Malaysian Journal of Analytical
Sciences, Vol 27
No 3 (2023): 533 - 551
FLUOROQUINOLONE
RESIDUES IN FOOD: OCCURRENCE AND ANALYTICAL METHODS - A MINI REVIEW FROM 2000
TO 2022
(Sisa Fluorokuinolon di dalam
Makanan: Kemunculan dan Kaedah Analisis –
Satu Ulasan Mini Tempoh 2000 hingga
2022)
Wen Yu Foo, Saw Hong Loh, Wan
Mohd Afiq Wan Mohd Khalik, and Marinah Mohd Ariffin*
Faculty of Science and Marine Environment,
Universiti Malaysia Terengganu, 21030 Kuala Nerus,
Terengganu, Malaysia
*Corresponding author:
erin@umt.edu.my
Received: 13 March 2023; Accepted: 10
May 2023; Published: 23 June 2023
Abstract
Fluoroquinolones
are used to treat and prevent serious bacterial infections. They are widely
applied in the husbandry and veterinary areas as well as in the human
medication scope. There is an emerging concern about the residues of
fluoroquinolones in the environment. Once in the environment, especially in the
water bodies, they will be taken up and accumulated in our livestock, which
subsequently enters our body through our food resources. Therefore, the
residues of fluoroquinolones in animal-based food are required to be monitored
and assessed. The development of existing methods is crucial to provide
accurate data on the fluoroquinolone residues in different food samples. This
review presents an overview of the proposed methods from 2000 to 2022 for the
analysis of fluoroquinolones in food samples. The extraction techniques were
mostly combined with liquid chromatography and fluorescent detection. These
methods allow for low detection limits and high recovery values. The ideal
detection limit is less than 10 μg
L-1. The main drawback of the screening test is low
sensitivity and it may provide false positive results. A quantitative
analytical method is important in giving the most accurate result from the
determination of fluoroquinolones residues in different food matrices. One of
the important factors to allow a low detection limit is the extraction method
used. The solid phase extraction methods are the most widely used method for
sample preparation. In addition, the physical and chemical properties,
classification, toxicology, side effect of fluoroquinolones and occurrence of
these residues in food samples were discussed in this paper.
Keywords: antibiotics,
fluoroquinolones, food, extraction
Abstrak
Fluorokuinolon
digunakan untuk merawat dan mencegah jangkitan bakteria yang serius. Ia
digunakan secara meluas dalam bidang penternakan dan veterinar serta dalam skop
perubatan manusia. Terdapat kebimbangan yang timbul tentang sisa fluorokuinolon
di alam sekitar. Apabila berada di alam sekitar, terutamanya di dalam air, ia
akan diambil dan terkumpul dalam ternakan kita, dan seterusnya memasuki badan
kita melalui sumber makanan kita. Oleh itu, sisa fluorokuinolon dalam makanan
berasaskan haiwan perlu dipantau dan dinilai. Pembangunan kaedah sedia ada
adalah penting untuk menyediakan data yang tepat tentang sisa fluorokuinolon
dalam sampel makanan yang berbeza. Kajian ini membentangkan gambaran
keseluruhan kaedah yang dicadangkan terutamanya dari 2000 hingga 2022 untuk
analisis fluorokuinolon dalam sampel makanan. Kaedah pengekstrakan yang paling
banyak bergabungan dengan kromatografi cecair dan pengesanan pendarfluor.
Kaedah ini membenarkan had pengesanan rendah dan nilai pemulihan yang tinggi.
Had pengesanan yang ideal adalah kurang daripada 10 μg L-1.
Kelemahan utama ujian saringan ialah kepekaan yang rendah dan ia mungkin
memberikan keputusan positif palsu. Kaedah analisis kuantitatif adalah penting
dalam memberikan hasil yang paling tepat daripada penentuan sisa fluorokuinolon
dalam matriks makanan yang berbeza. Salah satu faktor penting untuk membenarkan
had pengesanan yang rendah ialah kaedah pengekstrakan yang digunakan. Kaedah
pengekstrakan fasa pepejal ialah kaedah yang paling banyak digunakan untuk penyediaan
sampel. Di samping itu, sifat fizikal dan kimia, klasifikasi, toksikologi,
kesan sampingan fluorokuinolon dan kejadian sisa ini dalam sampel makanan turut
dibincangkan dalam kertas ini.
Kata
kunci: antibiotik, fluorokuinolon, makanan, pengekstrakan
References
1.
Gaynes, R. (2017). The discovery of penicillin-new insights
after more than 75 years of clinical use. Emerging Infectious Disease,
23(5): 849-853.
2.
Ullah,
H. and Ali, S. (2017). Classification of anti‐bacterial agents and their
functions, in: antibacterial agents. IntechOpen, United Kingdom: pp. 138.
3.
Meek,
R.W., Vyas, H. and Piddock, L. J. V. (2015). Nonmedical uses of antibiotics:
Time to restrict their use? PLOS Biology, 13(10): e1002266.
4.
Aiello,
A. E., Marshall, B., Levy, S. B., Della-Latta, P., Lin, S. X. and Larson, E.
(2005). Antibacterial cleaning products and drug resistance. Emerging
Infectious Disease, 11(10):1565-1570.
5.
Grobbel,
M., Lübke-Becker, A., Wieler, L. H., Froyman, R., Friederichs, S. and Filios,
S. (2007). Comparative quantification of the in vitro activity of veterinary
fluoroquinolones. Veterinary Microbiology, 124(1-2):73-81.
6.
Xu, J., Li, X., Li, C., Chen, J. and Xiao, Y. (2018). Hexafluoroisopropanol-induced
salt-free catanionic surfactant coacervate extraction method for determination
of fluoroquinolones in milk samples. Food Chemistry, 242: 122-130.
7.
Pham,
T. D. M., Ziora, Z. M. and Blaskovich, M. A. T. (2019). Quinolone antibiotics. Medicinal
Chemistry Communication, 10: 1719-1739.
8.
Herrera-Herrera,
A.V., Hernández-Borges, J., Rodríguez-Delgado, M.A., Herrero, M. and Cifuentes,
A. (2011). Determination of quinolone residues in infant and young children
powdered milk combining solid-phase extraction and ultra-performance liquid
chromatography-tandem mass spectrometry. Journal of Chromatography A,
1218(42): 7608-1764.
9.
Schenck,
F. J. and Callery, P. S. (1998). Chromatographic methods of analysis of
antibiotics in milk. Journal of Chromatography A, 812: 99-109.
10.
Lindgren,
P. K., Karlsson, Å. and Hughes, D. (2003). Mutation rate and evolution of fluoroquinolone
resistance in escherichia coli isolates
from patients with urinary tract infections. Antimicrob
Agents Chemotheraphy, 47(10): 3222-3232.
11.
Peixoto,
P. S., Tóth, I. V., Segundo, M. A. and Lima, J. L. F. C. (2016).
Fluoroquinolones and sulfonamides: Features of their determination in water. A
review. International Journal of Environmental Analytical Chemistry,
96(2): 1-18.
12.
Brouwers,
J. R. B. J. (1987). Pharmacokinetics of the newer fluoroquinolones. Pharmaceutish
Weekblad, 9: S16-22.
13.
United
States Food and Drug Administration. (2009). CIPRO® Tablets CIPRO® Oral
Suspension.
https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/019537s073,020780s030lbl.pdf.
[Access online 27 April 2023].
14.
National
Library of Medicine. Flumequine.
https://pubchem.ncbi.nlm.nih.gov/compound/Flumequine. [Access online 27 April
2023].
15.
Almalki,
Z. S., Yue, X., Xia, Y., Wigle, P. R. and Guo, J. J. (2017). Utilization,
spending, and price trends for quinolones in the US medicaid programs: 25
years’ experience 1991-2015. PharmacoEconomics-Open, 1(2):123-131.
16.
Mohammed,
H., Abdou, A., Eid, A. and Zakaria, A. (2016). Rapid tests for detection of
ciprofloxacin residues in liquid milk. Benha Veterinary Medical Journal,
30(1): 246-253.
17.
Domagala,
J.M. (1994). Structure-activity and structure-side-effect relationships for the
quinolone antibacterials. Journal of Antimicrobial Chemotherapy, 33:
685-706.
18.
King,
D. E., Malone, R. and Lilley, S. H. (2000). New classification and update on
the quinolone antibiotics. American Family Physician, 61(9): 2741-2748.
19.
Pitman,
S. K., Hoang, U. T. P. Wi, C. H., Alsheikh, A. Hiner, D. A. and Percival, K. M.
(2019). Revisiting oral fluoroquinolone and multivalent cation drug-drug
interactions: Are they still relevant? Antibiotics (Basel), 8(3):
108-115.
20.
Drusano,
G., Labro, M. T., Cars, O., Mendes, P., Shah, P., Sörgel, F. and Webel, W.
(1998). Pharmacokinetics and pharmacodynamics of fluoroquinolones. Clinical
Microbiology and Infection, 4(2): S27-S41.
21.
Mathew,
J. L. (2004). Effect of maternal antibiotics on breastfeeding infants. Postgraduate
Medical Journal, 80: 196-200.
22.
Bourget, P., Quinquis-Desmaris, V. and Fernandez, H. (1993). Ceftriaxone distribution and
protein binding between maternal blood and milk postpartum. The Annals of
Pharmacotherapy, 27(3): 94-97.
23.
Ward,
R. M., Bates, B. A., Benitz, W. E., Burchfield, D. J., Ring, J. C. and Walls,
R. P. (2001). The transfer of drugs and other chemicals into human milk. Pediatrics,
108: 776-789.
24.
Gardner,
D. K., Gabbe, S. G. and Harter, C. (1992). Simultaneous concentrations of
ciprofloxacin in breast milk and in serum in mother and breast-fed infant. Clinical
Pharmacy, 11(4): 352-354.
25.
Mehdi, Y., Létourneau-Montminy, M.P., Gaucher, M. L., Chorfi,
Y., Suresh, G., Rouissi, T., Brar, S.K., Côté, C. Ramirez, A. A. and Godbouat,
S. (2018). Use of
antibiotics in broiler production: Global impacts and alternatives. Animal
Nutrition, 4: 170-178.
26.
Wegener,
H.C. (2012). Antibiotic resistance-linking human and animal health, in: Improving food safety through a one health
approach: workshop summary. National Academy of Sciences, United States. Access from
https://www.ncbi.nlm.nih.gov/books/NBK114485/?report=printable. [Access online
30 April 2023].
27.
Hughes,
P. and Heritage, J. (2004). Antibiotic growth-promoters in food animals. Access
from https://www.fao.org/3/y5159e/y5159e08.htm. [Access online 30 April 2023].
28.
Torok,
V. A., Allison, G. E., Percy, N. J., Ophel-Keller, K. and Hughes, R. J. (2011).
Influence of antimicrobial feed additives on broiler commensal post hatch gut
microbiota development and performance. Applied and Environmental
Microbiology, 77(10): 3380-3390.
29.
Abutarbush,
S. M., Schunicht, O. C., Wildman, B. K., Hannon, S. J., Jim, G. K., Ward, T. I.
and Booker, C.W. (2012). Comparison of enrofloxacin and ceftiofur sodium for
the treatment of relapse of undifferentiated fever/bovine respiratory disease
in feedlot cattle. The Canadian Veterinary Journal, 53(1): 57-62.
30.
European
Union (2009). Commission Regulation (EU) No 37/2010 of 22 December
2009 on pharmacologically active substances and their classification regarding
maximum residue limits in foodstuffs of animal origin. Access from https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32010R0037.
[Access online 28 April 2023].
31.
Filip,
C., Ceană, D. E. and Tero Vescan, A. (2014). Clinical aspects HPLC method
with fluorescence detection for the identification and quantitative determination
of fluoroquinolones in milk. Acta Medica Transilvanica, 11(1): 151-153.
32.
Food
and Drug Administrative. (2018). FDA updates warnings for fluoroquinolone
antibiotics on risks of mental health and low blood sugar adverse reactions.
Access from https://www.fda.gov/news-events/press-announcements/fda-updates-warnings-fluoroquinolone-antibiotics-risks-mental-health-and-low-blood-su
gar -adverse. [Access online 28 April 2023].
33.
Pallo-Zimmerman,
L. M., Byron, J. K. and Graves, T. K. (2010). Fluoroquinolones: Then and now. Compendium,
32(7): 1-9.
34.
Fàbrega,
A., Sánchez-Céspedes, J., Soto, S. and Vila, J. (2008). Quinolone resistance in
the food chain. International Journal of Antimicrobial Agents, 31:
307-315.
35.
Prestinaci, F., Pezzotti, P. and Pantosti, A. (2015). Antimicrobial resistance: A
global multifaceted phenomenon. Pathogens and Global Health, 109:
309-318.
36.
Azmi,
M., Hassali, A., Rhu, H., Ashutosh, Y., Verma, K., Hussain, R. and Sivaraman,
S. (2018). Antibiotic use in food animals. Universiti Sains Malaysia, Malaysia.
Access from
https://www.reactgroup.org/wp-content/uploads/2018/11/Antibiotic_Use_in_Food_Animals_Malaysia_Overview_2018web.pdf.
[Access online 30 April 2023].
37.
European
Medicines Agency (2018). Fluoroquinolone and quinolone antibiotics: PRAC
recommends restrictions on use new restrictions follow a review of disabling
and potentially long-lasting side effects. Access from
https://www.ema.europa.eu/en/news/fluoroquinolone-quinolone-antibiotics-prac-recommends-new-restrictions-use-following-review.
[Access online 30 April 2023].
38.
Ferlito,
C. (2020). The poultry industry and its supply chain in Malaysia: Challenges
from the Covid-19 Emergency. [Access online 30 April 2023].
39.
Lai,
Y. (2020). Poultry firms count on nuggets and sausages to feed sales growth.
The edge markets, Malaysia. Access from
https://www.theedgemarkets.com/article/poultry-firms-count-nuggets-and-sausages-feed-sales-growth.
[Access online 30 April 2023].
40.
Urraca,
J. L., Castellari, M., Barrios, C. A. and Moreno-Bondi, M. C. (2014).
Multiresidue analysis of fluoroquinolone antimicrobials in chicken meat by
molecularly imprinted solid-phase extraction and high performance liquid chromatography.
Journal of Chromatography A, 1343: 1-9.
41.
Sproston,
E. L., Wimalarathna, H. M. L. and Sheppard, S. K. (2018). Trends in fluoroquinolone
resistance in Campylobacter. Microbial Genomics, 4(8):
e000198.
42.
Zhang,
C., Deng, Y., Zheng, J., Zhang, Y., Yang, L., Liao, C., Su, L,, Zhou, Y., Gong,
D., Chen, L. and Luo, A. (2019). Application of the QuEChERS methodology in the
determination of antibiotics in food: A review. TrAC Trends in Analytical
Chemistry, 118: 517-537.
43.
Boxall,
A. B. A., Blackwell, P., Cavallo, R., Kay, P. and Tolls, J. (2002). The
sorption and transport of a sulphonamide antibiotic in soil systems. Toxicology
Letters, 131: 19-28.
44.
Pan,
X., Qiang, Z., Ben, W. and Chen, M. (2011). Residual veterinary antibiotics in
swine manure from concentrated animal feeding operations in Shandong Province,
China. Chemosphere, 84(5): 695-700.
45.
Karci,
A. and Balcioǧlu, I. A. (2009). Investigation of the tetracycline,
sulfonamide, and fluoroquinolone antimicrobial compounds in animal manure and
agricultural soils in Turkey. Science of Total Environment, 407(16):
4652-4664.
46.
Ahmed,
B. M., Rajapaksha, A. U., Lim, J. E., Vu, N. T., Kim, I. S., Kang, H. M., Lee,
S. S. and Ok, Y. S. (2014). Distribution and accumulative pattern of
tetracyclines and sulfonamides in edible vegetables of cucumber, tomato, and
lettuce. Journal of Agricultural and Food Chemistry, 63(2): 395-405.
47.
Tadić,
Đ., Bleda Hernandez, M. J., Cerqueira, F., Matamoros, V., Piña, B. and
Bayona, J. M. (2021). Occurrence and human health risk assessment of
antibiotics and their metabolites in vegetables grown in field-scale
agricultural systems. Journal of Hazardous Materials, 401: 123424.
48.
Zhao,
F., Yang, L., Chen, L., Li, S. and Sun, L. (2019). Bioaccumulation of
antibiotics in crops under long-term manure application: Occurrence, biomass
response and human exposure. Chemosphere, 219: 882-895.
49.
Fick,
J., Söderström, H., Lindberg, R. H., Phan, C., Tysklind, M. and Larsson, D. G.
J. (2009). Contamination of surface, ground, and drinking water from
pharmaceutical production. Environmental Toxicology and Chemistry,
28(12): 2522-2527.
50.
Pan,
M., and Chu, L.M. (2017). The fate of antibiotics in soil and their uptake by
edible crops. Science of the Total Environment. 599-600: 500-512.
51.
Al-Waili,
N., Salom, K., Al-Ghamdi, A. and Ansari, M. J. (2012). Antibiotic, pesticide,
and microbial contaminants of honey: Human health hazards. The Scientific
World Journal, 2012: 930849.
52.
Randox
Food Diagnostics (2019). Antibiotics in honey – treatment against bee diseases.
Access from
https://www.randoxfood.com/antibiotics-in-honey-treatment-against-bee-diseases/.
[Access online 30 April 2023].
53.
Ortelli,
D., Edder, P. and Corvi, C. (2004). Analysis of chloramphenicol residues in
honey by liquid chromatography-tandem mass spectrometry. Chromatographia,
59(1-2): 61-64.
54.
Forsgren,
E. (2010). European foulbrood in honey bees. Journal of Invertebrate
Pathology, 103: S5-S9.
55.
Choi,
S. H., Kim, E.Y. and Kim, Y. J. (2013). Systemic use of fluoroquinolone in
children. Korean Journal of Pediatrics, 56: 196-201.
56.
Rodriguez,
E., Moreno-Bondi, M. C. and Marazuela, M. D. (2011). Multiresidue determination
of fluoroquinolone antimicrobials in baby foods by liquid chromatography. Food
Chemistry, 127(3):1354-1360.
57.
World
Health Organization (2006). Antimicrobial use in aquaculture and antimicrobial
resistance. Access from https://agsci.oregonstate.edu/sites/agscid7/files/snic/antimicrobial-use-in-aquaculture-and-antimicro bial -resistance.pdf. [Access
online 30 April 2023].
58.
Kalunke,
R.M., Grasso, G., D’Ovidio, R., Dragone, R. and Frazzoli, C. (2018). Detection
of ciprofloxacin residues in cow milk: A novel and rapid optical
β-galactosidase-based screening assay. Microchemical Journal, 136:
128-132.
59.
Appicciafuoco,
B., Dragone, R., Frazzoli, C., Bolzoni, G., Mantovani, A. and Ferrini, A. M.
(2015). Microbial screening for quinolones residues in cow milk by bio-optical
method. Journal of Pharmaceutical and Biomedical Analysis, 106: 179-185.
60.
Pikkemaat,
M. G. (2009). Microbial screening methods for detection of antibiotic residues
in slaughter animals. Analytical and Bioanalytical Chemistry, 395:
893-905.
61.
Herrera-Herrera,
A. V., Hernández-Borges, J. and Rodríguez-Delgado, M. Á. (2009).
Fluoroquinolone antibiotic determination in bovine, ovine and caprine milk
using solid-phase extraction and high-performance liquid
chromatography-fluorescence detection with ionic liquids as mobile phase
additives. Journal of Chromatography A, 1216(43): 7281-7287.
62.
Wang,
G. N., Yang, K., Liu, H. Z., Feng, M. X. and Wang, J. P. (2016). Molecularly
imprinted polymer-based solid phase extraction combined high performance liquid
chromatography for determination of fluoroquinolones in milk. Analytical Methods,
8(27): 5511-5518.
63.
Poole,
C. F. (2020). Solid-phase extraction. Elsevier, United States: pp. 215-233.
64.
Sarafraz-Yazdi,
A. and Razavi, N. (2015). Application of molecularly-imprinted polymers in
solid-phase microextraction techniques. TrAC Trends in Analytical Chemistry,
73: 81-90.
65.
Jing,
T., Gao, X. D., Wang, P., Wang, Y., Lin, Y. F., Hu, X. Z., Hao, Q. L., Zhou, Y.
K. and Mei, S. R. (2009). Determination of trace tetracycline antibiotics in
foodstuffs by liquid chromatography-tandem mass spectrometry coupled with
selective molecular-imprinted solid-phase extraction. Analytical and
Bioanalytical Chemistry, 393(8): 2009-2018.
66.
Sun,
X., He, X., Zhang, Y. and Chen, L. (2009). Determination of tetracyclines in
food samples by molecularly imprinted monolithic column coupling with high
performance liquid chromatography. Talanta, 79(3): 926-934.
67.
Sun,
Y., Tian, J., Wang, L., Yan, H., Qiao, F. and Qiao, X. (2015). One pot
synthesis of magnetic graphene/carbon nanotube composites as magnetic
dispersive solid-phase extraction adsorbent for rapid determination of
oxytetracycline in sewage water. Journal of Chromatography A, 1422:
53-59.
68.
Li,
Y., Wu, X., Li, Z., Zhong, S., Wang, W., Wang, A. and Chen, J. R. (2015).
Fabrication of CoFe2O4-graphene nanocomposite and its
application in the magnetic solid phase extraction of sulfonamides from milk
samples. Talanta, 144: 1279-1286.
69.
Bai,
S. S., Li, Z., Zang, X. H., Wang, C. and Wang, Z. (2013). Graphene-based
magnetic solid phase extraction-dispersive liquid-liquid microextraction
combined with gas chromatographic method for determination of five acetanilide
herbicides in water and green tea samples. Chinese Journal of Analytical
Chemistry, 41(8): 1177-1182.
70.
Dan,
W., Ming, G. and Ju, Z. (2020). Determination of 10 fluoroquinolones residues
in aquatic products by accelerated solvent extraction, magnetic solid-phase
extraction, and high-performance liquid chromatography-tandem mass
spectrometry. Chinese Journal of Chromatography, 38(12): 1413-1422.
71.
Aufartová,
J., Brabcová, I., Torres-Padrón, M. E., Solich, P., Sosa-Ferrera, Z. and
Santana-Rodríguez, J. J. (2017). Determination of fluoroquinolones in fishes
using microwave-assisted extraction combined with ultra-high performance liquid
chromatography and fluorescence detection. Journal of Food Composition and
Analysis, 56: 140-146.
72.
Aguilera-Luiz,
M. M., Vidal, J. L. M., Romero-González, R. and Frenich, A. G. (2008).
Multi-residue determination of veterinary drugs in milk by ultra-high-pressure
liquid chromatography-tandem mass spectrometry. Journal of Chromatography A,
1205(1-2):10-16.
73.
Dinh,
Q. T., Munoz, G., Vo Duy, S., Tien Do, D., Bayen, S. and Sauvé, S. (2020).
Analysis of sulfonamides, fluoroquinolones, tetracyclines, triphenylmethane
dyes and other veterinary drug residues in cultured and wild seafood sold in
Montreal, Canada. Journal of Food Composition and Analysis, 94: 103630.
74.
Rodriguez,
E., Moreno-Bondi, M. C. and Marazuela, M. D. (2008). Development and validation
of a solid-phase extraction method coupled to liquid chromatography with
fluorescence detection for the determination of fluoroquinolone residues in
powdered infant formulae. application to the analysis of samples from the
spanish and latin american market. Journal of Chromatography A, 1209(1-2):
136-144.
75.
Idowu,
O. R. and Peggins, J. O. (2004). Simple, rapid determination of enrofloxacin
and ciprofloxacin in bovine milk and plasma by high-performance liquid
chromatography with fluorescence detection. Journal of Pharmaceutical and
Biomedical Analysis, 35(1): 143-153.
76.
Klemz, A. C., Weschenfelder, S. E., de Carvalho Neto, S. L., Pascoal Damas, M. S., Toledo Viviani, J. C., Mazur, L.
P., Marinho, B. A., dos Santos Pereira, L., da
Silva, A., Borges Valle, J. A., de Souza, A. A. U., and de Souza, S. M. A.
G. U. (2021). Oilfield produced water treatment
by liquid-liquid extraction: A review. Journal of Petroleum Science and Engineering,
199: 108282.
77.
Aguilera-Luiz,
M. M., Martínez Vidal, J. L., Romero-González, R. and Garrido Frenich, A.
(2012). Multiclass method for fast determination of veterinary drug residues in
baby food by ultra-high-performance liquid chromatography-tandem mass
spectrometry. Food Chemistry, 132(4): 2171-2180.
78.
Campíns-Falcó,
P., Sevillano-Cabeza, A., Herráez-Hernández, R., Molins-Legua, C.,
Moliner-Martínez, Y. and Verdú-Andrés, J. (2022). Solid-phase extraction and
clean-up procedures in pharmaceutical analysis, in: Encyclopedia of
Analytical Chemistry. John Wiley & Sons, United Kingdom: pp. 1-22.
79.
Andrade-Eiroa,
A., Canle, M., Leroy-Cancellieri, V. and Cerdà, V. (2016). Solid-phase
extraction of organic compounds: A critical review. TrAC Trends in Analytical
Chemistry, 80: 655-667.
80.
Vakh,
C., Alaboud, M., Lebedinets, S., Korolev, D., Postnov, V., Moskvin, L.,
Osmolovskaya, O. and Bulatox, A. (2018). An automated magnetic dispersive
micro-solid phase extraction in a fluidized reactor for the determination of
fluoroquinolones in baby food samples. Analytica Chimica Acta, 1001:
59-69.
81.
Tian, C., Ren, X.,
He, M., Chen, B. and Hu, B. (2021). Core-shell magnetic porous organic polymer
for magnetic solid-phase extraction of fluoroquinolone antibiotics in honey samples
followed by high-performance liquid chromatography with fluorescence detection.
Journal of Separation Science, 45(4): 874-882.
82.
van
Hout, M. W. J., Niederländer, H. A. G., de Zeeuw, R. A. and de Jong, G. J.
(2003). New developments in integrated sample preparation for bioanalysis, In: Handbook
of Analytical Separations. Elsevier, United States: pp. 1-44.
83.
Xu,
H., Ding, Z., Lv, L., Song, D. and Feng, Y. Q. (2009). A novel dispersive
liquid-liquid microextraction based on solidification of floating organic
droplet method for determination of polycyclic aromatic hydrocarbons in aqueous
samples. Analytica Chimica Acta, 636(1): 28-33.
84.
Rezaee,
M., Assadi, Y., Milani Hosseini, M. R., Aghaee, E., Ahmadi, F. and Berijani, S.
(2006). Determination of organic compounds in water using dispersive
liquid-liquid microextraction. Journal of Chromatography A, 1116(1-2):
1-9.
85.
Li,
Y., Zhang, W., Wang, R. G., Wang, P. L. and Su, X. O. (2015). Development of an
efficient and sensitive dispersive liquid-liquid microextraction technique for
extraction and preconcentration of 10 β2-agonists in animal urine. PLoS
ONE, 10(9): e0137194.
86.
Zgoła-Grześkowiak,
A. and Grześkowiak, T. (2011). Dispersive liquid-liquid microextraction. TrAC
Trends in Analytical Chemistry, 30: 1382-1399.
87.
Yu,
K., Yue, M. E., Xu, J. and Jiang, T. F. (2020). Determination of
fluoroquinolones in milk, honey and water samples by salting out-assisted
dispersive liquid-liquid microextraction based on deep eutectic solvent
combined with MECC. Food Chemistry, 332: 127371.
88.
Timofeeva,
I., Timofeev, S., Moskvin, L. and Bulatov, A. (2017). A dispersive
liquid-liquid microextraction using a switchable polarity dispersive solvent.
Automated HPLC-FLD determination of ofloxacin in chicken meat. Analytica
Chimica Acta, 949: 35-42.
89.
Giergielewicz-Mozajska,
H., Dabrowski, L. and Namieśnik, J. (2001). Accelerated solvent extraction
(ASE) in the analysis of environmental solid samples - some aspects of theory
and practice. Critical Reviews in Analytical Chemistry, 31(3): 149-165.
90.
Yu,
H., Tao, Y., Chen, D., Pan, Y., Liu, Z., Wang, Y., Huang, L., Dai, M., Peng, D., Wang, X. and Yuan, Z. (2012). Simultaneous determination of
fluoroquinolones in foods of animal origin by a high performance liquid
chromatography and a liquid chromatography tandem mass spectrometry with
accelerated solvent extraction. Journal of Chromatography B, Analytical
Technologies in the Biomedical and Life Sciences, 885-886: 150-159.
91.
Roybal,
J. E., Pfenning, A. P., Turnipseed, S. B., Walker, C. C. and Hurlbut, J. A.
(1997). Determination of four fluoroquinolones in milk by lquid chromatography.
Journal of AOAC International, 80(5): 982-987.
92.
Yang,
G., Lin, B., Zeng, Z., Chen, Z. and Huang, X. (2005). Multiresidue
determination of eleven quinolones in milk by liquid chromatography with
fluorescence detection. Journal of AOAC International, 88(6):1688-1694.
93.
Cinquina,
A.L., Roberti, P., Giannetti, L., Longo, F., Draisci, R., Fagiolo, A. and
Brizioli, N. R. (2003). Determination of enrofloxacin and its metabolite
ciprofloxacin in goat milk by high-performance liquid chromatography with
diode-array detection: Optimization and validation. Journal of
Chromatography A, 987(1-2): 221-226.
94.
Zhang,
M., Chen, J., Zhao, F. and Zeng, B. (2020). Determination of fluoroquinolones
in foods using ionic liquid modified Fe3O4/MWCNTs as the
adsorbent for magnetic solid phase extraction coupled with HPLC. Analytical
Methods, 12(36): 4457-4465.
95.
Yu,
H., Jia, Y., Wu, R., Chen, X. and Chan T. W. D. (2019). Determination of
fluoroquinolones in food samples by magnetic solid-phase extraction based on a
magnetic molecular sieve nanocomposite prior to high-performance liquid
chromatography and tandem mass spectrometry. Analytical and Bioanalytical
Chemistry, 411(13): 2817-2826.
96.
Liu,
P.Y., Shen, J., Gao, L., Liu, L., Li, R. and Li, Q. (2010). Determination of
fluoroquinolones in milk by high-performance liquid chromatography using
mixed-templates imprinted polymer extraction. Asian Journal of Chemistry,
22(8): 6275-6288.