Malaysian Journal of Analytical Sciences, Vol 27 No 3 (2023): 641 - 652

 

Cymbopogon citratus AND Cymbopogon nardus ESSENTIAL OIL COMPONENTS – FTIR, CHEMOMETRICS ASSESSMENT

AND IDENTIFICATION USING GC-MS

 

(Komponen Minyak Pati Cymbopogon citratus dan Cymbopogon nardus- Penilaian FTIR, Kemometrik dan Penentuan Menggunakan GC-MS)

 

Hazrulrizawati Abd Hamid

 

Faculty of Industrial Sciences & Technology,

Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang Kuantan, Pahang, Malaysia

 

*Corresponding author: hazrulrizawati@ump.edu.my

 

Received: 24 October 2022; Accepted: 12 May 2023; Published:  23 June 2023

 

Abstract

Cymbopogon citratus and Cymbopogon nardus essential oil are high-value natural products due to their special qualities and commercial significance. In this work, the volatile compounds of the C. citratus and C. nardus natural essential oils obtained by hydro distillation and commercial sources using gas chromatography-mass spectrometry (GC-MS), Fourier transformation infrared spectroscopy (FTIR) and chemometrics methods were systematically detected and identified. The GC-MS results indicated that the main compound in the natural essential oil of C. citratus is citral while citronellal commercial samples of both Cymbopogan species are positively significant. Based on the results of GC-MS, citral was the major component in C. citratus while citronellal was the major component in C. nardus. Analyzing the FTIR data using principal component analysis (PCA), hierarchical cluster analysis (HCA), and discriminant analysis (DA) further revealed that the chemical composition of natural essential oils C. citratus and C. nardus samples were significantly different from commercial samples. This study revealed the first insight into metabolite compositional differences among C. citratus and C. nardus using quick and affordable analytical procedures.

 

Keywords: Fourier transformation infrared spectroscopy, chemometrics, principal component analysis, hierarchical cluster analysis, Cymbopogon

 

Abstrak

Minyak pati Cymbopogon citratus dan Cymbopogon nardus ialah produk semula jadi bernilai tinggi kerana kualitinya yang istimewa dan kepentingan komersialnya. Dalam kajian ini, sebatian meruap minyak pati semula jadi C. citratus dan C. nardus yang diperoleh melalui penyulingan hidro dan sumber komersial dikenalpasti dengan menggunakan kromatografi gas spektrometri jisim (GC-MS), spektroskopi inframerah transformasi Fourier (FTIR) dan kaedah kemometrik. Keputusan GC-MS menunjukkan bahawa sebatian utama dalam sampel komersial bagi kedua-dua spesies Cymbopogan secara signifikan berkorelasi positif dengan minyak pati semulajadi. Berdasarkan keputusan GC-MS, sitral adalah komponen utama dalam C. citratus manakala sitronelal adalah komponen utama dalam C. nardus. Melalui analisis data FTIR menggunakan analisis prinsip komponen (PCA) dan analisis kluster hierarki (HCA) seterusnya mendedahkan bahawa komposisi kimia minyak pati semulajadi C. citratus dan C. nardus sampel adalah berbeza dengan ketara daripada sampel komersial. Kajian ini memberikan keputusan yang jelas tentang perbezaan komposisi metabolit antara C. citratus dan C. nardus menggunakan prosedur analisis yang cepat dan berpatutan.

 

Kata kunci: Spektroskopi inframerah transformasi Fourier, kemometrik, analisis prinsip komponen,analisis kluster hierarki, Cymbopogon

 


References

1.       Verma, R. S, Singh, S., Padalia, R. C., Tandon, S., Venkatesh, K. and Chauhan A. (2019). Essential oil composition of the sub-aerial parts of eight species of Cymbopogon (Poaceae). Industrial Crops Products, 142: 111839.

2.       Ganjewala, D. (2009). Cymbopogon essential oils: Chemical compositions and bioactivities. International journal of Essential Oil Therapeutics, 3:56-65.

3.       Otify, A. M., Serag, A., Porzel, A., Wessjohann, L. A. and Farag, M. A. (2022). NMR metabolome-based classification of Cymbopogon species: A prospect for phyto-equivalency of its different accessions using chemometric tools. Food Analytical Methods, 2022: 1-12.

4.       Hassoun, A., Shumilina, E., Di Donato, F., Foschi, M., Simal-Gandara, J. and Biancolillo A. (2020). Emerging techniques for differentiation of fresh and frozen–thawed seafoods: Highlighting the potential of spectroscopic techniques. Molecular Cells, 25: 4472.

5.       Ng, L. M. and Simmons, R. (1999). Infrared spectroscopy. Analytical Chemistry (Wash) 71:343-350.

6.       Bansal, A. Chhabra, V.,  Rawal, R. K. and Sharma S. (2014). Chemometrics: A new scenario in herbal drug standardization. Journal of Pharmaceutical Analysis, 4(4): 223-233.

7.       Makowicz, E., Jasicka-Misiak, I., Teper, D. and Kafarski, P. (2018). HPTLC fingerprinting—rapid method for the differentiation of honeys of different botanical origin based on the composition of the lipophilic fractions. Molecules, 23(7) :1811.

8.       Ju, J., Xie, Y., Yu, H., Guo, Y., Cheng, Y., Zhang, R. and Yao, W. (2020). Synergistic inhibition effect of citral and eugenol against Aspergillus niger and their application in bread preservation. Food Chemistry, 310: 125974.

9.       Sharma, S., Habib, S., Sahu, D. and Gupta, J. (2021). Chemical properties and therapeutic potential of citral, a monoterpene isolated from lemongrass. Medicinal Chemistry, 17(1): 2-12.

10.    Chanthai, S., Prachakoll, S., Ruangviriyachai, C. and Luthria, D. L. (2012). Influence of extraction methodologies on the analysis of five major volatile aromatic compounds of citronella grass (Cymbopogon nardus) and lemongrass (Cymbopogon citratus) grown in Thailand. Journal AOAC International, 95: 763-772.

11.    Dhifi, W., Bellili, S., Jazi, S., Bahloul, N. and Mnif, W. (2016). Essential oils’ chemical characterization and investigation of some biological activities: A critical review. Medicines, 3(4): 25.

12.    Mellado-Mojica E, Seeram, N. P., López, M. G. (2016). Comparative analysis of maple syrups and natural sweeteners: Carbohydrates composition and classification (differentiation) by HPAEC-PAD and FTIR spectroscopy-chemometrics. Journal Food Composition Analysis, 52:1-8.

13.    Tankeu, S. Y., Vermaak, I., Kamatou, G. P. and Viljoen, A. M. (2014). Vibrational spectroscopy and chemometric modelling: An economical and robust quality control method for lavender oil. Industrial Crops Products 59: 234-240.

14.    Baranska, M., Schulz, H., Walter, A., Rösch, P., Quilitzsch, R., Lösing, G. and Popp, J. (2006). Investigation of eucalyptus essential oil by using vibrational spectroscopy methods. Vibrational  Spectroscopy, 42: 341-345.

15.    Gok, S., Severcan, M., Goormaghtigh, E., Kandemir, I. and Severcan F. (2015). Differentiation of Anatolian honey samples from different botanical origins by ATR-FTIR spectroscopy using multivariate analysis. Food Chemistry, 170: 234-240.

16.    Rottiers, H., Tzompa Sosa, D. A., Van de Vyver, L., Hinneh, M., Everaert, H., De Wever, J., ... and Dewettinck, K. (2019). Discrimination of cocoa liquors based on their odor fingerprint: A fast GC electronic nose suitability study. Food Analytical Methods, 12(2): 475-488.

17.    Abas, F., Khatib, A., Shitan, M., Shaari, K., & Lajis, N. H. (2013). Comparison of partial least squares and artificial neural network for the prediction of antioxidant activity in extract of Pegaga (Centella) varieties from 1H nuclear magnetic resonance spectroscopy. Food Research International, 54(1): 852-860.