Malaysian Journal of Analytical Sciences, Vol 27 No 3 (2023): 463 - 470

 

THE DEVELOPMENT AND QUANTITATIVE PERFORMANCE TEST OF LOW-COST VISIBLE SPECTROPHOTOMETER AND ITS COMPARISON WITH COMMERCIAL SPECTROPHOTOMETER

 

(Pembangunan dan Ujian Prestasi Kuantitatif dari Spektrofotometer Nampak Kos Rendah dan Perbandingannya dengan Spektrofotometer Komersil)

 

Rudi Heryanto1,2, Dyah Iswantini1,2*, Eti Rohaeti1,2, Mohamad Rafi1,2, Mulyati1, and Wulan Suci Pamungkas1

 

1 Department of Chemistry,

Faculty of Mathematics and Sciences

2 Tropical Biopharmaca Research Center,

Institute for Research and Community Service

IPB University, Bogor 16680, Indonesia

 

*Corresponding author: dyahis@apps.ipb.ac.id

 

 

Received: 13 December 2022; Accepted: 1 April 2023; Published:  23 June 2023

 

 

Abstract

A simple, portable, visible spectrophotometer was constructed and used for analytical measurements. The spectrophotometer was built using consumer electronics components such as an LED as the light source and a web camera as the detector. Using parameters including linearity, limit of detection, quantification, and precision to analyze the methyl red and dichromate standards, the analytical performance of the webcam spectrophotometer was evaluated. Results showed that, for methyl red, the webcam spectrophotometer gave a linearity range of 210 ppm with a limit of detection and limit of quantification of 0.69 and 2.11 ppm, respectively, and precision as a relative standard deviation of approximately 5%. The dichromate standard gave a linearity range of 0.71.5 ppm with a limit of detection and limit of quantification of 0.12 and 0.41 ppm, respectively, and precision as a relative standard deviation under 5%. These analytical performances are comparable but not better than those of the two commercial spectrophotometers used as comparators. The application of a webcam spectrophotometer to quantify the rhodamine B content in a traditional food sample, pacar cina jelly, also gave an equivalent analytical performance, and the rhodamine B analyte quantification capability was not significantly different from that of commercial spectrophotometers.

 

Keywords:  visible spectrophotometry, webcam spectrophotometer, analytical performance, quantitative analysis

 

Abstrak

Spektrofotometer nampak dan mudah alih telah dibina dan digunakan untuk pengukuran analitik. Spektrofotometer dibina menggunakan komponen elektronik pengguna seperti LED sebagai sumber cahaya dan kamera web sebagai pengesan. Menggunakan parameter termasuk kelinearan, had pengesanan, kuantifikasi dan ketepatan untuk menganalisis piawaian metil merah dan dikromat, prestasi analisis spektrofotometer kamera web telah dinilai. Keputusan menunjukkan bahawa, untuk metil merah, spektrofotometer kamera web memberikan julat lineariti 2-10 ppm dengan had pengesanan dan had kuantifikasi masing-masing 0.69 dan 2.11 ppm, dan ketepatan sebagai sisihan piawai relatif kira-kira 5%. Piawaian dikromat memberikan julat lineariti 0.7–1.5 ppm dengan had pengesanan dan had kuantifikasi masing-masing 0.12 dan 0.41 ppm, dan ketepatan sebagai sisihan piawai relatif di bawah 5%. Prestasi analisis ini adalah setanding tetapi tidak lebih baik daripada dua spektrofotometer komersial yang digunakan sebagai pembanding. Penggunaan spektrofotometer kamera web untuk mengukur kandungan rhodamine B dalam sampel makanan tradisional, jeli pacar cina, juga memberikan prestasi analisis yang setara, dan keupayaan pengkuantifikasian rhodamine B tidak jauh berbeza daripada spektrofotometer komersial.

 

Kata kunci: spektrofotometri nampak, spektrofotometer kamera web, prestasi analisis, analisis kuantitatif

 


References

1.       Haque, F., Bubli, S. Y., and Khan, M. S. (2021). UV–Vis spectroscopy for food analysis. Technolgy to Measure Food Safety Quality, 2021: 169-193.

2.       Nawrocka, A., and Lamorska, J. (2013). Determination of food quality by using spectroscopic methods, in Grundas, S. and Stepniewski, A. (Eds.), IntechOpen, Rijeka, p. 14.

3.       Rateni, G., Dario, P., and Cavallo, F. (2017). Smartphone-based food diagnostic technologies: A review. Sensors, 17(6): 1453.

4.       Likith, G., Jayram, N. D., Yaswanth, B., Sreekanth, D., Deny, J., Karuthapandi, M., and Vishwa, S. V. (2021). Designing of low-cost spectrometer for sensor application, Journal Optics, 50(3): 489-494.

5.       Nelis, J. L. D., Tsagkaris, A. S., Dillon, M. J., Hajslova, J., and Elliott, C. T. (2020). Smartphone-based optical assays in the food safety field, TrAC Trends Analytical Chemistry, 129: 115934.

6.       Scheeline, A. (2015). Spectrometry with consumer-quality CMOS cameras, in mobile health technologies: Methods and protocols. Springer New York, pp. 259-275.

7.       Silva, W. R. F., Suarez, W. T., Reis, C., dos Santos, V. B., Carvalho, F. A., Reis, E. L., and Vicentini, F. C. (2021). Multifunctional webcam spectrophotometer for performing analytical determination and measurements of emission, absorption, and fluorescence spectra. Journal Chemical Education, 98(4): 1442-1447.

8.       Abbasi, H., Nazeri, M., and Mireei, S. A. (2016). Design and development of a LabVIEW-based LED-induced fluorescence spectroscopy system with applications in non-destructive quality assessment of agricultural products. Journal of Physics: Conference Series, p. 012010.

9.       Das, A. (2021). Portable UV–visible spectroscopy – instrumentation, technology, and applications. Portable Spectroscopy Spectrometry, 2021: 179-207.

10.    Scheeline, A. (2021). Smartphone technology – instrumentation and applications. Portable Spectroscopy Spectrometry, 2021: 209-235.

11.    Balado Sánchez, C., Díaz Redondo, R. P., Fernández Vilas, A., and Sánchez Bermúdez, A. M. (2019). Spectrophotometers for labs: A cost-efficient solution based on smartphones, Computer Application in Engineering Education, 27(2): 371-379.

12.    Kirchmer, C. J. (1987). Estimation of detection limits for environmental analytical procedures. Detection in Analytical Chemistry,  pp. 78-93.

13.    Lebourgeois, V., Bégué, A., Labbé, S., Mallavan, B., Prévot, L., and Roux, B. (2008). Can commercial digital cameras be used as multispectral sensors? A crop monitoring test. Sensors, 8(11): 7300-7322.

14.    Danchana, K., Phansi, P., T. de Souza, C. L.C., Ferreira, S., and Cerdà, V. (2020). Spectrophotometric system based on a device created by 3D printing for the accommodation of a webcam chamber as a detection system, Talanta, 206: 120250.

15.    Kotchabhakdi, N., and Kate Grudpan, K. (2020). A use of an everyday life camera with image processing as alternative detection for a flame photometer. Malaysian Journal Analytical Sciences, 24(6): 918-926.

16.    Taverniers, I., De Loose, M., and Van Bockstaele, E. (2004). Trends in quality in the analytical laboratory. II. Analytical method validation and quality assurance, TrAC Trends Analytical Chemistry, 23(8): 535-552.

17.    Cooksey, C. J. (2015). Quirks of dye nomenclature. 5. Rhodamines. Biotechnic & Histochemistry, 91(1): 71-76.

18.    Hasanah, A. N., Musfiroh, I., Saptarini, N. M., and Rahayu, D. (2014). Identification of rhodamine B in food products and cosmetics circulated in Bandung. Jurnal Ilmu Kefarmasian Indonesia, 12(1): 104-109.

19.    Ridjal, A. T. M. and Kasma, A. Y. (2022). Study of rhodamine B dyes content in snacks of Karuwisi Traditional Market Makassar, South Sulawesi, Indonesia. In IOP Conference Series: Earth and Environmental Science, 1027(1): p. 012012.