Malaysian Journal of Analytical Sciences, Vol 27 No 3 (2023): 510 - 520
THE CRYSTAL STRUCTURE OF Os3(CO)11(PPh2(C10H7)).H2O: A COMBINED HIRSHFELD SURFACE ANALYSIS AND DFT CALCULATIONS
(Struktur Hablur Os3(CO)11(PPh2(C10H7)).H2O: Gabungan Analisis Permukaan Hirshfeld
dan Pengiraan DFT)
Husna Izzati Muhammad Nor Azharan1, Enis Nadia Md Yusof2, Suhana Arshad3,
Omar Bin Shawkataly4, and Siti Syaida Sirat1,5*
1Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus Kuala Pilah,
72000 Kuala Pilah, Negeri Sembilan, Malaysia
2Chemistry Section, School of Distance Education, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
3X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, USM, Penang, 11800, Malaysia
4Academy
of Sciences Malaysia, Level 20, West Wing, MATRADE Tower, Jalan Sultan Haji
Ahmad Shah,
off Jalan Tuanku Abdul Halim, 50480 Kuala Lumpur, Malaysia
5Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA, Kampus Puncak Alam,
42300 Bandar Puncak Alam, Selangor, Malaysia
*Corresponding author: sitisyaida@uitm.edu.my
Received: 25 January 2023; Accepted: 8 May 2023; Published: 23 June 2023
Abstract
The molecular structure of Os3(CO)11(PPh2(C10H7)).H2O was investigated by a single crystal X-ray diffraction. The compound crystallizes in the triclinic, P-1 space group with unit cell parameters a = 12.4377(14), b = 12.4413(13), c = 12.4718(13) Å, α = 87.3030(19), β = 63.7889(17) and γ =79.3982(19)°. The asymmetric unit of this structure consists of one-triangulo-triosmium complex molecule and one water molecules. The crystal packing of the title compound is stabilized by O–H···O and C–H···O hydrogen bonds as well as C–H···π interaction. The intermolecular interactions were investigated by Hirshfeld surfaces analysis, showing high contribution of O···H/H···O contacts. The molecular electrostatic potential and frontier molecular orbitals of the title compound were further investigated using Density Functional Theory (DFT), revealing that the nucleophilic regions are located at the carbonyl group. There is a large energy gap (6.095 eV) between HOMO and LUMO.
Keywords: triosmium, phosphine ligand, Hirschfeld surface analysis, crystal structure
Abstrak
Struktur molekul Os3(CO)11(PPh2(C10H7)).H2O telah disiasat melalui pembelauan sinar-X hablur tunggal. Sebatian itu menghablur dalam kumpulan ruang triklinik, P-1 dengan parameter sel unit a = 12.4377(14), b = 12.4413(13), c = 12.4718(13) Å, α = 87.3030(19), β = 63.7889(17) dan γ =79.3982(19)°. Unit asimetri struktur ini terdiri daripada satu molekul komplek triangulo-triosmium dan satu molekul air. Pembungkusan hablur sebatian distabilkan oleh ikatan hidrogen O–H···O dan C–H···O serta interaksi C–H···π. Interaksi antara molekul telah disiasat oleh analisis permukaan Hirshfeld, menunjukkan O···H/H···O adalah penyumbang utama interaksi. Potensi elektrostatik molekul dan orbital molekul sempadan bagi sebatian ini telah disiasat selanjutnya menggunakan Teori Fungsian Ketumpatan (DFT), mendedahkan bahawa kawasan nukleofilik terletak pada kumpulan karbonil. Terdapat jurang tenaga yang besar (6.095 eV) antara HOMO dan LUMO.
Kata kunci: triosmium, ligan fosfina, analisis permukaan Hirshfeld, struktur hablur
References
1. Biradha, K., Hansen, V. M., Leong, W. K., Pomeroy, R. K. and Zaworotko, M. J. (2000). Steric and electronic influences in Os3(CO)11(PR3) structures. Journal of Cluster Science, 11(2): 285-306.
2. Mikeska, E. R., Powell, C. B., and Powell, G. L. (2021). Triosmium carbonyl clusters containing a mixture of dppm and dppe ligands. Journal of Chemical Crystallography, 51(4): 457-464.
3. Sarker, J. C., Rahman, S., Ghosh, S., Hogarth, G. and Kabir, S. E. (2020). Reactions of the lightly-stabilized triosmium cluster Os3(CO)8{μ3-Ph2PCH(Me)P(Ph)C6H4}(μ-H) with two-electron donor ligands. Polyhedron, 186: 114608.
4. Malosh, T. J. and Shapley, J. R. (2010). Fluorous triosmium clusters. Preparation, properties, and reactivity of Os3(CO)11{P(CH2CH2(CF2)5CF3)3} and Os3(CO)10{P(CH2CH2(CF2)5CF3)3}2. Crystal structure of Os3(CO)9(PPh3)2{P(CH2CH2(CF2)5CF3)3}. Ring opening metathesis polymerization of norbornene by. Journal of Organometallic Chemistry, 695(14): 1776-1786.
5. Otero, Y., Peña, D., De Sanctis, Y., Arce, A., Ocando-Mavarez, E., Machado, R. and Gonzalez, T. (2014). Reactivity of triosmium clusters with 3,4-dimethyl-1-phenylphosphole and cyanoethyldi-tert-butylphosphine ligands: X-ray crystal structures of [Os3(CO)9(μ-OH)(μ-H)(η1-PhPC4H2Me2)] and [Os3(CO)11(η1- tBu2PC2H4CN)]. Transition Metal Chemistry, 39(2): 239-246.
6. Elard, M., Denis, J., Ferreira, M., Bricout, H., Landy, D., Tilloy, S. and Monflier, E. (2015). Rhodium catalyzed hydroformylation assisted by cyclodextrins in biphasic medium: Can sulfonated naphthylphosphanes lead to active, selective and recyclable catalytic species? Catalysis Today, 247: 47-54.
7. Ager, D. J., East, M. B., Eisenstadt, A. and Laneman, S. A. (1997). Convenient and direct preparation of tertiary phosphines via nickel-catalysed cross-coupling. Chemical Communications, 1997(24): 2359-2360.
8. Bruce, M. I., Humphrey, P. A., Schmutzler, R., Skelton, B. W. and White, A. H. (2004). Reactions of 1,8-bis(diphenylphosphino)naphthalene with Os3(CO)12: C-H and C-P bond cleavage reactions. Journal of Organometallic Chemistry, 689(14): 2415-2420.
9. Nicholls, J. N., Vargas, M. D., Deeming, A. J. and Kabir, S. E. (1989). Some useful derivatives of dodecacarbonyltriosmium. Inorganic Synthesis, 26: 289-293.
10. Bruker, SAINT, and SADABS. (2009). Bruker AXS Inc, Madison, Wisconsin, USA.
11. Sheldrick, G. M. (2008). A short history of SHELX. Acta Crystallographica. Section A, Foundations of Crystallography, 64(1): 112-122.
12. Spek, A. L. (2009). Structure validation in chemical crystallography. Acta Crystallographica Section D: Biological Crystallography, 65(2): 148-155.
13. MacRae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. and Wood, P, A. (2020). Mercury 4.0: From visualization to analysis, design and prediction. Journal of Applied Crystallography, 53(1): 226-235.
14. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. and Fox, D. J. (2016). Gaussian 09, Revision E.01, (Gaussian, Inc., Wallingford CT).
15. Nielsen, A. and Holder, A. J. (2009). GaussView5, Gaussian Inc, Pittsburgh. Journal of Chemical Information and Modeling, 53(9): 1689-1699.
16. Zhao, Y., and Truhlar, D. G. (2008). The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other function. Theoretical Chemistry Accounts, 120(1-3): 215-241.
17. Jacquemin, D., Perpète, E. A., Ciofini, I., Adamo, C., Valero, R., Zhao, Y., and Truhlar, D. G. (2010). On the performances of the M06 family of density functionals for electronic excitation energies. Journal of Chemical Theory and Computation, 6(7): 2071-2085.
18. Wadt, W. R. and Hay, P. J. (1985). Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. The Journal of Chemical Physics, 82(1): 284-298.
19. Hay, P. J. and Wadt, W. R. (1985a). Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitale. The Journal of Chemical Physics, 82(1): 299-310.
20. Hay, P. J. and Wadt, W. R. (1985b). Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. The Journal of Chemical Physics, 82(1): 270-283.
21. Bruce, M. I., Liddell, M. J., Shawkataly, O. B., Bytheway, I., Skelton, B. W., and White, A. H. (1989). Cluster Chemistry. LIX. Stereochemistry of group 15 ligand-substituted derivatives of M3(CO)12 (M = Ru, Os). D. Synthesis and characterisation of some tetra-substituted ruthenium complexes: X-ray structures of Ru3(CO)8(L)4 (L = PMe2Ph and P(OR)3, R = Me, Et, and Ph). Journal of Organometallic Chemistry, 369(2): 217-244.
22. Armaković, S. J., Mary, Y. S., Mary, Y. S., Pelemiš, S. and Armaković, S. (2021). Optoelectronic properties of the newly designed 1,3,5-triazine derivatives with isatin, chalcone and acridone moieties. Computational and Theoretical Chemistry, 1197: 113160.
23. Ding, L. P., Zhang, F. H., Zhu, Y. S., Lu, C., Kuang, X. Y., Lv, J. and Shao, P. (2015). Understanding the structural transformation, stability of medium-sized neutral and charged silicon clusters. Scientific Reports, 5(1): 15951.
24. Aihara, J. I. (1995). Kinetic stability of fullerenes with four-membered rings. Journal of the Chemical Society, Faraday Transactions, 91(24): 4349-4353
25. Kenouche, S., Sandoval-Yañez, C. and Martínez-Araya, J. I. (2022). The antioxidant capacity of myricetin. A molecular electrostatic potential analysis based on DFT calculations. Chemical Physics Letters, 801: 139708.
26. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. and Spackman, M. A. (2021). CrystalExplorer: A program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. Journal of Applied Crystallography, 54(3): 1006-1011.
27. Spackman, M. A. and Jayatilaka, D. (2009). Hirshfeld surface analysis. CrystEngComm, 11(1): 19-32.
28. Kumar, A., Singh, P., Kumar, R., Yadav, P., Jaiswal, A. and Tewari, A. K. (2023). An experimental and theoretical study of the conformational stability of triazinone fleximers: Quantitative analysis for intermolecular interactions. ChemistrySelect, 8(5): e202203862.