Malaysian Journal of Analytical
Sciences, Vol 27
No 3 (2023): 463 - 470
THE DEVELOPMENT AND
QUANTITATIVE PERFORMANCE TEST OF LOW-COST VISIBLE SPECTROPHOTOMETER AND ITS
COMPARISON WITH COMMERCIAL SPECTROPHOTOMETER
(Pembangunan dan Ujian Prestasi Kuantitatif dari
Spektrofotometer Nampak Kos Rendah dan Perbandingannya dengan Spektrofotometer
Komersil)
Rudi Heryanto1,2,
Dyah Iswantini1,2*, Eti Rohaeti1,2, Mohamad Rafi1,2,
Mulyati1, and Wulan Suci Pamungkas1
1 Department
of Chemistry,
Faculty of Mathematics and Sciences
2 Tropical
Biopharmaca Research Center,
Institute for
Research and Community Service
IPB
University, Bogor 16680, Indonesia
*Corresponding
author: dyahis@apps.ipb.ac.id
Received: 13 December 2022; Accepted:
1 April 2023; Published: 23 June 2023
Abstract
A simple, portable, visible spectrophotometer was
constructed and used for analytical measurements. The spectrophotometer was
built using consumer electronics components such as an LED as the light source
and a web camera as the detector. Using parameters including linearity, limit
of detection, quantification, and precision to analyze the methyl red and
dichromate standards, the analytical performance of the webcam
spectrophotometer was evaluated. Results showed that, for methyl red, the
webcam spectrophotometer gave a linearity range of 2–10 ppm with a limit of detection and limit of
quantification of 0.69 and 2.11 ppm, respectively, and precision as a relative
standard deviation of approximately 5%. The dichromate standard gave a
linearity range of 0.7–1.5 ppm with a limit of detection and limit of
quantification of 0.12 and 0.41 ppm, respectively, and precision as a relative
standard deviation under 5%. These analytical performances are comparable but
not better than those of the two commercial spectrophotometers used as
comparators. The application of a webcam spectrophotometer to quantify the
rhodamine B content in a traditional food sample, pacar
cina jelly, also gave an equivalent analytical
performance, and the rhodamine B analyte quantification capability was not
significantly different from that of commercial spectrophotometers.
Keywords: visible spectrophotometry,
webcam spectrophotometer, analytical performance, quantitative analysis
Abstrak
Spektrofotometer
nampak dan mudah alih telah dibina dan digunakan untuk pengukuran analitik.
Spektrofotometer dibina menggunakan komponen elektronik pengguna seperti LED
sebagai sumber cahaya dan kamera web sebagai pengesan. Menggunakan parameter
termasuk kelinearan, had pengesanan, kuantifikasi dan ketepatan untuk
menganalisis piawaian metil merah dan dikromat, prestasi analisis
spektrofotometer kamera web telah dinilai. Keputusan menunjukkan bahawa, untuk
metil merah, spektrofotometer kamera web memberikan julat lineariti 2-10 ppm
dengan had pengesanan dan had kuantifikasi masing-masing 0.69 dan 2.11 ppm, dan
ketepatan sebagai sisihan piawai relatif kira-kira 5%. Piawaian dikromat
memberikan julat lineariti 0.7–1.5 ppm dengan had pengesanan dan had
kuantifikasi masing-masing 0.12 dan 0.41 ppm, dan ketepatan sebagai sisihan
piawai relatif di bawah 5%. Prestasi analisis ini adalah setanding tetapi tidak
lebih baik daripada dua spektrofotometer komersial yang digunakan sebagai
pembanding. Penggunaan spektrofotometer kamera web untuk mengukur kandungan
rhodamine B dalam sampel makanan tradisional, jeli pacar cina, juga
memberikan prestasi analisis yang setara, dan keupayaan pengkuantifikasian
rhodamine B tidak jauh berbeza daripada spektrofotometer komersial.
Kata kunci: spektrofotometri nampak, spektrofotometer kamera web,
prestasi analisis, analisis kuantitatif
References
1.
Haque, F.,
Bubli, S. Y., and Khan, M. S. (2021). UV–Vis spectroscopy for food analysis. Technolgy
to Measure Food Safety Quality, 2021: 169-193.
2.
Nawrocka, A., and Lamorska, J. (2013).
Determination of food quality by using spectroscopic methods, in Grundas, S.
and Stepniewski, A. (Eds.), IntechOpen, Rijeka, p. 14.
3.
Rateni, G., Dario, P., and
Cavallo, F. (2017). Smartphone-based food diagnostic technologies: A review. Sensors,
17(6): 1453.
4.
Likith, G., Jayram, N. D.,
Yaswanth, B., Sreekanth, D., Deny, J., Karuthapandi, M., and Vishwa, S. V.
(2021). Designing of low-cost spectrometer for sensor application, Journal
Optics, 50(3): 489-494.
5.
Nelis, J. L. D., Tsagkaris, A. S.,
Dillon, M. J., Hajslova, J., and Elliott, C. T. (2020). Smartphone-based
optical assays in the food safety field, TrAC Trends Analytical Chemistry,
129: 115934.
6.
Scheeline, A. (2015). Spectrometry
with consumer-quality CMOS cameras, in mobile health technologies: Methods and
protocols. Springer New York, pp. 259-275.
7.
Silva, W. R. F., Suarez, W. T.,
Reis, C., dos Santos, V. B., Carvalho, F. A., Reis, E. L., and Vicentini, F. C.
(2021). Multifunctional webcam spectrophotometer for performing analytical
determination and measurements of emission, absorption, and fluorescence
spectra. Journal Chemical Education, 98(4): 1442-1447.
8.
Abbasi, H., Nazeri, M., and
Mireei, S. A. (2016). Design and development of a LabVIEW-based LED-induced
fluorescence spectroscopy system with applications in non-destructive quality
assessment of agricultural products. Journal of Physics: Conference Series,
p. 012010.
9.
Das, A. (2021). Portable
UV–visible spectroscopy – instrumentation, technology, and applications. Portable
Spectroscopy Spectrometry, 2021: 179-207.
10.
Scheeline, A. (2021). Smartphone
technology – instrumentation and applications. Portable Spectroscopy
Spectrometry, 2021: 209-235.
11.
Balado Sánchez, C., Díaz Redondo,
R. P., Fernández Vilas, A., and Sánchez Bermúdez, A. M. (2019).
Spectrophotometers for labs: A cost-efficient solution based on smartphones, Computer
Application in Engineering Education, 27(2): 371-379.
12.
Kirchmer, C. J. (1987). Estimation
of detection limits for environmental analytical procedures. Detection in
Analytical Chemistry, pp. 78-93.
13.
Lebourgeois,
V., Bégué, A., Labbé, S., Mallavan, B., Prévot, L., and Roux, B. (2008). Can
commercial digital cameras be used as multispectral sensors? A crop monitoring
test. Sensors, 8(11): 7300-7322.
14.
Danchana, K.,
Phansi, P., T. de Souza, C. L.C., Ferreira, S., and Cerdà, V. (2020). Spectrophotometric
system based on a device created by 3D printing for the accommodation of a
webcam chamber as a detection system, Talanta, 206: 120250.
15.
Kotchabhakdi, N., and Kate
Grudpan, K. (2020). A use of an everyday life camera with image processing as
alternative detection for a flame photometer. Malaysian Journal Analytical
Sciences, 24(6): 918-926.
16.
Taverniers, I., De Loose, M., and
Van Bockstaele, E. (2004). Trends in quality in the analytical laboratory. II.
Analytical method validation and quality assurance, TrAC Trends Analytical
Chemistry, 23(8): 535-552.
17.
Cooksey, C. J. (2015). Quirks of
dye nomenclature. 5. Rhodamines. Biotechnic & Histochemistry, 91(1):
71-76.
18.
Hasanah, A. N., Musfiroh, I.,
Saptarini, N. M., and Rahayu, D. (2014). Identification of rhodamine B in food
products and cosmetics circulated in Bandung. Jurnal Ilmu Kefarmasian
Indonesia, 12(1): 104-109.
19.
Ridjal, A. T. M. and Kasma, A. Y.
(2022). Study of rhodamine B dyes content in snacks of Karuwisi Traditional
Market Makassar, South Sulawesi, Indonesia. In IOP Conference Series: Earth
and Environmental Science, 1027(1): p. 012012.