Malaysian
Journal of Analytical Sciences, Vol 27 No 3 (2023): 653 - 659
STUDY
OF SOLVOTHERMAL SYNTHESIS OF MAGNESIUM-BASED METAL-ORGANIC FRAMEWORKS
(Kajian Sintesis Solvoterma
Kerangka Logam-Organik Berasaskan Magnesium)
Umar Abd
Aziz,1 Mohamed Ibrahim Mohamed Tahir,1,2 Nurul Farhana
Ahmad Aljafree,1,2,
and Mohd Basyaruddin Abdul Rahman,1,2*
1Foundry of Reticular Materials for Sustainability, Institute
of Nanoscience and Nanotechnology,
2Department of Chemistry, Faculty of Science, Universiti Putra
Malaysia, 43400 UPM Serdang, Selangor,
Malaysia
*Corresponding author: basya@upm.edu.my
Received: 18 April 2023; Accepted: 6
June 2023; Published: 23 June 2023
Abstract
Metal-organic frameworks (MOFs) are a class of
reticular materials consisting of metal ions coordinated to organic ligands.
Theoretically, magnesium metal of the s-block has low electronegativity due to
their large ionic radii and low ionic charges. The coordination number of
magnesium immensely varies depending on the electrostatic interactions with the
ligands. Therefore, designing strategic synthesis of Mg-based MOFs becomes a
challenge hence its scarcity in literature. This study aims to investigate the
different procedure of synthesizing Mg-MOFs using both flexible and rigid
organic linkers in organic solvents at high temperature; termed solvothermal
method. Magnesium nitrate hexahydrate (Mg(NO3)2.6H2O)
are used as the metal source and mixed with naturally occurring plant acids as
the organic linkers; malic acid and tartaric acid. Rigidity was introduced by
addition of aromatic organic ligands of benzene-1,4-dicarboxylic acid (BDC) and
benzene-1,3,5-tricarboxylic acid (BTC). By varying precursor ratios and organic
solvents, we hope to improve the reaction condition for the previously reported
synthesis of Mg-MOFs. Single crystal X-ray diffraction (SCXRD) and powder X-ray
diffraction (PXRD) analysis showed that the same quality crystals and high
crystallinity powder have been produced under improved reaction conditions. The
coordination of s-block metal ions has also been found to be most suited in a
solvent mixture of H2O and N,N-dimethylformamide
(DMF).
Keywords: metal-organic
framework, nanomaterial, solvothermal synthesis, s-block, green chemistry
Abstrak
Kerangka logam-organik (MOFs)
adalah satu kelas bahan retikulasi yang terbentuk dari ion logam
dikoordinasikan ke ligan organik. Secara teori, logam blok-s magnesium
mempunyai nilai keelektronegatifan yang rendah kerana radius ion yang besar dan
cas ion yang rendah. Nombor koordinatan antara logam magnesium berbeza-beza
bergantung kepada interaksi elektrostatik dengan ligan yang berkaitan. Justeru,
perancangan sintesis MOF berasaskan magnesium secara strategik adalah satu
cabaran berikutan kekurangan perbincangan mengenainya dalam tinjauan literatur.
Kajian ini bertujuan untuk meneliti pelbagai prosedur sintesis Mg-MOF
menggunakan penghubung organik samada fleksibel mahupun tegar pada suhu yang
tinggi; iaitu kaedah solvoterma. Magnesium nitrat heksahidrat (Mg(NO3)2.6H2O)
digunakan sebagai sumber logam dan dicampurkan dengan asid tumbuh-tumbuhan
sebagai ligan organik semula jadi; asid malik dan asid tartarik. Ketegaran
dalam kerangka dimasukkan melalui penambahan ligan aromatik organik iaitu asid
benzena-1,4-dikarboksilik (BDC) dan asid benzena-1,3,5-trikarboksilik (BTC).
Dengan mempelbagaikan nisbah pendahulu dan pelarut organik, kami berharap dapat
menambah baik keadaan tindak balas yang telah dilaporkan bagi sintesis Mg-MOF.
Analisa pembelauan hablur tunggal sinar-X (SCXRD) dan pembelauan serbuk sinar-X
(PXRD) menunjukkan bahawa hablur yang sama kualiti dan serbuk dengan kehabluran
yang tinggi telah berjaya disintesis dengan penambahbaikan terhadap keadaan
tindak balas. Campuran pelarut H2O dan N,N-dimetilformamida
(DMF) pula merupakan keadaan yang paling sesuai untuk pengkoordinatan logam
blok-s.
Kata kunci: kerangka logam-organik, bahan nano, sintesis solvotermal,
blok-s, kimia hijau
References
1. Yaghi,
O. M. (2016). Reticular chemistry - construction, properties, and precision
reactions of frameworks. Journal of the American Chemical Society,
138(48): 15507-15509.
2. Banerjee,
D., Finkelstein, J., Smirnov, A., Forster, P. M., Borkowski, L. A., Teat, S.
J., and Parise, J. B. (2011). Synthesis and structural characterization of magnesium based coordination networks in different solvents.
Crystal Growth & Design, 11(6): 2572-2579.
3. Fromm,
K. M. (2008). Coordination polymer networks with s-block metal ions. Coordination
Chemistry Reviews, 252: 856-885.
4. Griffin,
S. L. and Champness, N. R. (2020). A periodic table of metal-organic
frameworks. Coordination Chemistry Reviews, 414: 213295.
5. Alnaqbi,
M. A., Alzamly, A., Ahmad, S. H., Bakiro,
M., Kagere, J. and Nguyen, H. L. (2021). Chemistry
and applications of s-block metal–organic frameworks. Journal of Materials
Chemistry A, 9(7): 3828-3854.
6. Yang,
J., Trickett, C. A., Alahmadi, S. B., Alshammari, A. S. and Yaghi, O.
M. (2017). Calcium L-lactate frameworks as naturally degradable
carriers for pesticides. Journal of the American Chemical Society, 139
(24): 8118-8121.
7. Rowsell
J. L. C. and Yaghi, O. M. (2004). Metal–organic
frameworks: A new class of porous materials. Microporous and Mesoporous
Materials, 73(1-2): 3-14.
8. Rood,
J. A., Noll, B. C. and Henderson K. W. (2010). Homochiral frameworks derived
from magnesium, zinc and copper salts of L-tartaric acid. Journal
of Solid State Chemistry, 183(1): 270-276.
9. Kam,
K. C., Young, K. L. M. and Cheetham, A. K. (2007). Chemical and structural
diversity in chiral magnesium tartrates and their racemic and meso analogues. Crystal Growth & Design, 7(8):
1522-1532.
10. Rossin,
A., Ienco, A, Costantino, F., Montini,
T., Di Crediro, B., Caporali,
M., Gonsalvi, L., Fornasiero,
P. and Peruzzini, M. (2008). Phase transitions and CO2
adsorption properties of polymeric magnesium formate.
Crystal Growth & Design, 8(9): 3302-3308.
11. Davies,
R. P., Less, R. J., Lickiss, P. D. and White, A. J.
P. (2007). Framework materials assembled from magnesium carboxylate building
units. Dalton Transactions, 24: 2528-2535.
12. Tezerjani,
A. A., Halladj, R. and Askari, S. (2021). Different
view of solvent effect on the synthesis methods of zeolitic imidazolate
framework-8 to tuning the crystal structure and properties. RSC Advances,
11(32): 19914-19923.
13. Forgan,
R. S. (2020). Modulated self-assembly of metal-organic frameworks. Chemical
Science, 11(18): 4546-4562.
14. Mazaj,
M., Čelič, T. B., Mali, G., Rangus, M., Kaučič, V.
and Logar, N. Z. (2013). Control of the
crystallization process and structure dimensionality of
Mg-benzene-1,3,5-tricarboxylates by tuning solvent composition. Crystal
Growth & Design, 13(8): 3825-3834.