mental health and low blood sugar adverse reactions. Access from https://www.fda.gov/news-events/press-announcements/fda-updates-warnings-fluoroquinolone-antibiotics-risks-mental-health-and-low-blood-su gar -adverse. [Access online 28 April 2023].

33.    Pallo-Zimmerman, L. M., Byron, J. K. and Graves, T. K. (2010). Fluoroquinolones: Then and now. Compendium, 32(7): 1-9.

34.    Fàbrega, A., Sánchez-Céspedes, J., Soto, S. and Vila, J. (2008). Quinolone resistance in the food chain. International Journal of Antimicrobial Agents, 31: 307-315.

35.    Prestinaci, F., Pezzotti, P. and Pantosti, A. (2015). Antimicrobial resistance: A global multifaceted phenomenon. Pathogens and Global Health, 109: 309-318.

36.    Azmi, M., Hassali, A., Rhu, H., Ashutosh, Y., Verma, K., Hussain, R. and Sivaraman, S. (2018). Antibiotic use in food animals. Universiti Sains Malaysia, Malaysia. Access from https://www.reactgroup.org/wp-content/uploads/2018/11/Antibiotic_Use_in_Food_Animals_Malaysia_Overview_2018web.pdf. [Access online 30 April 2023].

37.    European Medicines Agency (2018). Fluoroquinolone and quinolone antibiotics: PRAC recommends restrictions on use new restrictions follow a review of disabling and potentially long-lasting side effects. Access from https://www.ema.europa.eu/en/news/fluoroquinolone-quinolone-antibiotics-prac-recommends-new-restrictions-use-following-review. [Access online 30 April 2023].

38.    Ferlito, C. (2020). The poultry industry and its supply chain in Malaysia: Challenges from the Covid-19 Emergency. [Access online 30 April 2023].

39.    Lai, Y. (2020). Poultry firms count on nuggets and sausages to feed sales growth. The edge markets, Malaysia. Access from https://www.theedgemarkets.com/article/poultry-firms-count-nuggets-and-sausages-feed-sales-growth. [Access online 30 April 2023].

40.    Urraca, J. L., Castellari, M., Barrios, C. A. and Moreno-Bondi, M. C. (2014). Multiresidue analysis of fluoroquinolone antimicrobials in chicken meat by molecularly imprinted solid-phase extraction and high performance liquid chromatography. Journal of Chromatography A, 1343: 1-9.

41.    Sproston, E. L., Wimalarathna, H. M. L. and Sheppard, S. K. (2018). Trends in fluoroquinolone resistance in Campylobacter. Microbial Genomics, 4(8): e000198.

42.    Zhang, C., Deng, Y., Zheng, J., Zhang, Y., Yang, L., Liao, C., Su, L,, Zhou, Y., Gong, D., Chen, L. and Luo, A. (2019). Application of the QuEChERS methodology in the determination of antibiotics in food: A review. TrAC Trends in Analytical Chemistry, 118: 517-537.

43.    Boxall, A. B. A., Blackwell, P., Cavallo, R., Kay, P. and Tolls, J. (2002). The sorption and transport of a sulphonamide antibiotic in soil systems. Toxicology Letters, 131: 19-28.

44.    Pan, X., Qiang, Z., Ben, W. and Chen, M. (2011). Residual veterinary antibiotics in swine manure from concentrated animal feeding operations in Shandong Province, China. Chemosphere, 84(5): 695-700.

45.    Karci, A. and Balcioǧlu, I. A. (2009). Investigation of the tetracycline, sulfonamide, and fluoroquinolone antimicrobial compounds in animal manure and agricultural soils in Turkey. Science of Total Environment, 407(16): 4652-4664.

46.    Ahmed, B. M., Rajapaksha, A. U., Lim, J. E., Vu, N. T., Kim, I. S., Kang, H. M., Lee, S. S. and Ok, Y. S. (2014). Distribution and accumulative pattern of tetracyclines and sulfonamides in edible vegetables of cucumber, tomato, and lettuce. Journal of Agricultural and Food Chemistry, 63(2): 395-405.

47.    Tadić, Đ., Bleda Hernandez, M. J., Cerqueira, F., Matamoros, V., Piña, B. and Bayona, J. M. (2021). Occurrence and human health risk assessment of antibiotics and their metabolites in vegetables grown in field-scale agricultural systems. Journal of Hazardous Materials, 401: 123424.

48.    Zhao, F., Yang, L., Chen, L., Li, S. and Sun, L. (2019). Bioaccumulation of antibiotics in crops under long-term manure application: Occurrence, biomass response and human exposure. Chemosphere, 219: 882-895.

49.    Fick, J., Söderström, H., Lindberg, R. H., Phan, C., Tysklind, M. and Larsson, D. G. J. (2009). Contamination of surface, ground, and drinking water from pharmaceutical production. Environmental Toxicology and Chemistry, 28(12): 2522-2527.

50.    Pan, M., and Chu, L.M. (2017). The fate of antibiotics in soil and their uptake by edible crops. Science of the Total Environment. 599-600: 500-512.

51.    Al-Waili, N., Salom, K., Al-Ghamdi, A. and Ansari, M. J. (2012). Antibiotic, pesticide, and microbial contaminants of honey: Human health hazards. The Scientific World Journal, 2012: 930849.

52.    Randox Food Diagnostics (2019). Antibiotics in honey – treatment against bee diseases. Access from https://www.randoxfood.com/antibiotics-in-honey-treatment-against-bee-diseases/. [Access online 30 April 2023].

53.    Ortelli, D., Edder, P. and Corvi, C. (2004). Analysis of chloramphenicol residues in honey by liquid chromatography-tandem mass spectrometry. Chromatographia, 59(1-2): 61-64.

54.    Forsgren, E. (2010). European foulbrood in honey bees. Journal of Invertebrate Pathology, 103: S5-S9.

55.    Choi, S. H., Kim, E.Y. and Kim, Y. J. (2013). Systemic use of fluoroquinolone in children. Korean Journal of Pediatrics, 56: 196-201.

56.    Rodriguez, E., Moreno-Bondi, M. C. and Marazuela, M. D. (2011). Multiresidue determination of fluoroquinolone antimicrobials in baby foods by liquid chromatography. Food Chemistry, 127(3):1354-1360.

57.    World Health Organization (2006). Antimicrobial use in aquaculture and antimicrobial resistance. Access from https://agsci.oregonstate.edu/sites/agscid7/files/snic/antimicrobial-use-in-aquaculture-and-antimicro bial -resistance.pdf. [Access online 30 April 2023].

58.    Kalunke, R.M., Grasso, G., D’Ovidio, R., Dragone, R. and Frazzoli, C. (2018). Detection of ciprofloxacin residues in cow milk: A novel and rapid optical β-galactosidase-based screening assay. Microchemical Journal, 136: 128-132.


59.    Appicciafuoco, B., Dragone, R., Frazzoli, C., Bolzoni, G., Mantovani, A. and Ferrini, A. M. (2015). Microbial screening for quinolones residues in cow milk by bio-optical method. Journal of Pharmaceutical and Biomedical Analysis, 106: 179-185.

60.    Pikkemaat, M. G. (2009). Microbial screening methods for detection of antibiotic residues in slaughter animals. Analytical and Bioanalytical Chemistry, 395: 893-905.

61.    Herrera-Herrera, A. V., Hernández-Borges, J. and Rodríguez-Delgado, M. Á. (2009). Fluoroquinolone antibiotic determination in bovine, ovine and caprine milk using solid-phase extraction and high-performance liquid chromatography-fluorescence detection with ionic liquids as mobile phase additives. Journal of Chromatography A, 1216(43): 7281-7287.

62.    Wang, G. N., Yang, K., Liu, H. Z., Feng, M. X. and Wang, J. P. (2016). Molecularly imprinted polymer-based solid phase extraction combined high performance liquid chromatography for determination of fluoroquinolones in milk. Analytical Methods, 8(27): 5511-5518.

63.    Poole, C. F. (2020). Solid-phase extraction. Elsevier, United States: pp. 215-233.

64.    Sarafraz-Yazdi, A. and Razavi, N. (2015). Application of molecularly-imprinted polymers in solid-phase microextraction techniques. TrAC Trends in Analytical Chemistry, 73: 81-90.

65.    Jing, T., Gao, X. D., Wang, P., Wang, Y., Lin, Y. F., Hu, X. Z., Hao, Q. L., Zhou, Y. K. and Mei, S. R. (2009). Determination of trace tetracycline antibiotics in foodstuffs by liquid chromatography-tandem mass spectrometry coupled with selective molecular-imprinted solid-phase extraction. Analytical and Bioanalytical Chemistry, 393(8): 2009-2018.

66.    Sun, X., He, X., Zhang, Y. and Chen, L. (2009). Determination of tetracyclines in food samples by molecularly imprinted monolithic column coupling with high performance liquid chromatography. Talanta, 79(3): 926-934.

67.    Sun, Y., Tian, J., Wang, L., Yan, H., Qiao, F. and Qiao, X. (2015). One pot synthesis of magnetic graphene/carbon nanotube composites as magnetic dispersive solid-phase extraction adsorbent for rapid determination of oxytetracycline in sewage water. Journal of Chromatography A, 1422: 53-59.

68.    Li, Y., Wu, X., Li, Z., Zhong, S., Wang, W., Wang, A. and Chen, J. R. (2015). Fabrication of CoFe2O4-graphene nanocomposite and its application in the magnetic solid phase extraction of sulfonamides from milk samples. Talanta, 144: 1279-1286.

69.    Bai, S. S., Li, Z., Zang, X. H., Wang, C. and Wang, Z. (2013). Graphene-based magnetic solid phase extraction-dispersive liquid-liquid microextraction combined with gas chromatographic method for determination of five acetanilide herbicides in water and green tea samples. Chinese Journal of Analytical Chemistry, 41(8): 1177-1182.

70.    Dan, W., Ming, G. and Ju, Z. (2020). Determination of 10 fluoroquinolones residues in aquatic products by accelerated solvent extraction, magnetic solid-phase extraction, and high-performance liquid chromatography-tandem mass spectrometry. Chinese Journal of Chromatography, 38(12): 1413-1422.

71.    Aufartová, J., Brabcová, I., Torres-Padrón, M. E., Solich, P., Sosa-Ferrera, Z. and Santana-Rodríguez, J. J. (2017). Determination of fluoroquinolones in fishes using microwave-assisted extraction combined with ultra-high performance liquid chromatography and fluorescence detection. Journal of Food Composition and Analysis, 56: 140-146.

72.    Aguilera-Luiz, M. M., Vidal, J. L. M., Romero-González, R. and Frenich, A. G. (2008). Multi-residue determination of veterinary drugs in milk by ultra-high-pressure liquid chromatography-tandem mass spectrometry. Journal of Chromatography A, 1205(1-2):10-16.

73.    Dinh, Q. T., Munoz, G., Vo Duy, S., Tien Do, D., Bayen, S. and Sauvé, S. (2020). Analysis of sulfonamides, fluoroquinolones, tetracyclines, triphenylmethane dyes and other veterinary drug residues in cultured and wild seafood sold in Montreal, Canada. Journal of Food Composition and Analysis, 94: 103630.

74.    Rodriguez, E., Moreno-Bondi, M. C. and Marazuela, M. D. (2008). Development and validation of a solid-phase extraction method coupled to liquid chromatography with fluorescence detection for the determination of fluoroquinolone residues in powdered infant formulae. application to the analysis of samples from the spanish and latin american market. Journal of Chromatography A, 1209(1-2): 136-144.

75.    Idowu, O. R. and Peggins, J. O. (2004). Simple, rapid determination of enrofloxacin and ciprofloxacin in bovine milk and plasma by high-performance liquid chromatography with fluorescence detection. Journal of Pharmaceutical and Biomedical Analysis, 35(1): 143-153.

76.    Klemz, A. C.,  Weschenfelder, S. E., de Carvalho Neto, S. L., Pascoal Damas, M. S., Toledo Viviani, J. C., Mazur, L. P., Marinho, B. A., dos Santos Pereira, L., da Silva, A., Borges Valle, J. A., de Souza, A. A. U., and de Souza, S. M. A. G. U. (2021). Oilfield produced water treatment by liquid-liquid extraction: A review. Journal of Petroleum Science and Engineering, 199: 108282.

77.    Aguilera-Luiz, M. M., Martínez Vidal, J. L., Romero-González, R. and Garrido Frenich, A. (2012). Multiclass method for fast determination of veterinary drug residues in baby food by ultra-high-performance liquid chromatography-tandem mass spectrometry. Food Chemistry, 132(4): 2171-2180.

78.    Campíns-Falcó, P., Sevillano-Cabeza, A., Herráez-Hernández, R., Molins-Legua, C., Moliner-Martínez, Y. and Verdú-Andrés, J. (2022). Solid-phase extraction and clean-up procedures in pharmaceutical analysis, in: Encyclopedia of Analytical Chemistry. John Wiley & Sons, United Kingdom: pp. 1-22.

79.    Andrade-Eiroa, A., Canle, M., Leroy-Cancellieri, V. and Cerdà, V. (2016). Solid-phase extraction of organic compounds: A critical review. TrAC Trends in Analytical Chemistry, 80: 655-667.

80.    Vakh, C., Alaboud, M., Lebedinets, S., Korolev, D., Postnov, V., Moskvin, L., Osmolovskaya, O. and Bulatox, A. (2018). An automated magnetic dispersive micro-solid phase extraction in a fluidized reactor for the determination of fluoroquinolones in baby food samples. Analytica Chimica Acta, 1001: 59-69.

81.    Tian, C., Ren, X., He, M., Chen, B. and Hu, B. (2021). Core-shell magnetic porous organic polymer for magnetic solid-phase extraction of fluoroquinolone antibiotics in honey samples followed by high-performance liquid chromatography with fluorescence detection. Journal of Separation Science, 45(4): 874-882.

82.    van Hout, M. W. J., Niederländer, H. A. G., de Zeeuw, R. A. and de Jong, G. J. (2003). New developments in integrated sample preparation for bioanalysis, In: Handbook of Analytical Separations. Elsevier, United States:  pp. 1-44.

83.    Xu, H., Ding, Z., Lv, L., Song, D. and Feng, Y. Q. (2009). A novel dispersive liquid-liquid microextraction based on solidification of floating organic droplet method for determination of polycyclic aromatic hydrocarbons in aqueous samples. Analytica Chimica Acta, 636(1): 28-33.

84.    Rezaee, M., Assadi, Y., Milani Hosseini, M. R., Aghaee, E., Ahmadi, F. and Berijani, S. (2006). Determination of organic compounds in water using dispersive liquid-liquid microextraction. Journal of Chromatography A, 1116(1-2): 1-9.

85.    Li, Y., Zhang, W., Wang, R. G., Wang, P. L. and Su, X. O. (2015). Development of an efficient and sensitive dispersive liquid-liquid microextraction technique for extraction and preconcentration of 10 β2-agonists in animal urine. PLoS ONE, 10(9): e0137194.

86.    Zgoła-Grześkowiak, A. and Grześkowiak, T. (2011). Dispersive liquid-liquid microextraction. TrAC Trends in Analytical Chemistry, 30: 1382-1399.

87.    Yu, K., Yue, M. E., Xu, J. and Jiang, T. F. (2020). Determination of fluoroquinolones in milk, honey and water samples by salting out-assisted dispersive liquid-liquid microextraction based on deep eutectic solvent combined with MECC. Food Chemistry, 332: 127371.

88.    Timofeeva, I., Timofeev, S., Moskvin, L. and Bulatov, A. (2017). A dispersive liquid-liquid microextraction using a switchable polarity dispersive solvent. Automated HPLC-FLD determination of ofloxacin in chicken meat. Analytica Chimica Acta, 949: 35-42.

89.    Giergielewicz-Mozajska, H., Dabrowski, L. and Namieśnik, J. (2001). Accelerated solvent extraction (ASE) in the analysis of environmental solid samples - some aspects of theory and practice. Critical Reviews in Analytical Chemistry, 31(3): 149-165.

90.    Yu, H., Tao, Y., Chen, D., Pan, Y., Liu, Z., Wang, Y., Huang, L., Dai, M., Peng, D., Wang, X. and Yuan, Z. (2012). Simultaneous determination of fluoroquinolones in foods of animal origin by a high performance liquid chromatography and a liquid chromatography tandem mass spectrometry with accelerated solvent extraction. Journal of Chromatography B, Analytical Technologies in the Biomedical and Life Sciences, 885-886: 150-159.

91.    Roybal, J. E., Pfenning, A. P., Turnipseed, S. B., Walker, C. C. and Hurlbut, J. A. (1997). Determination of four fluoroquinolones in milk by lquid chromatography. Journal of AOAC International, 80(5): 982-987.

92.    Yang, G., Lin, B., Zeng, Z., Chen, Z. and Huang, X. (2005). Multiresidue determination of eleven quinolones in milk by liquid chromatography with fluorescence detection. Journal of AOAC International, 88(6):1688-1694.

93.    Cinquina, A.L., Roberti, P., Giannetti, L., Longo, F., Draisci, R., Fagiolo, A. and Brizioli, N. R. (2003). Determination of enrofloxacin and its metabolite ciprofloxacin in goat milk by high-performance liquid chromatography with diode-array detection: Optimization and validation. Journal of Chromatography A, 987(1-2): 221-226.

94.    Zhang, M., Chen, J., Zhao, F. and Zeng, B. (2020). Determination of fluoroquinolones in foods using ionic liquid modified Fe3O4/MWCNTs as the adsorbent for magnetic solid phase extraction coupled with HPLC. Analytical Methods, 12(36): 4457-4465.

95.    Yu, H., Jia, Y., Wu, R., Chen, X. and Chan T. W. D. (2019). Determination of fluoroquinolones in food samples by magnetic solid-phase extraction based on a magnetic molecular sieve nanocomposite prior to high-performance liquid chromatography and tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 411(13): 2817-2826.

96.    Liu, P.Y., Shen, J., Gao, L., Liu, L., Li, R. and Li, Q. (2010). Determination of fluoroquinolones in milk by high-performance liquid chromatography using mixed-templates imprinted polymer extraction. Asian Journal of Chemistry, 22(8): 6275-6288.