Malaysian Journal of Analytical
Sciences, Vol 27
No 3 (2023): 499 - 509
HIERARCHICAL ZEOLITE ZSM-5 FRAMEWORK ON THE SYNTHESIS
AND CHARACTERIZATION FOR CATALYTIC CRACKING OF FLUID: A MINI REVIEW
(Kerangka Hierarki Zeolit ZSM-5 Terhadap Sintesis san
Pencirian untuk Pemecahan Pemangkin Cecair: Sebuah Ulasan Ringkas)
Nazrizawati Ahmad Tajuddin*, Nur Alyaa
Kamal, Nurul Anessa Qistina Rhymme, and Salma Fawiza Sani
School of Chemistry and Environment,
Faculty of Applied Sciences,
Universiti Teknologi MARA,
40450 Shah Alam, Selangor, Malaysia
*Corresponding author: nazriza@uitm.edu.my
Received: 13 December 2022; Accepted:
18 April 2023; Published: xx June 2023
Abstract
This review discusses the modified hierarchical framework
of zeolite ZSM-5 through top-down and bottom-up techniques, which progressed
via a soft template through a combination of dealumination and desilication.
Several experiments have been reviewed to increase the catalytic cracking
performance of Z SM-5 zeolite, including fluid catalytic cracking (FCC) activity.
Template-assisted or post-treatment procedures may be used to create
hierarchical zeolites, with mesopores or macropores boosting the accessibility
of acid sites in micropores and the hierarchical pore structure. The
physiochemical characterization investigation revealed that the hierarchical
catalysts had a substantial surface area and pore characteristics compared to
the parent samples, making them an attractive alternative to be used in the FCC
catalyst. It is important to develop a low-cost and effective process for
manufacturing hierarchical zeolite.
Keywords: Zeolite
Socony mobile five, modification of hierarchical framework, fluid catalytic
cracking, catalytic activity
Abstrak
Ulasan ini membincangkan kerangka hierarki zeolite ZSM-5 yang diubah
melalui teknik atas ke bawah dan bawah ke atas, yang berkembang melalui templat
lembut melalui gabungan dealuminasi dan desilikasi. Beberapa eksperimen telah
dikaji untuk meningkatkan prestasi pemecahan pemangkin zeolite ZSM-5, termasuk
aktiviti pemecahan pemangkin cecair (FCC). Prosedur yang dibantu templat atau
pasca rawatan boleh digunakan untuk menghasilkan zeolite hierarki, dengan
mesopori atau makropora meningkatkan capaian asid di mikropori dan struktur
pori hierarki. Penyelidikan pencirian fisiokimia menunjukkan bahawa pemangkin
hierarki mempunyai ciri luas permukaan dan liang yang besar jika dibandingkan
dengan sampel induk, menjadikannya alternatif yang menarik untuk digunakan dalam
pemangkin FCC. Dalam penghasilan hierarki zeolite,proses kos yang rendah dan
berkesan adalah menjadi keutamaan.
Kata kunci: Zeolite Socony Mobile five, modifikasi
hierarki rangka-kerja, pemecahan pemangkin cecair, aktiviti katalitik
References
1. Talebian-Kiakalaieh
A., and Tarighi S. (2020). Synthesis of hierarchical Y and ZSM-5 zeolites using
post-treatment approach to maximize catalytic cracking performance. Journal
of Industrial and Engineering Chemistry, 2020: 88167-177.
2. Król, M. (2020).
Natural vs. synthetic zeolites. Crystals, 10(7): 622.
3. Hartmann M.,
Thommes M., and Schwieger W. (2021). Hierarchically-ordered zeolites: A
critical assessment. Advanced Materials Interfaces, 8(4): 2001841.
4. Hamidzadeh M.,
Saeidi M., and Komeili S. (2020). Modified seeding method to produce
hierarchical nanocrystalline ZSM-5 zeolite. Materials Today Communications,
25: 101308
5. Feliczak-Guzik,
A. (2018). Hierarchical zeolites: Synthesis and catalytic properties. Microporous
and Mesoporous Materials, 25933-25945.
6. Yang S., Yu C.,
Yu L., Miao S., Zou M., Jin C., Zhang D., Xu L. and Huang S. (2017). Bridging
dealumination and desilication for the synthesis of hierarchical MFI zeolites. Angewandte
Chemie, 129(41): 12727-12730.
7. Kadja, G. T. M.,
Suprianti, T. R., Ilmi, M. M., Khalil, M., Mukti, R. R. and Subagjo. (2020).
Sequential mechanochemical and recrystallization methods for synthesizing
hierarchically porous ZSM-5 zeolites. Microporous and Mesoporous Materials,
2020: 308110550.
8. Widayat W.,
Annisa A. N. and Soedarto J. (2017). Synthesis and characterization of ZSM-5
catalyst at different temperatures. 214: 012032.
9. Gu Y., Wang X.,
Qin Z., Mintova S. and Liu X. (2020). Intra-crystalline mesoporous ZSM-5
zeolite by grinding synthesis method. Microporous and Mesoporous Materials, 306:
110437.
10. Jia, X., Khan, W.,
Wu, Z., Choi J. and Yip, A. C. K. (2019). Modern synthesis strategies for
hierarchical zeolites: Bottom-up versus top-down strategies. Advanced Powder
Technology, 30(3): 467-484.
11. Speight J. G.
(2020). Feedstock types and properties. The Refinery of the Future: pp.
1-42.
12. Přech, J.,
Pizarro, P., Serrano, D. P. and Áejka J. (2018). From 3D to 2D zeolite
catalytic materials. Chemical Society Reviews, 47(22):8263-8306.
13. Peron, D. V.,
Zholobenko, V. L., de Melo, J. H. S., Capron, M., Nuns, N., de Souza, M. O.,
Feris, L. A., Marcilio, N. R., Ordomsky, V. V. and Khodakov A.Y. (2019).
External surface phenomena in dealumination and desilication of large single
crystals of ZSM-5 zeolite synthesized from a sustainable source. Microporous
and Mesoporous Materials, 28657-28664.
14. Song, G., Chen, W.,
Dang, P., Yang, S., Zhang, Y., Wang, Y., ... and Li, F. (2018). Synthesis and
characterization of hierarchical ZSM-5 zeolites with outstanding mesoporosity
and excellent catalytic properties. Nanoscale Research Letters, 13(1):
1-13.
15. Wang, Y., Song, J.,
Baxter, N. C., Kuo, G. T. and Wang, S. (2017). Synthesis of hierarchical ZSM-5
zeolites by solid-state crystallization and their catalytic properties. Journal
of Catalysis, 349: 53-65.
16. Stratiev, D.,
Shishkova, I., Ivanov, M., Dinkov, R., Georgiev, B., Argirov, G., ... and
Sotirova, E. (2021). Role of catalyst in optimizing fluid catalytic cracking
performance during cracking of h-oil-derived gas oils. ACS Omega, 6(11):
7626-7637.
17. Shu, Q., Tang,
G., Lesmana, H., Zou, L. and Xiong, D. (2018). Preparation, characterization
and application of a novel solid Brönsted acid catalyst SO42−/La3+/C
for biodiesel production via esterification of oleic acid and methanol. Renewable
Energy, 119: 253-261.
18. Sabarish, R. and
Unnikrishnan G. (2020). A novel anionic surfactant as template for the
development of hierarchical ZSM-5 zeolite and its catalytic performance. Journal
of Porous Materials, 27(3):691-700.
19. Liu, X. and Sun,
Y. (2020). Effect of ethanol on the morphology and textual properties of ZSM-5
zeolite. Catalysts,10(2):198.
20. Ghrib, Y.,
Frini-Srasra, N., Srasra, E., Martínez-Triguero, J. and Corma A. (2018).
Synthesis of cocrystallized USY/ZSM-5 zeolites from kaolin and its use as fluid
catalytic cracking catalysts. Catalysis Science & Technology, 8(3):
716-725.
21. Jia, Y., Shi, Q.,
Wang, J., Ding, C. and Zhang K. (2020). Synthesis, characterization, and
catalytic application of hierarchical nano-ZSM-5 zeolite. RSC Advances,
10(50): 29618-29626.
22. Emori, E. Y.,
Hirashima, F. H., Zandonai, C. H., Ortiz-Bravo, C. A., Fernandes-Machado, N. R.
C. and Olsen-Scaliante, M. H. N. (2017). Catalytic cracking of soybean oil
using ZSM5 zeolite. Catalysis Today, 2017: 279168-279176.
23. Kantarelis, E.,
Javed, R., Stefanidis, S., Psarras, A., Iliopoulou E. and Lappas A. (2019).
Engineering the catalytic properties of HZSM5 by cobalt modification and
post-synthetic hierarchical porosity development. Topics in Catalysis,
62(7-11):773-785.
24. Bai, P., Etim, U.
J., Yan, Z., Mintova, S., Zhang, Z., Zhong, Z. and Gao, X. (2019). Fluid
catalytic cracking technology: current status and recent discoveries on
catalyst contamination. Catalysis Reviews, 61(3): 333-405.
25. Al-Khattaf, S., Saeed,
M. R., Aitani A., and Klein M. T. (2018). Catalytic cracking of light crude oil
to light olefins and naphtha over e-cat and MFI: Microactivity test versus
advanced cracking evaluation and the effect of high reaction temperature. Energy
and Fuels, 32(5): 6189-6199.
26. Tian, Y., Che,
Y., Chen, M., Feng, W., Zhang, J. and Qiao, Y. (2019). Catalytic upgrading of
vacuum residue-derived cracking gas-oil for maximum light olefin production in
a combination of a fluidized bed and fixed bed reactor. Energy & Fuels, 33(8):
7297-7304.
27. Oloruntoba, A.,
Zhang, Y. and Hsu, C. S. (2022). State-of-the-art review of fluid catalytic
cracking (FCC) catalyst regeneration intensification technologies. Energies,
15(6):2061.
28. Mikhaylova, P.,
de Oliveira, L.P., Merdrignac, I., Berlioz-Barbier, A., Nemri, M., Giusti, P.
and Pirngruber, G. D. (2022). Molecular analysis of nitrogen-containing
compounds in vacuum gas oils hydrodenitrogenation by (ESI+/-)-FTICR-MS. Fuel,
2022: 323.
29. Stratiev, D.,
Shishkova, I., Ivanov, M., Dinkov, R., Georgiev, B., Argirov, G., ... and
Nenov, S. (2021). Catalytic cracking of diverse vacuum residue hydrocracking
gas oils. Chemical Engineering & Technology, 44(6): 997-1008.
30. Stratiev, D.,
Shishkova, I., Ivanov, M., Chavdarov, I. and Yordanov, D. (2020). Dependence of
fluid catalytic cracking unit performance on H‐oil severity, catalyst
activity, and coke selectivity. Chemical Engineering & Technology, 43(11):
2266-2276.
31. García, J. R.,
Falco, M. and Sedran, U. (2017). Intracrystalline mesoporosity over Y zeolites.
Processing of VGO and resid-VGO mixtures in FCC. Catalysis Today, 2017:
296247-296253.