Malaysian Journal of Analytical
Sciences, Vol 27
No 3 (2023): 471 - 487
POTENTIAL
OF LIGNIN FROM OIL PALM BIOMASS USING DEEP EUTECTIC SOLVENT AS CARBON FIBRE
PRECURSOR
(Potensi Lignin daripada Biojisim Kelapa Sawit Menggunakan
Pelarut Eutektik
Dalam sebagai Prekursor Gentian Karbon)
Afiqah Liana
Sazali, Siti Khadijah Amran, Khairul Faizal Pa’ee, Mohd Razealy Anuar,
and Tau-Len
Kelly Yong
Universiti Kuala Lumpur,
Branch Campus Malaysian Institute
of Chemical and Engineering Technology,
Lot 1988 Kawasan Perindustrian
Bandar Vendor, Taboh Naning,
78000 Alor Gajah, Melaka, Malaysia
*Corresponding
author: kytlen@unikl.edu.my
Received: 14 September 2022;
Accepted: 1 April 2023; Published: 23 June
2023
Abstract
The modern composites industry
heavily relies on carbon fibre as a raw material due to its high tensile
strength, fatigue resistance, and temperature resistance. Thus, researchers are
investigating the use of lignin extracted from biomass as a precursor for
carbon fibre to reduce costs and environmental impact. Oil palm biomass is
classified as a lignocellulosic compound due to its high cellulose,
hemicellulose, and lignin content. Since lignin has a complex structure with
numerous linkages between its monomeric components, it can be complicated to
isolate it from lignocellulosic components. Deep eutectic solvents (DESs) are a
promising new class of environmentally friendly solvents owing to their low
toxicity, low production cost, and high biodegradability. Lignin valorisation
has received much attention due to immense ability of DES to dissolve and
extract lignin without condensation. This review aimed to provide a
comprehensive and comparative analysis of the physicochemical and thermal
properties of DES for utilisation in lignin extraction from biomass, with a
focus on its potential as a precursor for carbon fibre.
Keywords: deep eutectic solvent, carbon
fibre, lignin, precursor, oil palm biomass
Abstrak
Industri
komposit moden sangat bergantung pada gentian karbon sebagai bahan mentah
kerana kekuatan tegangan yang tinggi, rintangan kelesuan dan rintangan suhu.
Oleh itu, penyelidik sedang mengkaji penggunaan lignin daripada biojisim
sebagai prekursor yang lebih mesra alam dan kos efektif untuk gentian karbon.
Biojisim kelapa sawit dikategorikan sebagai lignoselulosa, kerana kandungan
selulosa, hemiselulosa dan lignin yang tinggi. Walau bagaimanapun, mengasingkan
lignin daripada lignoselulosa memberikan cabaran kerana strukturnya yang rumit
dan mempunyai pelbagai sambungan antara komponen monomeriknya. Pelarut Eutektik
Dalam (DES) ialah generasi baharu pelarut hijau yang mudah disediakan, tinggi
biodegrabiliti, kos pembuatan yang rendah dan ketoksikan yang rendah. Keupayaan
DES yang luar biasa untuk melarutkan dan mengekstrak lignin tanpa pemeluwapan
telah mencetuskan minat yang ketara dalam valorisasi lignin. Kajian ini
bertujuan untuk menganalisis secara sistematik dan perbandingan sifat
fizikokimia dan terma DES untuk pengekstrakan lignin daripada biojisim, dengan
penekanan khusus pada penggunaannya sebagai prekursor untuk gentian karbon.
Kata kunci: pelarut
eutektik dalam, gentian karbon, lignin, prekursor, biojisim kelapa sawit
References
1.
Bengtsson, A., Hecht,
P., Sommertune, J., Ek, M., Sedin, M. and Sjöholm, E. (2020). Carbon fibers
from lignin–cellulose precursors: effect of carbonization conditions. ACS Sustainable Chemistry & Engineering,
8(17): 6826-6833.
2.
Chatterjee, S. and
Saito, T. (2015). Lignin‐derived advanced carbon materials. ChemSusChem,
8(23): 3941-3958.
3.
Loh,
S. K. (2017). The potential of the Malaysian oil palm biomass as a renewable
energy source. Energy Conversion and
Management, 141: 285-298.
4.
Loow,
Y. L., New, E. K., Yang, G. H., Ang, L. Y., Foo, L. Y. W. and Wu, T. Y. (2017).
Potential use of deep eutectic solvents to facilitate lignocellulosic biomass
utilization and conversion. Cellulose,
24(9): 3591-3618.
5.
Soltanmohammadi,
F., Jouyban, A. and Shayanfar,
A. (2021). New aspects of deep eutectic solvents: Extraction, pharmaceutical
applications, as catalyst and gas capture. Chemical
Papers, 75(2): 439-453.
6.
Liu, Y., Xue, J., Zhou, X., Cui, Y. and Yin, J. (2021). Deep
desulfurization performance of thiophene with deep eutectic solvents loaded
carbon nanotube composites. Royal Society
Open Science, 8(4): 201736.
7.
Abbott, A. P., Capper,
G., Davies, D. L., Rasheed, R. K. and Tambyrajah, V.
(2003). Novel solvent properties of choline chloride/urea mixtures. Chemical Communications, (1): 70-71.
8.
Smith, E. L., Abbott, A.
P. and Ryder, K. S. (2014). Deep eutectic solvents (DESs) and their
applications. Chemical Reviews,
114(21): 11060-11082.
9.
Smink,
D., Juan, A., Schuur, B. and Kersten, S. R. (2019). Understanding the role of
choline chloride in deep eutectic solvents used for biomass delignification. Industrial & Engineering Chemistry
Research, 58(36): 16348-16357.
10.
Francisco, M., van den Bruinhorst, A. and Kroon, M. C. (2012). New natural and
renewable low transition temperature mixtures (LTTMS): Screening as solvents
for lignocellulosic biomass processing. Green
Chemistry, 14(8): 2153-2157.
11.
Tang, X., Zuo, M., Li, Z., Liu, H., Xiong,
C. and Zeng, X. (2017). Green processing of lignocellulosic biomass and its
derivatives in deep eutectic solvents. ChemSusChem, 10(13): 2696-2706.
12.
Farooq, M. Q., Odugbesi, G. A., Abbasi, N. M. and Anderson, J. L. (2020).
Elucidating the role of hydrogen bond donor and acceptor on solvation in deep
eutectic solvents formed by ammonium/phosphonium salts and carboxylic acids. ACS Sustainable Chemistry & Engineering,
8(49): 18286-18296.
13.
Zhang, Q., Vigier, K. D. O., Royer, S. and Jerome, F. (2012). Deep
eutectic solvents: Syntheses, properties and applications. Chemical Society Reviews, 41(21): 7108-146.
14.
Yusof, R., Abdulmalek, E., Sirat, K. and
Rahman, M. B. A. (2014). Tetrabutylammonium bromide (TBABr)-based
deep eutectic solvents (DESs) and their physical properties. Molecules, 19(6): 8011-8026.
15.
Fuad, F. M., Nadzir, M. M. and Harun, A. (2021). Hydrophilic natural
deep eutectic solvent: A review on physicochemical properties and
extractability of bioactive compounds. Journal
of Molecular Liquids, 339: 116923.
16.
Yue, D., Jing, Y., Ma,
J., Yao, Y. and Jia, Y. (2012). Physicochemical properties of ionic liquid
analogue containing magnesium chloride as temperature and composition
dependence. Journal of Thermal Analysis
and Calorimetry, 110(2): 773-780.
17.
Zhang, H., Lang, J.,
Lan, P., Yang, H., Lu, J. and Wang, Z. (2020). Study on the dissolution
mechanism of cellulose by ChCl-based deep eutectic
solvents. Materials, 13(2): 278.
18.
Ghaedi,
H., Ayoub, M., Sufian, S., Shariff, A. M. and Lal, B.
(2017). The study on temperature dependence of viscosity and surface tension of
several phosphonium-based deep eutectic solvents. Journal of Molecular Liquids, 241: 500-510.
19.
Francisco, M., van den Bruinhorst, A. and Kroon, M. C. (2013). Low‐transition-temperature
mixtures (LTTMs): A new generation of designer solvents. Angewandte Chemie International Edition, 52(11):
3074-3085.
20.
Abbott, A. P., Barron,
J. C., Ryder, K. S. and Wilson, D. (2007). Eutectic‐based ionic liquids
with metal‐containing
anions and cations. Chemistry–A European
Journal, 13(22): 6495-6501.
21.
D'Agostino, C., Harris,
R. C., Abbott, A. P., Gladden, L. F. and Mantle, M. D. (2011). Molecular motion
and ion diffusion in choline chloride based deep eutectic solvents studied by
1H pulsed field gradient NMR spectroscopy. Physical
Chemistry Chemical Physics, 13(48): 21383–21391
22.
Yadav, A. and Pandey, S.
(2014). Densities and viscosities of (choline chloride urea) deep eutectic
solvent and its aqueous mixtures in the temperature range 293.15 K to 363.15 K.
Journal of Chemical & Engineering
Data, 59(7): 2221–2229.
23.
New, E. K., Wu, T. Y.,
Lee, C. B. T. L., Poon, Z. Y., Loow, Y. L., Foo, L.
Y. W. and Mohammad, A. W. (2019). Potential use of pure and diluted choline
chloride-based deep eutectic solvent in delignification of oil palm fronds. Process Safety and Environmental Protection,
123: 190-198.
24.
Shahbaz, K., Mjalli, F. S., Hashim, M. A. and AlNashef,
I. M. (2011). Prediction of deep eutectic solvents densities at different temperatures.
Thermochimica Acta, 515(1-2): 67-72.
25.
Skulcova,
A., Russ, A., Jablonsky, M. and Sima,
J. (2018). The pH behavior of seventeen deep eutectic
solvents. BioResources,
13(3): 5042-5051.
26.
Hayyan,
A., Mjalli, F. S., AlNashef,
I. M., Al-Wahaibi, T., Al-Wahaibi,
Y. M. and Hashim, M. A. (2012). Fruit sugar-based deep eutectic solvents and
their physical properties. Thermochimica Acta,
541: 70-75.
27.
Torres, P., Balcells, M., Cequier, E. and Canela-Garayoa, R. (2020). Effect of four novel bio-based
DES (deep eutectic solvents) on hardwood fractionation. Molecules, 25(9), 2157.
28.
Zhu, J., Yu, K., Zhu,
Y., Zhu, R., Ye, F., Song, N. and Xu, Y. (2017). Physicochemical properties of
deep eutectic solvents formed by choline chloride and phenolic compounds at T=
(293.15 to 333.15) K: The influence of electronic effect of substitution group.
Journal of Molecular Liquids, 232:
182-187.
29.
Salmaliyan,
M., Malek Ghaeni, F. and Ebrahimnia,
M. (2017). Effect of electro spark deposition process parameters on WC-Co
coating on H13 steel. Surface and
Coatings Technology, 321: 81-89.
30.
Chen, Y., Peng, X., Bi,
Z., Yu, D., Zhang, Y., Guo, Y. and Mu, T. (2021). Factors affecting the
refractive index of amino acid-based deep eutectic solvents. Chemical Thermodynamics and Thermal Analysis,
3: 100016.
31.
Chemat,
F., You, H. J., Muthukumar, K. and Murugesan, T.
(2015). Effect of L-arginine on the physical properties of choline chloride and
glycerol based deep eutectic solvents. Journal
of Molecular Liquids, 212: 605-611.
32.
Leron,
R. B., Soriano, A. N. and Li, M. H. (2012). Densities and refractive indices of
the deep eutectic solvents (choline chloride + ethylene glycol or glycerol) and
their aqueous mixtures at the temperature ranging from 298.15 To 333.15K. Journal of the Taiwan Institute of Chemical
Engineers, 43(4): 551-557.
33.
Paveglio,
G. C., Milani, F. A., Sauer, A. C., Roman, D., Meyer, A. R. and Pizzuti, L. (2021). Structure-physical properties
relationship of eutectic solvents prepared from benzyltriethylammonium
chloride and carboxylic acids. Journal of
the Brazilian Chemical Society, 32: 542-551.
34.
Wang, Y., Ma, C., Liu,
C., Lu, X., Feng, X. and Ji, X. (2020). Thermodynamic study of choline
chloride-based deep eutectic solvents with water and methanol. Journal of Chemical and Engineering Data,
65(5): 2446–2457.
35.
Qin, H., Hu, X., Wang,
J., Cheng, H., Chen, L. and Qi, Z. (2020). Overview of acidic deep eutectic
solvents on synthesis, properties and applications. Green Energy and
Environment, 5(1): 8-21.
36.
Kalhor,
P. and Ghandi, K. (2019). Deep eutectic solvents for pretreatment,
extraction, and catalysis of biomass and food waste. Molecules, 24(22): 4012.
37.
Chen, W., Xue, Z., Wang, J., Jiang, J., Zhao, X. and Mu, T. (2018).
Investigation on the thermal stability of deep eutectic solvents. Acta Physico-Chimica Sinica,
34(8): 904-911.
38.
Florindo,
C., Oliveira, F. S., Rebelo, L. P. N., Fernandes, A.
M. and Marrucho, I. M. (2014). Insights into the
synthesis and properties of deep eutectic solvents based on cholinium
chloride and carboxylic acids. ACS
Sustainable Chemistry & Engineering, 2(10): 2416-2425.
39.
Chemat,
F., Anjum, H., Shariff, A. M., Kumar, P. and Murugesan, T. (2016). Thermal and
physical properties of (choline chloride+ urea+ l-arginine) deep eutectic
solvents. Journal of Molecular Liquids,
218: 301-308.
40.
Delgado-Mellado, N., Larriba, M.,
Navarro, P., Rigual, V., Ayuso,
M., García, J. and Rodríguez, F. (2018). Thermal stability of choline chloride
deep eutectic solvents by TGA/FTIR-ATR analysis. Journal of Molecular Liquids, 260(2017): 37-43.
41.
Acciardo,
E., Tabasso, S., Cravotto,
G. and Bensaid, S. (2022). Process intensification
strategies for lignin valorization. Chemical
Engineering and Processing-Process Intensification, 171: 108732.
42.
Kim, J. S., Lee, Y. Y.
and Kim, T. H. (2016). A review on alkaline pre-treatment technology for
bioconversion of lignocellulosic biomass. Bioresource
Technology, 199: 42-48
43.
Tarasov, D., Leitch, M.
and Fatehi, P. (2018). Lignin–carbohydrate complexes:
properties, applications, analyses, and methods of extraction: A review. Biotechnology for Biofuels, 11(1): 1-28.
44.
Chen, Y., Zhang, L., Yu,
J., Lu, Y., Jiang, B., Fan, Y. and Wang, Z. (2019). High-purity lignin isolated
from poplar wood meal through dissolving treatment with deep eutectic solvents.
Royal Society Open Science, 6(1):
181757.
45.
Alvarez-Vasco, C., Ma,
R., Quintero, M., Guo, M., Geleynse, S., Ramasamy, K.
K. and Zhang, X. (2016). Unique low-molecular-weight lignin with high purity
extracted from wood by deep eutectic solvents (DESs): A source of lignin for valorization. Green Chemistry, 18(19): 5133-5141.
46.
Gunny, A. A. N., Arbain, D., Nashef, E. M. and
Jamal, P. (2015). Applicability evaluation of deep eutectic solvents–cellulase
system for lignocellulose hydrolysis. Bioresource
Technology, 181: 297-302.
47.
Tan, Y. T., Ngoh, G. C. and Chua, A. S. M. (2019). Effect of functional
groups in acid constituent of deep eutectic solvent for extraction of reactive
lignin. Bioresource Technology, 281:
359-366.
48.
Zhang, C. W., Xia, S. Q.
and Ma, P. S. (2016). Facile pretreatment of
lignocellulosic biomass using deep eutectic solvents. Bioresource Technology, 219: 1-5.
49.
Kumar, A. K., Parikh, B.
S. and Pravakar, M. (2016). Natural deep eutectic
solvent mediated pretreatment of rice straw:
bioanalytical characterization of lignin extract and enzymatic hydrolysis of pretreated biomass residue. Environmental Science and Pollution Research, 23(10): 9265-9275.
50.
Li, T., Lyu, G., Liu, Y., Lou, R., Lucia, L. A., Yang, G. and
Saeed, H. A. (2017). Deep eutectic solvents (DESs) for the isolation of willow
lignin (Salix matsudana cv. Zhuliu). International
Journal of Molecular Sciences, 18(11): 2266
51.
Satlewal,
A., Agrawal, R., Das, P., Bhagia, S., Pu, Y., Puri,
S. K. and Ragauskas, A. J. (2019). Assessing the
facile pretreatments of bagasse for efficient
enzymatic conversion and their impacts on structural and chemical properties. ACS Sustainable Chemistry & Engineering,
7(1): 1095-1104.
52.
Shen, X. J., Wen, J. L.,
Mei, Q. Q., Chen, X., Sun, D., Yuan, T. Q. and Sun, R. C. (2019). Facile
fractionation of lignocelluloses by biomass-derived deep eutectic solvent (DES)
pretreatment for cellulose enzymatic hydrolysis and
lignin valorization. Green Chemistry, 21(2): 275-283.
53.
Procentese,
A., Johnson, E., Orr, V., Campanile, A. G., Wood, J. A., Marzocchella,
A. and Rehmann, L. (2015). Deep eutectic solvent pretreatment and subsequent saccharification of corncob. Bioresource Technology, 192: 31-36.
54.
Hou, X. D., Li, A. L.,
Lin, K. P., Wang, Y. Y., Kuang, Z. Y. and Cao, S. L.
(2018). Insight into the structure-function relationships of deep eutectic
solvents during rice straw pretreatment. Bioresource Technology, 249: 261-267.
55.
Pan, M., Zhao, G., Ding,
C., Wu, B., Lian, Z. and Lian, H. (2017). Physicochemical transformation of
rice straw after pretreatment with a deep eutectic
solvent of choline chloride/urea. Carbohydrate
Polymers, 176: 307–314.
56.
Bubalo,
M. C., Ćurko, N., Tomašević,
M., Ganić, K. K. and Redovniković,
I. R. (2016). Green extraction of grape skin phenolics by using deep eutectic
solvents. Food Chemistry, 200:
159-166.
57.
Atilhan,
M., Altamash, T. and Aparicio, S. (2019). Quantum
chemistry insight into the interactions between deep eutectic solvents and SO2.
Molecules, 24(16): 2963.
58.
Liu, C., Fang, H., Qiao, Y., Zhao, J. and Rao, Z. (2019). Properties and heat
transfer mechanistic study of glycerol/choline chloride deep eutectic solvents
based nanofluids. International Journal
of Heat and Mass Transfer, 138: 690-698.
59.
Anderson, J. L., Ding,
J., Welton, T. and Armstrong, D. W. (2002). Characterizing ionic liquids on the
basis of multiple solvation interactions. Journal
of the American Chemical Society, 124(47): 14247-14254.
60.
Rahman, M. B. A., Ishak,
Z. I., Abdullah, D. K., Aziz, A. A., Basri, M. and
Salleh, A. B. (2012). Swelling and dissolution of oil palm biomass in ionic
liquids. Journal of Oil Palm Research,
24: 1267-1276.
61.
Swatloski,
R. P., Spear, S. K., Holbrey, J. D. and Rogers, R. D.
(2002). Dissolution of cellulose with ionic liquids. Journal of the American Chemical Society, 124(18): 4974-4975.
62.
Nor, N. A. M., Mustapha,
W. A. W. and Hassan, O. (2016). Deep eutectic solvent (DES) as a pretreatment for oil palm empty fruit bunch (OPEFB) in
sugar production. Procedia Chemistry,
18: 147-154.
63.
Tajuddin, N. A., Harun,
S., Sajab, M. S., Zubairi,
S. I., Jahim, J. M., Markom,
M. and Hashim, N. (2019). Influence of deep eutectic solvent (DES) pretreatment on various chemical composition of empty fruit
bunch (EFB). International Journal of
Engineering and Technology, 8(12): 266-274.
64.
Zulkefli,
S., Abdulmalek, E. and Rahman, M. B. A. (2017). Pretreatment of oil palm trunk in deep eutectic solvent and
optimization of enzymatic hydrolysis of pretreated
oil palm trunk. Renewable Energy,
107: 36-41.
65.
Tan, Y. T., Ngoh, G. C. and Chua, A. S. M. (2018). Evaluation of
fractionation and delignification efficiencies of deep eutectic solvents on oil
palm empty fruit bunch. Industrial Crops
and Products, 123: 271-277.
66.
Liu, Y., Chen, W., Xia,
Q., Guo, B., Wang, Q., Liu, S., Liu, Y., Li, J. and Yu, H. (2017). Efficient
cleavage of lignin–carbohydrate complexes and ultrafast extraction of lignin
oligomers from wood biomass by microwave-assisted treatment with deep eutectic
solvent. ChemSusChem,
10(8): 1692-1700.
67.
Teh,
S. S., Loh, S. K. and Mah,
S. H. (2019). Development of choline-based deep eutectic solvents for efficient
concentrating of hemicelluloses in oil palm empty fruit bunches. Korean Journal of Chemical Engineering,
36(10): 1619-1625.
68.
Teles,
A. R. R., Capela, E. V., Carmo, R. S., Coutinho, J.
A., Silvestre, A. J. and Freire, M. G. (2017). Solvatochromic
parameters of deep eutectic solvents formed by ammonium-based salts and
carboxylic acids. Fluid Phase Equilibria,
448: 15-21.
69.
Lu, Y., Lu, Y. C., Hu,
H. Q., Xie, F. J., Wei, X. Y. and Fan, X. (2017).
Structural characterization of lignin and its degradation products with
spectroscopic methods. Journal of
Spectroscopy, 2017: 8951658.
70.
Haz, A., Strizincova, P., Majova, V., Sskulcova, A., Surina, I. and Jablonsky, M. (2016). Content of phenolic hydroxyl groups
in lignin: Characterisation of 23 isolated non-wood lignin with various acids. International
Journal of Recent Scientific Research, 7: 11547-11551.
71.
Baker, D. A., and Rials
T.G (2013). Recent advances in low-cost carbon fiber
manufacture from lignin. Journal Applied
Polymer Science, 130(2): 713-728.
72.
Bengtsson, A.,
Bengtsson, J., Sedin, M. and Sjöholm, E.
(2019). Carbon fibers from lignin-cellulose
precursors: effect of stabilization conditions. ACS Sustainable Chemistry & Engineering, 7(9): 8440-8448.
73.
Fang, W., Yang, S.,
Wang, X. L., Yuan, T. Q. and Sun, R. C. (2017). Manufacture and application of
lignin-based carbon fibers (LCFs) and lignin-based
carbon nanofibers (LCNFs). Green
Chemistry, 19(8): 1794-1827
74.
Baker, F. S., Griffith,
W. L. and Compere, A. L. (2005). A low-cost carbon fiber
from renewable resources. Report US Department of Energy, Energy Efficient and
Renewable Energy, pp. 1-28.
75.
Tan, Y. T., Chua, A. S.
M. and Ngoh, G. C. (2020). Deep eutectic solvent for
lignocellulosic biomass fractionation and the subsequent conversion to
bio-based products–a review. Bioresource Technology, 297: 122522.
76.
Lyu,
G., Li, T., Ji, X., Yang, G., Liu, Y., Lucia, L. A. and Chen, J. (2018).
Characterization of lignin extracted from willow by deep eutectic solvent
treatments. Polymers, 10(8): 869.
77.
Khalid, K. A.,
Karunakaran, V., Ahmad, A. A., Pa’ee, K. F.,
Abd-Talib, N. and Yong, T. L. K. (2020). Lignin from oil palm frond under
subcritical phenol conditions as a precursor for carbon fiber
production. Malaysian Journal of Analytical Sciences, 24(4): 484-494.
78.
Compere, A. L.,
Griffith, W. L., Leitten Jr, C. F. and Petrovan, S. (2004). Improving the fundamental properties
of lignin-based carbon fiber for transportation
applications. In Proceedings of the 36th International SAMPE
Technical Conference, pp. 2246-2254.
79.
Kadla,
J. F., Kubo, S., Venditti, R. A., Gilbert, R. D.,
Compere, A. L. and Griffith, W. (2002). Lignin-based carbon fibers
for composite fiber applications. Carbon,
40(15): 2913-2920.
80.
Tolbert, A., Akinosho, H., Khunsupat, R., Naskar, A. K. and Ragauskas, A.
J. (2014). Characterization and analysis of the molecular weight of lignin for
biorefining studies. Biofuels, Bioproducts and Biorefining, 8(6):
836-856.
81.
Prado, R., Brandt, A., Erdocia, X., Hallet, J., Welton,
T. and Labidi, J. (2016). Lignin oxidation and
depolymerisation in ionic liquids. Green Chemistry, 18(3): 834-841.