Malaysian Journal of Analytical Sciences, Vol 27 No 3 (2023): 471 - 487

 

POTENTIAL OF LIGNIN FROM OIL PALM BIOMASS USING DEEP EUTECTIC SOLVENT AS CARBON FIBRE PRECURSOR

 

(Potensi Lignin daripada Biojisim Kelapa Sawit Menggunakan Pelarut Eutektik

Dalam sebagai Prekursor Gentian Karbon)

 

Afiqah Liana Sazali, Siti Khadijah Amran, Khairul Faizal Pa’ee, Mohd Razealy Anuar,

and Tau-Len Kelly Yong

 

Universiti Kuala Lumpur,

Branch Campus Malaysian Institute of Chemical and Engineering Technology,

Lot 1988 Kawasan Perindustrian Bandar Vendor, Taboh Naning,

78000 Alor Gajah, Melaka, Malaysia

 

*Corresponding author: kytlen@unikl.edu.my

 

 

Received: 14 September 2022; Accepted: 1 April 2023; Published:  23 June 2023

 

 

Abstract

The modern composites industry heavily relies on carbon fibre as a raw material due to its high tensile strength, fatigue resistance, and temperature resistance. Thus, researchers are investigating the use of lignin extracted from biomass as a precursor for carbon fibre to reduce costs and environmental impact. Oil palm biomass is classified as a lignocellulosic compound due to its high cellulose, hemicellulose, and lignin content. Since lignin has a complex structure with numerous linkages between its monomeric components, it can be complicated to isolate it from lignocellulosic components. Deep eutectic solvents (DESs) are a promising new class of environmentally friendly solvents owing to their low toxicity, low production cost, and high biodegradability. Lignin valorisation has received much attention due to immense ability of DES to dissolve and extract lignin without condensation. This review aimed to provide a comprehensive and comparative analysis of the physicochemical and thermal properties of DES for utilisation in lignin extraction from biomass, with a focus on its potential as a precursor for carbon fibre.

 

Keywords: deep eutectic solvent, carbon fibre, lignin, precursor, oil palm biomass

 

Abstrak

Industri komposit moden sangat bergantung pada gentian karbon sebagai bahan mentah kerana kekuatan tegangan yang tinggi, rintangan kelesuan dan rintangan suhu. Oleh itu, penyelidik sedang mengkaji penggunaan lignin daripada biojisim sebagai prekursor yang lebih mesra alam dan kos efektif untuk gentian karbon. Biojisim kelapa sawit dikategorikan sebagai lignoselulosa, kerana kandungan selulosa, hemiselulosa dan lignin yang tinggi. Walau bagaimanapun, mengasingkan lignin daripada lignoselulosa memberikan cabaran kerana strukturnya yang rumit dan mempunyai pelbagai sambungan antara komponen monomeriknya. Pelarut Eutektik Dalam (DES) ialah generasi baharu pelarut hijau yang mudah disediakan, tinggi biodegrabiliti, kos pembuatan yang rendah dan ketoksikan yang rendah. Keupayaan DES yang luar biasa untuk melarutkan dan mengekstrak lignin tanpa pemeluwapan telah mencetuskan minat yang ketara dalam valorisasi lignin. Kajian ini bertujuan untuk menganalisis secara sistematik dan perbandingan sifat fizikokimia dan terma DES untuk pengekstrakan lignin daripada biojisim, dengan penekanan khusus pada penggunaannya sebagai prekursor untuk gentian karbon.

 

Kata kunci: pelarut eutektik dalam, gentian karbon, lignin, prekursor, biojisim kelapa sawit

 


References

1.       Bengtsson, A., Hecht, P., Sommertune, J., Ek, M., Sedin, M. and Sjöholm, E. (2020). Carbon fibers from lignin–cellulose precursors: effect of carbonization conditions. ACS Sustainable Chemistry & Engineering, 8(17): 6826-6833.

2.       Chatterjee, S. and Saito, T. (2015). Lignin‐derived advanced carbon materials. ChemSusChem, 8(23): 3941-3958.

3.       Loh, S. K. (2017). The potential of the Malaysian oil palm biomass as a renewable energy source. Energy Conversion and Management, 141: 285-298.

4.       Loow, Y. L., New, E. K., Yang, G. H., Ang, L. Y., Foo, L. Y. W. and Wu, T. Y. (2017). Potential use of deep eutectic solvents to facilitate lignocellulosic biomass utilization and conversion. Cellulose, 24(9): 3591-3618.

5.       Soltanmohammadi, F., Jouyban, A. and Shayanfar, A. (2021). New aspects of deep eutectic solvents: Extraction, pharmaceutical applications, as catalyst and gas capture. Chemical Papers, 75(2): 439-453.

6.       Liu, Y., Xue, J., Zhou, X., Cui, Y. and Yin, J. (2021). Deep desulfurization performance of thiophene with deep eutectic solvents loaded carbon nanotube composites. Royal Society Open Science, 8(4): 201736.

7.       Abbott, A. P., Capper, G., Davies, D. L., Rasheed, R. K. and Tambyrajah, V. (2003). Novel solvent properties of choline chloride/urea mixtures. Chemical Communications, (1): 70-71.

8.       Smith, E. L., Abbott, A. P. and Ryder, K. S. (2014). Deep eutectic solvents (DESs) and their applications. Chemical Reviews, 114(21): 11060-11082.

9.       Smink, D., Juan, A., Schuur, B. and Kersten, S. R. (2019). Understanding the role of choline chloride in deep eutectic solvents used for biomass delignification. Industrial & Engineering Chemistry Research, 58(36): 16348-16357.

10.    Francisco, M., van den Bruinhorst, A. and Kroon, M. C. (2012). New natural and renewable low transition temperature mixtures (LTTMS): Screening as solvents for lignocellulosic biomass processing. Green Chemistry, 14(8): 2153-2157.

11.    Tang, X., Zuo, M., Li, Z., Liu, H., Xiong, C. and Zeng, X. (2017). Green processing of lignocellulosic biomass and its derivatives in deep eutectic solvents. ChemSusChem, 10(13): 2696-2706.

12.    Farooq, M. Q., Odugbesi, G. A., Abbasi, N. M. and Anderson, J. L. (2020). Elucidating the role of hydrogen bond donor and acceptor on solvation in deep eutectic solvents formed by ammonium/phosphonium salts and carboxylic acids. ACS Sustainable Chemistry & Engineering, 8(49): 18286-18296.

13.    Zhang, Q., Vigier, K. D. O., Royer, S. and Jerome, F. (2012). Deep eutectic solvents: Syntheses, properties and applications. Chemical Society Reviews, 41(21): 7108-146.


14.    Yusof, R., Abdulmalek, E., Sirat, K. and Rahman, M. B. A. (2014). Tetrabutylammonium bromide (TBABr)-based deep eutectic solvents (DESs) and their physical properties. Molecules, 19(6): 8011-8026.

15.    Fuad, F. M., Nadzir, M. M. and Harun, A. (2021). Hydrophilic natural deep eutectic solvent: A review on physicochemical properties and extractability of bioactive compounds. Journal of Molecular Liquids, 339: 116923.

16.    Yue, D., Jing, Y., Ma, J., Yao, Y. and Jia, Y. (2012). Physicochemical properties of ionic liquid analogue containing magnesium chloride as temperature and composition dependence. Journal of Thermal Analysis and Calorimetry, 110(2): 773-780.

17.    Zhang, H., Lang, J., Lan, P., Yang, H., Lu, J. and Wang, Z. (2020). Study on the dissolution mechanism of cellulose by ChCl-based deep eutectic solvents. Materials, 13(2): 278.

18.    Ghaedi, H., Ayoub, M., Sufian, S., Shariff, A. M. and Lal, B. (2017). The study on temperature dependence of viscosity and surface tension of several phosphonium-based deep eutectic solvents. Journal of Molecular Liquids, 241: 500-510.

19.    Francisco, M., van den Bruinhorst, A. and Kroon, M. C. (2013). Low‐transition-temperature mixtures (LTTMs): A new generation of designer solvents. Angewandte Chemie International Edition, 52(11): 3074-3085.

20.    Abbott, A. P., Barron, J. C., Ryder, K. S. and Wilson, D. (2007). Eutectic‐based ionic liquids with metalcontaining anions and cations. Chemistry–A European Journal, 13(22): 6495-6501.

21.    D'Agostino, C., Harris, R. C., Abbott, A. P., Gladden, L. F. and Mantle, M. D. (2011). Molecular motion and ion diffusion in choline chloride based deep eutectic solvents studied by 1H pulsed field gradient NMR spectroscopy. Physical Chemistry Chemical Physics, 13(48): 21383–21391

22.    Yadav, A. and Pandey, S. (2014). Densities and viscosities of (choline chloride urea) deep eutectic solvent and its aqueous mixtures in the temperature range 293.15 K to 363.15 K. Journal of Chemical & Engineering Data, 59(7): 2221–2229.

23.    New, E. K., Wu, T. Y., Lee, C. B. T. L., Poon, Z. Y., Loow, Y. L., Foo, L. Y. W. and Mohammad, A. W. (2019). Potential use of pure and diluted choline chloride-based deep eutectic solvent in delignification of oil palm fronds. Process Safety and Environmental Protection, 123: 190-198.

24.    Shahbaz, K., Mjalli, F. S., Hashim, M. A. and AlNashef, I. M. (2011). Prediction of deep eutectic solvents densities at different temperatures. Thermochimica Acta, 515(1-2): 67-72.

25.    Skulcova, A., Russ, A., Jablonsky, M. and Sima, J. (2018). The pH behavior of seventeen deep eutectic solvents. BioResources, 13(3): 5042-5051.

26.    Hayyan, A., Mjalli, F. S., AlNashef, I. M., Al-Wahaibi, T., Al-Wahaibi, Y. M. and Hashim, M. A. (2012). Fruit sugar-based deep eutectic solvents and their physical properties. Thermochimica Acta, 541: 70-75.

27.    Torres, P., Balcells, M., Cequier, E. and Canela-Garayoa, R. (2020). Effect of four novel bio-based DES (deep eutectic solvents) on hardwood fractionation. Molecules, 25(9), 2157.

28.    Zhu, J., Yu, K., Zhu, Y., Zhu, R., Ye, F., Song, N. and Xu, Y. (2017). Physicochemical properties of deep eutectic solvents formed by choline chloride and phenolic compounds at T= (293.15 to 333.15) K: The influence of electronic effect of substitution group. Journal of Molecular Liquids, 232: 182-187.

29.    Salmaliyan, M., Malek Ghaeni, F. and Ebrahimnia, M. (2017). Effect of electro spark deposition process parameters on WC-Co coating on H13 steel. Surface and Coatings Technology, 321: 81-89.

30.    Chen, Y., Peng, X., Bi, Z., Yu, D., Zhang, Y., Guo, Y. and Mu, T. (2021). Factors affecting the refractive index of amino acid-based deep eutectic solvents. Chemical Thermodynamics and Thermal Analysis, 3: 100016.

31.    Chemat, F., You, H. J., Muthukumar, K. and Murugesan, T. (2015). Effect of L-arginine on the physical properties of choline chloride and glycerol based deep eutectic solvents. Journal of Molecular Liquids, 212: 605-611.

32.    Leron, R. B., Soriano, A. N. and Li, M. H. (2012). Densities and refractive indices of the deep eutectic solvents (choline chloride + ethylene glycol or glycerol) and their aqueous mixtures at the temperature ranging from 298.15 To 333.15K. Journal of the Taiwan Institute of Chemical Engineers, 43(4): 551-557.

33.    Paveglio, G. C., Milani, F. A., Sauer, A. C., Roman, D., Meyer, A. R. and Pizzuti, L. (2021). Structure-physical properties relationship of eutectic solvents prepared from benzyltriethylammonium chloride and carboxylic acids. Journal of the Brazilian Chemical Society, 32: 542-551.

34.    Wang, Y., Ma, C., Liu, C., Lu, X., Feng, X. and Ji, X. (2020). Thermodynamic study of choline chloride-based deep eutectic solvents with water and methanol. Journal of Chemical and Engineering Data, 65(5): 2446–2457.

35.    Qin, H., Hu, X., Wang, J., Cheng, H., Chen, L. and Qi, Z. (2020). Overview of acidic deep eutectic solvents on synthesis, properties and applications. Green Energy and Environment, 5(1): 8-21.

36.    Kalhor, P. and Ghandi, K. (2019). Deep eutectic solvents for pretreatment, extraction, and catalysis of biomass and food waste. Molecules, 24(22): 4012.

37.    Chen, W., Xue, Z., Wang, J., Jiang, J., Zhao, X. and Mu, T. (2018). Investigation on the thermal stability of deep eutectic solvents. Acta Physico-Chimica Sinica, 34(8): 904-911.

38.    Florindo, C., Oliveira, F. S., Rebelo, L. P. N., Fernandes, A. M. and Marrucho, I. M. (2014). Insights into the synthesis and properties of deep eutectic solvents based on cholinium chloride and carboxylic acids. ACS Sustainable Chemistry & Engineering, 2(10): 2416-2425.

39.    Chemat, F., Anjum, H., Shariff, A. M., Kumar, P. and Murugesan, T. (2016). Thermal and physical properties of (choline chloride+ urea+ l-arginine) deep eutectic solvents. Journal of Molecular Liquids, 218: 301-308.

40.    Delgado-Mellado, N., Larriba, M., Navarro, P., Rigual, V., Ayuso, M., García, J. and Rodríguez, F. (2018). Thermal stability of choline chloride deep eutectic solvents by TGA/FTIR-ATR analysis. Journal of Molecular Liquids, 260(2017): 37-43.

41.    Acciardo, E., Tabasso, S., Cravotto, G. and Bensaid, S. (2022). Process intensification strategies for lignin valorization. Chemical Engineering and Processing-Process Intensification, 171: 108732.

42.    Kim, J. S., Lee, Y. Y. and Kim, T. H. (2016). A review on alkaline pre-treatment technology for bioconversion of lignocellulosic biomass. Bioresource Technology, 199: 42-48

43.    Tarasov, D., Leitch, M. and Fatehi, P. (2018). Lignin–carbohydrate complexes: properties, applications, analyses, and methods of extraction: A review. Biotechnology for Biofuels, 11(1): 1-28.

44.    Chen, Y., Zhang, L., Yu, J., Lu, Y., Jiang, B., Fan, Y. and Wang, Z. (2019). High-purity lignin isolated from poplar wood meal through dissolving treatment with deep eutectic solvents. Royal Society Open Science, 6(1): 181757.

45.    Alvarez-Vasco, C., Ma, R., Quintero, M., Guo, M., Geleynse, S., Ramasamy, K. K. and Zhang, X. (2016). Unique low-molecular-weight lignin with high purity extracted from wood by deep eutectic solvents (DESs): A source of lignin for valorization. Green Chemistry, 18(19): 5133-5141.

46.    Gunny, A. A. N., Arbain, D., Nashef, E. M. and Jamal, P. (2015). Applicability evaluation of deep eutectic solvents–cellulase system for lignocellulose hydrolysis. Bioresource Technology, 181: 297-302.

47.    Tan, Y. T., Ngoh, G. C. and Chua, A. S. M. (2019). Effect of functional groups in acid constituent of deep eutectic solvent for extraction of reactive lignin. Bioresource Technology, 281: 359-366.

48.    Zhang, C. W., Xia, S. Q. and Ma, P. S. (2016). Facile pretreatment of lignocellulosic biomass using deep eutectic solvents. Bioresource Technology, 219: 1-5.

49.    Kumar, A. K., Parikh, B. S. and Pravakar, M. (2016). Natural deep eutectic solvent mediated pretreatment of rice straw: bioanalytical characterization of lignin extract and enzymatic hydrolysis of pretreated biomass residue. Environmental Science and Pollution Research, 23(10): 9265-9275.

50.    Li, T., Lyu, G., Liu, Y., Lou, R., Lucia, L. A., Yang, G. and Saeed, H. A. (2017). Deep eutectic solvents (DESs) for the isolation of willow lignin (Salix matsudana cv. Zhuliu). International Journal of Molecular Sciences, 18(11): 2266


51.    Satlewal, A., Agrawal, R., Das, P., Bhagia, S., Pu, Y., Puri, S. K. and Ragauskas, A. J. (2019). Assessing the facile pretreatments of bagasse for efficient enzymatic conversion and their impacts on structural and chemical properties. ACS Sustainable Chemistry & Engineering, 7(1): 1095-1104.

52.    Shen, X. J., Wen, J. L., Mei, Q. Q., Chen, X., Sun, D., Yuan, T. Q. and Sun, R. C. (2019). Facile fractionation of lignocelluloses by biomass-derived deep eutectic solvent (DES) pretreatment for cellulose enzymatic hydrolysis and lignin valorization. Green Chemistry, 21(2): 275-283.

53.    Procentese, A., Johnson, E., Orr, V., Campanile, A. G., Wood, J. A., Marzocchella, A. and Rehmann, L. (2015). Deep eutectic solvent pretreatment and subsequent saccharification of corncob. Bioresource Technology, 192: 31-36.

54.    Hou, X. D., Li, A. L., Lin, K. P., Wang, Y. Y., Kuang, Z. Y. and Cao, S. L. (2018). Insight into the structure-function relationships of deep eutectic solvents during rice straw pretreatment. Bioresource Technology, 249: 261-267.

55.    Pan, M., Zhao, G., Ding, C., Wu, B., Lian, Z. and Lian, H. (2017). Physicochemical transformation of rice straw after pretreatment with a deep eutectic solvent of choline chloride/urea. Carbohydrate Polymers, 176: 307–314.

56.    Bubalo, M. C., Ćurko, N., Tomašević, M., Ganić, K. K. and Redovniković, I. R. (2016). Green extraction of grape skin phenolics by using deep eutectic solvents. Food Chemistry, 200: 159-166.

57.    Atilhan, M., Altamash, T. and Aparicio, S. (2019). Quantum chemistry insight into the interactions between deep eutectic solvents and SO2. Molecules, 24(16): 2963.

58.    Liu, C., Fang, H., Qiao, Y., Zhao, J. and Rao, Z. (2019). Properties and heat transfer mechanistic study of glycerol/choline chloride deep eutectic solvents based nanofluids. International Journal of Heat and Mass Transfer, 138: 690-698.

59.    Anderson, J. L., Ding, J., Welton, T. and Armstrong, D. W. (2002). Characterizing ionic liquids on the basis of multiple solvation interactions. Journal of the American Chemical Society, 124(47): 14247-14254.

60.    Rahman, M. B. A., Ishak, Z. I., Abdullah, D. K., Aziz, A. A., Basri, M. and Salleh, A. B. (2012). Swelling and dissolution of oil palm biomass in ionic liquids. Journal of Oil Palm Research, 24: 1267-1276.

61.    Swatloski, R. P., Spear, S. K., Holbrey, J. D. and Rogers, R. D. (2002). Dissolution of cellulose with ionic liquids. Journal of the American Chemical Society, 124(18): 4974-4975.

62.    Nor, N. A. M., Mustapha, W. A. W. and Hassan, O. (2016). Deep eutectic solvent (DES) as a pretreatment for oil palm empty fruit bunch (OPEFB) in sugar production. Procedia Chemistry, 18: 147-154.

63.    Tajuddin, N. A., Harun, S., Sajab, M. S., Zubairi, S. I., Jahim, J. M., Markom, M. and Hashim, N. (2019). Influence of deep eutectic solvent (DES) pretreatment on various chemical composition of empty fruit bunch (EFB). International Journal of Engineering and Technology, 8(12): 266-274.

64.    Zulkefli, S., Abdulmalek, E. and Rahman, M. B. A. (2017). Pretreatment of oil palm trunk in deep eutectic solvent and optimization of enzymatic hydrolysis of pretreated oil palm trunk. Renewable Energy, 107: 36-41.

65.    Tan, Y. T., Ngoh, G. C. and Chua, A. S. M. (2018). Evaluation of fractionation and delignification efficiencies of deep eutectic solvents on oil palm empty fruit bunch. Industrial Crops and Products, 123: 271-277.

66.    Liu, Y., Chen, W., Xia, Q., Guo, B., Wang, Q., Liu, S., Liu, Y., Li, J. and Yu, H. (2017). Efficient cleavage of lignin–carbohydrate complexes and ultrafast extraction of lignin oligomers from wood biomass by microwave-assisted treatment with deep eutectic solvent. ChemSusChem, 10(8): 1692-1700.

67.    Teh, S. S., Loh, S. K. and Mah, S. H. (2019). Development of choline-based deep eutectic solvents for efficient concentrating of hemicelluloses in oil palm empty fruit bunches. Korean Journal of Chemical Engineering, 36(10): 1619-1625.

68.    Teles, A. R. R., Capela, E. V., Carmo, R. S., Coutinho, J. A., Silvestre, A. J. and Freire, M. G. (2017). Solvatochromic parameters of deep eutectic solvents formed by ammonium-based salts and carboxylic acids. Fluid Phase Equilibria, 448: 15-21.

69.    Lu, Y., Lu, Y. C., Hu, H. Q., Xie, F. J., Wei, X. Y. and Fan, X. (2017). Structural characterization of lignin and its degradation products with spectroscopic methods. Journal of Spectroscopy, 2017: 8951658.

70.    Haz, A., Strizincova, P., Majova, V., Sskulcova, A., Surina, I. and Jablonsky, M. (2016). Content of phenolic hydroxyl groups in lignin: Characterisation of 23 isolated non-wood lignin with various acids. International Journal of Recent Scientific Research, 7: 11547-11551.

71.    Baker, D. A., and Rials T.G (2013). Recent advances in low-cost carbon fiber manufacture from lignin. Journal Applied Polymer Science, 130(2): 713-728.

72.    Bengtsson, A., Bengtsson, J., Sedin, M. and Sjöholm, E. (2019). Carbon fibers from lignin-cellulose precursors: effect of stabilization conditions. ACS Sustainable Chemistry & Engineering, 7(9): 8440-8448.

73.    Fang, W., Yang, S., Wang, X. L., Yuan, T. Q. and Sun, R. C. (2017). Manufacture and application of lignin-based carbon fibers (LCFs) and lignin-based carbon nanofibers (LCNFs). Green Chemistry, 19(8): 1794-1827

74.    Baker, F. S., Griffith, W. L. and Compere, A. L. (2005). A low-cost carbon fiber from renewable resources. Report US Department of Energy, Energy Efficient and Renewable Energy, pp. 1-28.

75.    Tan, Y. T., Chua, A. S. M. and Ngoh, G. C. (2020). Deep eutectic solvent for lignocellulosic biomass fractionation and the subsequent conversion to bio-based products–a review. Bioresource Technology, 297: 122522.

76.    Lyu, G., Li, T., Ji, X., Yang, G., Liu, Y., Lucia, L. A. and Chen, J. (2018). Characterization of lignin extracted from willow by deep eutectic solvent treatments. Polymers, 10(8): 869.

77.    Khalid, K. A., Karunakaran, V., Ahmad, A. A., Pa’ee, K. F., Abd-Talib, N. and Yong, T. L. K. (2020). Lignin from oil palm frond under subcritical phenol conditions as a precursor for carbon fiber production. Malaysian Journal of Analytical Sciences, 24(4): 484-494.

78.    Compere, A. L., Griffith, W. L., Leitten Jr, C. F. and Petrovan, S. (2004). Improving the fundamental properties of lignin-based carbon fiber for transportation applications. In Proceedings of the 36th International SAMPE Technical Conference, pp. 2246-2254.

79.    Kadla, J. F., Kubo, S., Venditti, R. A., Gilbert, R. D., Compere, A. L. and Griffith, W. (2002). Lignin-based carbon fibers for composite fiber applications. Carbon, 40(15): 2913-2920.

80.    Tolbert, A., Akinosho, H., Khunsupat, R., Naskar, A. K. and Ragauskas, A. J. (2014). Characterization and analysis of the molecular weight of lignin for biorefining studies. Biofuels, Bioproducts and Biorefining, 8(6): 836-856.

81.    Prado, R., Brandt, A., Erdocia, X., Hallet, J., Welton, T. and Labidi, J. (2016). Lignin oxidation and depolymerisation in ionic liquids. Green Chemistry, 18(3): 834-841.