Malaysian Journal of Analytical Sciences, Vol 27 No 3 (2023): 660 - 674

 

A REVIEW ON Piper betle EXTRACT AND HYPOCHLOROUS ACID ON INSECTICIDAL ACTIVITY

 

(Ulasan tentang Ekstrak Piper betle dan Asid Hipoklorus Terhadap Aktiviti Racun Serangga)

 

Wan Zuraida Wan Mohd Zain1,2*, Muhammad Imran Hakimi Chairul1,  Nur’Amira Hamid1,

Aisha Na’illa Che Musa1, Nurul Wahida Ramli1, Norhazana Nor Izan3, Arifin marzuki3, and

Nur Diyana Zulpahmi1

 

1Faculty of Plantation and Agrotechnology, Universiti Teknologi MARA Cawangan Melaka,

Kampus Jasin, Merlimau, Melaka, Malaysia

2Biocatalyst and Biobased Material Technology Research Group, School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

3Bubbles O2 Quarters, 7-51-02, Jalan Medan Pusat Bandar 8A, 43650 Bandar Baru Bangi, Selangor, Malaysia

 

*Corresponding author: wanzuraida@uitm.edu.my

 

 

Received: 20 September 2022; Accepted: 28 May 2023; Published:  23 June 2023

 

 

Abstract

Piper betle L. is a well-known medicinal plant that originates from the Asian region. This crop was used daily by the older generation as natural medicine to cure certain types of diseases. A series of phytochemical screening procedures proved that the extract of Piper betle contains essential phytochemicals, such as tannin, saponin, flavonoid, and alkaloid, which possess the insecticidal activity potential towards a wide range of insects.  Previous studies have led to the implementation of betel extract in the agriculture sector as a pesticide or a major constituent in the production of novel insecticides. The effectiveness of betel extract as a pesticide is quite promising and it can be used as a better alternative to replace the use of harmful, chemical pesticides. Similar to betel extract, hypochlorous acid shows antimicrobial and insecticidal effects, but its true potential has not been studied thoroughly because its current usage is mainly focused on the healthcare sector as disinfectants or to aid wound healing. Both betel extract and hypochlorous acid can be beneficial to the agriculture sector, especially in pest management procedures, if its true potential is studied thoroughly to validate its mechanism or mode of action towards insects.

                                                                                                                                         

Keywords: Piper betle L., phytochemical, insecticidal activity potential, hypochlorous acid

 

Abstrak

Piper betle L. ialah sejenis tumbuhan ubatan yang berasal dari Asia. Generasi terdahulu telah menggunakan tumbuhan ini secara harian sebagai ubatan semula jadi untuk merawat penyakit tertentu. Beberapa siri analisis fitokimia telah membuktikan bahawa ekstrak Piper betle mengandungi beberapa jenis fitokimia penting termasuk tannin, saponin, flavonoid, dan alkaloid, yang memiliki ciri anti-serangga terhadap pelbagai jenis serangga. Kajian yang telah dijalankan telah membawa kepada penggunaan ekstrak sireh sebagai racun perosak atau bahan utama dalam penghasilan racun serangga yang baharu. Keberkesanan ekstrak sireh sebagai racun perosak menunjukkan hasil yang meyakinkan dan boleh digunakan sebagai alternatif yang lebih baik untuk menggantikan penggunaan racun kimia yang berbahaya. Asid hipoklorus juga menunjukkan kesan antimikrob dan anti-serangga seperti ekstrak sireh, tetapi keupayaannya yang sebenar tidak dikaji secara mendalam kerana penggunannya lebih tertumpu dalam bidang kesihatan sebagai disinfeksi atau membantu dalam penyembuhan luka. Kedua-dua ekstrak sireh dan asid hipoklorus boleh menjadi bahan yang bermanfaat dalam sektor pertanian, terutamanya dalam kawalan makhluk perosak jika potensi sebenarnya dikaji dengan lebih mendalam bagi mengesahkan mekanisma atau cara tindakannya terhadap serangga.

 

Kata kunci: Piper betle L., fitokimia, ciri anti-serangga, asid hipoklorus

 


References

1.       Dasgupta, N. and De, B. (2004). Antioxidant activity of Piper betle L. leaf extract in vitro. Food Chemistry, 88(2): 219-224.

2.       Rahman, S., Biswas, S. K., Kumar Biswas, S., Chandra Barman, N. and Ferdous, T. (2016). Plant extract as selective pesticide for integrated pest management biodegradation of textile dye by bacteria isolated from industrial effluent view project viral hepatitis: Current situation in Bangladesh view project plant extract as selective pesticide for integrated pest management. Biotechnology Research Journal, 2(1): 6-10.

3.       Fazal, F., Mane, P. P., Rai, M. P., Thilakchand, K. R., Bhat, H. P., Kamble, P. S., Palatty, P. L. and Baliga, M. S. (2014). The phytochemistry, traditional uses and pharmacology of Piper betel. linn (Betel leaf): A pan-asiatic medicinal plant. Chinese Journal of Integrative Medicine, 2014: 1334.

4.       Sakinah, D., Misfadhila, S. and Author, C. (2020). Review of traditional use, phytochemical and pharmacological activity of Piper betle L. Galore International Journal of Health Sciences and Research, 5(3): 59-66.

5.       Jayalakshmi, B., Raveesha, K. A., Shrisha, D. L. and Amruthesh, K. N. (2013). Evaluation of Piper betle L. leaf extracts for biocontrol of important phytopathogenic bacteria. International Journal of Agricultural Technology, 9(3): 611-624.

6.       Ghasemie, E., Niknejad Kazempour, M. and Padasht, F. (2008). Isolation and identification of Xathomonas Oryzae Pv. oryzae the causal agent of bacterial blight of rice in Iran. Journal of Plant Protection Research, 48(1): 53-62.

7.       Mirik, M. and Aysan, Y. (2009). Detection of Xanthomonas axonopodis pv. vesicatoria in naturally infected pepper seeds in Turkey. Journal of Plant Pathology, 91(2): 433-436.

8.       Ali, N., Zada, A., Ali, M. and Hussain, Z. (2016). Isolation and identification of Agrobacterium tumefaciens from the galls of peach tree. Journal of Rural Development and Agriculture, 1(1): 39-48.

9.       Sholi, N. and Jadallah, R. (2012). Isolation and detection of Agrobacterium tumefaciens from soil. Journal of Al Azhar University-Gaza (Natural Sciences), 14: 77-84.

10.    Vicente, J. G. and Holub, E. B. (2013). Xanthomonas campestris pv. Campestris (cause of black rot of crucifers) in the genomic era is still a worldwide threat to brassica crops. Molecular Plant Pathology, 14(1): 2-18.

11.    Popović, T., Menković, J., Prokić, A., Zlatković, N. and Obradović, A. (2021). Isolation and characterization of Pseudomonas syringae isolates affecting stone fruits and almond in Montenegro. Journal of Plant Diseases and Protection, 128(2): 391-405.

12.    Martianasari, R. and Hamid, P. H. (2019). Larvicidal, adulticidal, and oviposition- deterrent activity of Piper betle L. essential oil to Aedes aegypti. Veterinary World, 12(3): 367-371.

13.    Adawiyah Umar, R., Sanusi, A., Nizam Zahary, M., Adzim Khalili Rohin, M. and Ismail, S. (2018). Chemical composition and the potential biological activities of piper betel-a review. Malaysian Journal of Applied Sciences, 3(1): 1-8.

14.    Mojab, F., Kamalinejad, M., Ghaderi, N. and Vahidipour, H. R. (2003). Phytochemical screening of some species of Iranian plants. Iranian Journal of Pharmaceutical Research, 2003: 77-82.

15.    Azlan, M. M. and Mohammad, M. (2018). Phytochemical compounds in the methanolic extract of Piper betle L. leaves. Malaysian Applied Biology, 47(5): 233-239.

16.    Sushma, S., Pauly, S. V. and Sowmyashree, G. (2020). Phytochemical screening of inflorescence of Piper betle. International Journal Current Pharmaceutical Research, 12(6): 89-92.

17.    Venkateswarlu, K., Devanna, N. and Prasad, N. B. L. (2014). Microscopical and preliminary phytochemical screening of ‘Piper betle. PharmaTutor, 2(4): 112-118.

18.    Mazumder, S., Roychowdhury, A. and Banerjee, S. (2016). An overview of betel leaf (Piper betle L.): A review. Annals: Food Science & Technology, 17(2): 367-376.

19.    Guha, P. (2010). Design, development, testing and comparative evaluation of the betel leaf oil extractor. Ama, Agricultural Mechanization in Asia, Africa & Latin America, 41(4): 28.

20.    Saini, S. A. P. N. A., Dhiman, A. N. J. U. and Nanda, S. A. N. J. U. (2016). Pharmacognostical and phytochemical studies of Piper betle Linn. leaf. International Journal Pharmaceutical Sciences, 8(5): 222-226.

21.    Evans, P. H., Bowers, W. S. and Funk, E. J. (1984). Identification of fungicidal and nematocidal components in the leaves of Piper betle (Piperaceae). Journal of Agricultural and Food chemistry, 32(6): 1254-1256.

22.    Mohottalage, S., Tabacchi, R. and Guerin, P. M. (2007). Components from Sri Lankan Piper betle L. leaf oil and their analogues showing toxicity against the housefly, Musca domestica. Flavour and Fragrance Journal, 22(2): 130-138.

23.    Lin, D., Xiao, M., Zhao, J., Li, Z., Xing, B., Li, X., Kong, M., Li, L., Zhang, Q., Liu, Y., Chen, H., Qin, W., Wu, H. and Chen, S. (2016). An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules, 21(10): 1374.

24.    Sanubol, A., Chaveerach, A., Sudmoon, R., Tanee, T., Noikotr, K. and Chuachan, C. (2014). Betel-like-scented Piper plants as diverse sources of industrial and medicinal aromatic chemicals. Chiang Mai Journal Sciences, 41: 1171-1181.

25.    Miyakado, M., Nakayama, I., Yoshioka, H. and Nakatani, N. (1979). The piperaceae amides i: Structure of pipercide, a new insecticidal amide from Piper nigrum L. Agricultural and Biological Chemistry, 43(7): 1609-1611.

26.    Subaharan, K., Senthoorraja, R., Manjunath, S., Thimmegowda, G. G., Pragadheesh, V. S., Bakthavatsalam, N., Mohan, M. G., Senthil-Nathan, S., David, K. J., Basavarajappa, S. and Ballal, C. (2021). Toxicity, behavioural and biochemical effect of Piper betle L. essential oil and its constituents against housefly, Musca domestica L. Pesticide Biochemistry and Physiology, 174: 104804.

27.    Arambewela, L. S. R., Arawwawala, L. D. A. M., Kumaratunga, K. G., Dissanayake, D. S., Ratnasooriya, W. D. and Kumarasingha, S. P. (2011). Investigations on Piper betle grown in Sri Lanka. Pharmacognosy Reviews, 5(10): 159-163.

28.    Yushananta, P. and Ahyanti, M. (2021). The effectiveness of betle leaf (Piper betle L.) extract as a bio-pesticide for controlled of houseflies (Musca domestica L.). Open Access Macedonian Journal of Medical Sciences, 9: 895-900.

29.    Raveen, R., Kanmani, S., Lokesh, K. V., Tennyson, S., Arivoli, S. and Jayakumar, M. (2019). Efficacy of Piper betle leaf extracts against sweet potato weevil Cylas formicarius (F.). Indian Journal of Entomology, 81(1): 201.

30.    Dammini-Premachandra, W. T. S., Mampitiyarachchi, H. and Ebssa, L. (2014). Nemato-toxic potential of betel (Piper betle L.) (Piperaceae) leaf. Crop Protection, 65: 1-5.

31.    Sritamin, M., Dewa, I. and Singarsa, P. (2017). Utilization of betel leaf extract as botanical pesticides to control meloidogyne spp. and tomato plant production. Journal of Advances in Tropical Biodiversity and Environmental Sciences, 1(1): 15.

32.    Khomsatun, K., Widyanto, A. and Susiyanti, S. (2013). Effectiveness of betel leaf extract (Piper betle, Linn) as Anopheles spp mosquito repellent. Jurnal Riset Kesehatan, 2(3): 392-396.

33.    Block, M. S. and Rowan, B. G. (2020). Hypochlorous acid: A review. Journal of Oral and Maxillofacial Surgery, 78(9): 1461-1466.

34.    Lapenna, D. and Cuccurullo, F. (1996). Hypochlorous acid and its pharmacological antagonism: An update picture. General Pharmacology, 27(7):1145-1147.

35.    Wang, L., Bassiri, M., Najafi, R., Najafi, K., Yang, J., Khosrovi, B., ... and Robson, M. C. (2007). Hypochlorous acid as a potential wound care agent: part I. Stabilized hypochlorous acid: a component of the inorganic armamentarium of innate immunity. Journal of Burns and Wounds, 6: e5.

36.    Robson, M. C., Payne, W. G., Ko, F., Mentis, M., Donati, G., Shafii, S. M., ... and Bassiri, M. (2007). Hypochlorous acid as a potential wound care agent: part II. Stabilized hypochlorous acid: its role in decreasing tissue bacterial bioburden and overcoming the inhibition of infection on wound healing. Journal of Burns and Wounds, 6: e6.

37.    Eryilmaz, M. and Palabiyik, I. M. (2013). Hypochlorous acid - analytical methods and antimicrobial activity. Tropical Journal of Pharmaceutical Research, 12(1): 123-126.

38.    Mackay, A. J., Amador, M., Felix, G., Acevedo, V. and Barrera, R. (2015). Evaluation of household bleach as an ovicide for the control of Aedes aegypti. Journal of the American Mosquito Control Association, 31(1): 77-84.

39.    Trpiš, M. (1970). A new bleaching and decalcifying method for general use in zoology. Canadian Journal of Zoology, 48(4): 892-893.

40.    Quinn, M. M.,   Henneberger,   P. K., Braun, B.,  Delclos, G. L., Fagan, K., Huang, V., Knaack, J. L. S., Kusek, L., Lee, S. J., le Moual, N., Maher, K. A. E., McCrone, S. H., Mitchell, A. H., Pechter, E., Rosenman, K., Sehulster, L., Stephens, A. C., Wilburn, S. and Zock, J. P. (2015). Cleaning and disinfecting environmental surfaces in health care: Toward an integrated framework for infection and occupational illness prevention. American Journal of Infection Control, 43(5): 424-434.

41.    Kim, C., Her, Y., Kim, Y., Jung, C., Lim, H. and Suh, K. (2019). Evaluating the effectiveness of HOCl application on odor reduction and earthworm population growth during vermicomposting of food waste employing Eisenia fetida. PLoS One, 14(12): e0226229.

42.    Arambewela, L. S. R., Arawwawala, L. D. A. M., Kumaratunga, K. G., Dissanayake, D. S., Ratnasooriya, W. D. and Kumarasingha, S. P. (2011). Investigations on Piper betle grown in Sri Lanka. Pharmacognosy Reviews, 5(10): 159-163.

43.    Velma Chandler, B. L., Pepper, R. E. and Gordon, L. E. (1925). Organic syntheses. Journal Chem Society, Klrim., Sinteer erg. Socdincnii, Shornik, 42(2): 6-10.