Malaysian Journal of Analytical Sciences, Vol 27 No 3 (2023): 653 - 659

 

STUDY OF SOLVOTHERMAL SYNTHESIS OF MAGNESIUM-BASED METAL-ORGANIC FRAMEWORKS

 

(Kajian Sintesis Solvoterma Kerangka Logam-Organik Berasaskan Magnesium)

 

Umar Abd Aziz,1 Mohamed Ibrahim Mohamed Tahir,1,2 Nurul Farhana Ahmad Aljafree,1,2,

and Mohd Basyaruddin Abdul Rahman,1,2*

 

1Foundry of Reticular Materials for Sustainability, Institute of Nanoscience and Nanotechnology,

2Department of Chemistry, Faculty of Science, Universiti Putra Malaysia,  43400 UPM Serdang, Selangor, Malaysia

 

*Corresponding author: basya@upm.edu.my

 

 

Received: 18 April 2023; Accepted: 6 June 2023; Published:  23 June 2023

 

 

Abstract

Metal-organic frameworks (MOFs) are a class of reticular materials consisting of metal ions coordinated to organic ligands. Theoretically, magnesium metal of the s-block has low electronegativity due to their large ionic radii and low ionic charges. The coordination number of magnesium immensely varies depending on the electrostatic interactions with the ligands. Therefore, designing strategic synthesis of Mg-based MOFs becomes a challenge hence its scarcity in literature. This study aims to investigate the different procedure of synthesizing Mg-MOFs using both flexible and rigid organic linkers in organic solvents at high temperature; termed solvothermal method. Magnesium nitrate hexahydrate (Mg(NO3)2.6H2O) are used as the metal source and mixed with naturally occurring plant acids as the organic linkers; malic acid and tartaric acid. Rigidity was introduced by addition of aromatic organic ligands of benzene-1,4-dicarboxylic acid (BDC) and benzene-1,3,5-tricarboxylic acid (BTC). By varying precursor ratios and organic solvents, we hope to improve the reaction condition for the previously reported synthesis of Mg-MOFs. Single crystal X-ray diffraction (SCXRD) and powder X-ray diffraction (PXRD) analysis showed that the same quality crystals and high crystallinity powder have been produced under improved reaction conditions. The coordination of s-block metal ions has also been found to be most suited in a solvent mixture of H2O and N,N-dimethylformamide (DMF).

 

Keywords: metal-organic framework, nanomaterial, solvothermal synthesis, s-block, green chemistry

 

Abstrak

Kerangka logam-organik (MOFs) adalah satu kelas bahan retikulasi yang terbentuk dari ion logam dikoordinasikan ke ligan organik. Secara teori, logam blok-s magnesium mempunyai nilai keelektronegatifan yang rendah kerana radius ion yang besar dan cas ion yang rendah. Nombor koordinatan antara logam magnesium berbeza-beza bergantung kepada interaksi elektrostatik dengan ligan yang berkaitan. Justeru, perancangan sintesis MOF berasaskan magnesium secara strategik adalah satu cabaran berikutan kekurangan perbincangan mengenainya dalam tinjauan literatur. Kajian ini bertujuan untuk meneliti pelbagai prosedur sintesis Mg-MOF menggunakan penghubung organik samada fleksibel mahupun tegar pada suhu yang tinggi; iaitu kaedah solvoterma. Magnesium nitrat heksahidrat (Mg(NO3)2.6H2O) digunakan sebagai sumber logam dan dicampurkan dengan asid tumbuh-tumbuhan sebagai ligan organik semula jadi; asid malik dan asid tartarik. Ketegaran dalam kerangka dimasukkan melalui penambahan ligan aromatik organik iaitu asid benzena-1,4-dikarboksilik (BDC) dan asid benzena-1,3,5-trikarboksilik (BTC). Dengan mempelbagaikan nisbah pendahulu dan pelarut organik, kami berharap dapat menambah baik keadaan tindak balas yang telah dilaporkan bagi sintesis Mg-MOF. Analisa pembelauan hablur tunggal sinar-X (SCXRD) dan pembelauan serbuk sinar-X (PXRD) menunjukkan bahawa hablur yang sama kualiti dan serbuk dengan kehabluran yang tinggi telah berjaya disintesis dengan penambahbaikan terhadap keadaan tindak balas. Campuran pelarut H2O dan N,N-dimetilformamida (DMF) pula merupakan keadaan yang paling sesuai untuk pengkoordinatan logam blok-s.

 

Kata kunci: kerangka logam-organik, bahan nano, sintesis solvotermal, blok-s, kimia hijau

 


References

1.       Yaghi, O. M. (2016). Reticular chemistry - construction, properties, and precision reactions of frameworks. Journal of the American Chemical Society, 138(48): 15507-15509.

2.       Banerjee, D., Finkelstein, J., Smirnov, A., Forster, P. M., Borkowski, L. A., Teat, S. J., and Parise, J. B. (2011). Synthesis and structural characterization of magnesium based coordination networks in different solvents. Crystal Growth & Design, 11(6): 2572-2579.

3.       Fromm, K. M. (2008). Coordination polymer networks with s-block metal ions. Coordination Chemistry Reviews, 252: 856-885.

4.       Griffin, S. L. and Champness, N. R. (2020). A periodic table of metal-organic frameworks. Coordination Chemistry Reviews, 414: 213295.

5.       Alnaqbi, M. A., Alzamly, A., Ahmad, S. H., Bakiro, M., Kagere, J. and Nguyen, H. L. (2021). Chemistry and applications of s-block metal–organic frameworks. Journal of Materials Chemistry A, 9(7): 3828-3854.

6.       Yang, J., Trickett, C. A., Alahmadi, S. B., Alshammari, A. S. and Yaghi, O. M. (2017). Calcium L-lactate frameworks as naturally degradable carriers for pesticides. Journal of the American Chemical Society, 139 (24): 8118-8121.

7.       Rowsell J. L. C. and Yaghi, O. M. (2004). Metal–organic frameworks: A new class of porous materials. Microporous and Mesoporous Materials, 73(1-2): 3-14.

8.       Rood, J. A., Noll, B. C. and Henderson K. W. (2010). Homochiral frameworks derived from magnesium, zinc and copper salts of L-tartaric acid. Journal of Solid State Chemistry, 183(1): 270-276.

9.       Kam, K. C., Young, K. L. M. and Cheetham, A. K. (2007). Chemical and structural diversity in chiral magnesium tartrates and their racemic and meso analogues. Crystal Growth & Design, 7(8): 1522-1532.

10.    Rossin, A., Ienco, A, Costantino, F., Montini, T., Di Crediro, B., Caporali, M., Gonsalvi, L., Fornasiero, P. and Peruzzini, M. (2008). Phase transitions and CO2 adsorption properties of polymeric magnesium formate. Crystal Growth & Design, 8(9): 3302-3308.

11.    Davies, R. P., Less, R. J., Lickiss, P. D. and White, A. J. P. (2007). Framework materials assembled from magnesium carboxylate building units. Dalton Transactions, 24: 2528-2535.

12.    Tezerjani, A. A., Halladj, R. and Askari, S. (2021). Different view of solvent effect on the synthesis methods of zeolitic imidazolate framework-8 to tuning the crystal structure and properties. RSC Advances, 11(32): 19914-19923.

13.    Forgan, R. S. (2020). Modulated self-assembly of metal-organic frameworks. Chemical Science, 11(18): 4546-4562.

14.    Mazaj, M., Čelič, T. B., Mali, G., Rangus, M., Kaučič, V. and Logar, N. Z. (2013). Control of the crystallization process and structure dimensionality of Mg-benzene-1,3,5-tricarboxylates by tuning solvent composition. Crystal Growth & Design, 13(8): 3825-3834.