Malaysian Journal of Analytical Sciences, Vol 27 No 3 (2023): 499 - 509

 

HIERARCHICAL ZEOLITE ZSM-5 FRAMEWORK ON THE SYNTHESIS AND CHARACTERIZATION FOR CATALYTIC CRACKING OF FLUID: A MINI REVIEW

 

(Kerangka Hierarki Zeolit ZSM-5 Terhadap Sintesis san Pencirian untuk Pemecahan Pemangkin Cecair: Sebuah Ulasan Ringkas)

 

Nazrizawati Ahmad Tajuddin*, Nur Alyaa Kamal, Nurul Anessa Qistina Rhymme, and Salma Fawiza Sani

 

School of Chemistry and Environment,

Faculty of Applied Sciences,

Universiti Teknologi MARA,

40450 Shah Alam, Selangor, Malaysia

 

 

*Corresponding author: nazriza@uitm.edu.my 

 

 

Received: 13 December 2022; Accepted: 18 April 2023; Published:  xx June 2023

 

Abstract

This review discusses the modified hierarchical framework of zeolite ZSM-5 through top-down and bottom-up techniques, which progressed via a soft template through a combination of dealumination and desilication. Several experiments have been reviewed to increase the catalytic cracking performance of Z SM-5 zeolite, including fluid catalytic cracking (FCC) activity. Template-assisted or post-treatment procedures may be used to create hierarchical zeolites, with mesopores or macropores boosting the accessibility of acid sites in micropores and the hierarchical pore structure. The physiochemical characterization investigation revealed that the hierarchical catalysts had a substantial surface area and pore characteristics compared to the parent samples, making them an attractive alternative to be used in the FCC catalyst. It is important to develop a low-cost and effective process for manufacturing hierarchical zeolite.

 

Keywords: Zeolite Socony mobile five, modification of hierarchical framework, fluid catalytic cracking, catalytic activity

 

Abstrak

Ulasan ini membincangkan kerangka hierarki zeolite ZSM-5 yang diubah melalui teknik atas ke bawah dan bawah ke atas, yang berkembang melalui templat lembut melalui gabungan dealuminasi dan desilikasi. Beberapa eksperimen telah dikaji untuk meningkatkan prestasi pemecahan pemangkin zeolite ZSM-5, termasuk aktiviti pemecahan pemangkin cecair (FCC). Prosedur yang dibantu templat atau pasca rawatan boleh digunakan untuk menghasilkan zeolite hierarki, dengan mesopori atau makropora meningkatkan capaian asid di mikropori dan struktur pori hierarki. Penyelidikan pencirian fisiokimia menunjukkan bahawa pemangkin hierarki mempunyai ciri luas permukaan dan liang yang besar jika dibandingkan dengan sampel induk, menjadikannya alternatif yang menarik untuk digunakan dalam pemangkin FCC. Dalam penghasilan hierarki zeolite,proses kos yang rendah dan berkesan adalah menjadi keutamaan.

 

Kata kunci: Zeolite Socony Mobile five, modifikasi hierarki rangka-kerja, pemecahan pemangkin cecair, aktiviti katalitik



References

1.     Talebian-Kiakalaieh A., and Tarighi S. (2020). Synthesis of hierarchical Y and ZSM-5 zeolites using post-treatment approach to maximize catalytic cracking performance. Journal of Industrial and Engineering Chemistry, 2020: 88167-177.

2.     Król, M. (2020). Natural vs. synthetic zeolites. Crystals, 10(7): 622.

3.     Hartmann M., Thommes M., and Schwieger W. (2021). Hierarchically-ordered zeolites: A critical assessment. Advanced Materials Interfaces, 8(4): 2001841.

4.     Hamidzadeh M., Saeidi M., and Komeili S. (2020). Modified seeding method to produce hierarchical nanocrystalline ZSM-5 zeolite. Materials Today Communications, 25: 101308

5.     Feliczak-Guzik, A. (2018). Hierarchical zeolites: Synthesis and catalytic properties. Microporous and Mesoporous Materials, 25933-25945.

6.     Yang S., Yu C., Yu L., Miao S., Zou M., Jin C., Zhang D., Xu L. and Huang S. (2017). Bridging dealumination and desilication for the synthesis of hierarchical MFI zeolites. Angewandte Chemie, 129(41): 12727-12730.

7.     Kadja, G. T. M., Suprianti, T. R., Ilmi, M. M., Khalil, M., Mukti, R. R. and Subagjo. (2020). Sequential mechanochemical and recrystallization methods for synthesizing hierarchically porous ZSM-5 zeolites. Microporous and Mesoporous Materials, 2020: 308110550.

8.     Widayat W., Annisa A. N. and Soedarto J. (2017). Synthesis and characterization of ZSM-5 catalyst at different temperatures. 214: 012032.

9.     Gu Y., Wang X., Qin Z., Mintova S. and Liu X. (2020). Intra-crystalline mesoporous ZSM-5 zeolite by grinding synthesis method. Microporous and Mesoporous Materials, 306: 110437.

10. Jia, X., Khan, W., Wu, Z., Choi J. and Yip, A. C. K. (2019). Modern synthesis strategies for hierarchical zeolites: Bottom-up versus top-down strategies. Advanced Powder Technology, 30(3): 467-484.

11. Speight J. G. (2020). Feedstock types and properties. The Refinery of the Future: pp. 1-42.

12. Přech, J., Pizarro, P., Serrano, D. P. and Áejka J. (2018). From 3D to 2D zeolite catalytic materials. Chemical Society Reviews, 47(22):8263-8306.

13. Peron, D. V., Zholobenko, V. L., de Melo, J. H. S., Capron, M., Nuns, N., de Souza, M. O., Feris, L. A., Marcilio, N. R., Ordomsky, V. V. and Khodakov A.Y. (2019). External surface phenomena in dealumination and desilication of large single crystals of ZSM-5 zeolite synthesized from a sustainable source. Microporous and Mesoporous Materials, 28657-28664.

14. Song, G., Chen, W., Dang, P., Yang, S., Zhang, Y., Wang, Y., ... and Li, F. (2018). Synthesis and characterization of hierarchical ZSM-5 zeolites with outstanding mesoporosity and excellent catalytic properties. Nanoscale Research Letters, 13(1): 1-13.

15. Wang, Y., Song, J., Baxter, N. C., Kuo, G. T. and Wang, S. (2017). Synthesis of hierarchical ZSM-5 zeolites by solid-state crystallization and their catalytic properties. Journal of Catalysis, 349: 53-65.


16.    Stratiev, D., Shishkova, I., Ivanov, M., Dinkov, R., Georgiev, B., Argirov, G., ... and Sotirova, E. (2021). Role of catalyst in optimizing fluid catalytic cracking performance during cracking of h-oil-derived gas oils. ACS Omega, 6(11): 7626-7637.

17.    Shu, Q., Tang, G., Lesmana, H., Zou, L. and Xiong, D. (2018). Preparation, characterization and application of a novel solid Brönsted acid catalyst SO42−/La3+/C for biodiesel production via esterification of oleic acid and methanol. Renewable Energy, 119: 253-261.

18.    Sabarish, R. and Unnikrishnan G. (2020). A novel anionic surfactant as template for the development of hierarchical ZSM-5 zeolite and its catalytic performance. Journal of Porous Materials, 27(3):691-700.

19.    Liu, X. and Sun, Y. (2020). Effect of ethanol on the morphology and textual properties of ZSM-5 zeolite. Catalysts,10(2):198.

20.    Ghrib, Y., Frini-Srasra, N., Srasra, E., Martínez-Triguero, J. and Corma A. (2018). Synthesis of cocrystallized USY/ZSM-5 zeolites from kaolin and its use as fluid catalytic cracking catalysts. Catalysis Science & Technology, 8(3): 716-725.

21.    Jia, Y., Shi, Q., Wang, J., Ding, C. and Zhang K. (2020). Synthesis, characterization, and catalytic application of hierarchical nano-ZSM-5 zeolite. RSC Advances, 10(50): 29618-29626.

22.    Emori, E. Y., Hirashima, F. H., Zandonai, C. H., Ortiz-Bravo, C. A., Fernandes-Machado, N. R. C. and Olsen-Scaliante, M. H. N. (2017). Catalytic cracking of soybean oil using ZSM5 zeolite. Catalysis Today, 2017: 279168-279176.

23.    Kantarelis, E., Javed, R., Stefanidis, S., Psarras, A., Iliopoulou E. and Lappas A. (2019). Engineering the catalytic properties of HZSM5 by cobalt modification and post-synthetic hierarchical porosity development. Topics in Catalysis, 62(7-11):773-785.

24.    Bai, P., Etim, U. J., Yan, Z., Mintova, S., Zhang, Z., Zhong, Z. and Gao, X. (2019). Fluid catalytic cracking technology: current status and recent discoveries on catalyst contamination. Catalysis Reviews, 61(3): 333-405.

25.    Al-Khattaf, S., Saeed, M. R., Aitani A., and Klein M. T. (2018). Catalytic cracking of light crude oil to light olefins and naphtha over e-cat and MFI: Microactivity test versus advanced cracking evaluation and the effect of high reaction temperature. Energy and Fuels, 32(5): 6189-6199.

26.    Tian, Y., Che, Y., Chen, M., Feng, W., Zhang, J. and Qiao, Y. (2019). Catalytic upgrading of vacuum residue-derived cracking gas-oil for maximum light olefin production in a combination of a fluidized bed and fixed bed reactor. Energy & Fuels, 33(8): 7297-7304.

27.    Oloruntoba, A., Zhang, Y. and Hsu, C. S. (2022). State-of-the-art review of fluid catalytic cracking (FCC) catalyst regeneration intensification technologies. Energies, 15(6):2061.

28.    Mikhaylova, P., de Oliveira, L.P., Merdrignac, I., Berlioz-Barbier, A., Nemri, M., Giusti, P. and Pirngruber, G. D. (2022). Molecular analysis of nitrogen-containing compounds in vacuum gas oils hydrodenitrogenation by (ESI+/-)-FTICR-MS. Fuel, 2022: 323.

29.    Stratiev, D., Shishkova, I., Ivanov, M., Dinkov, R., Georgiev, B., Argirov, G., ... and Nenov, S. (2021). Catalytic cracking of diverse vacuum residue hydrocracking gas oils. Chemical Engineering & Technology, 44(6): 997-1008.

30.    Stratiev, D., Shishkova, I., Ivanov, M., Chavdarov, I. and Yordanov, D. (2020). Dependence of fluid catalytic cracking unit performance on H‐oil severity, catalyst activity, and coke selectivity. Chemical Engineering & Technology, 43(11): 2266-2276.

31.    García, J. R., Falco, M. and Sedran, U. (2017). Intracrystalline mesoporosity over Y zeolites. Processing of VGO and resid-VGO mixtures in FCC. Catalysis Today, 2017: 296247-296253.