Malaysian Journal of Analytical
Sciences, Vol 27
No 3 (2023): 641 - 652
Cymbopogon citratus
AND Cymbopogon nardus ESSENTIAL OIL COMPONENTS – FTIR, CHEMOMETRICS
ASSESSMENT
AND
IDENTIFICATION USING GC-MS
(Komponen Minyak Pati Cymbopogon citratus dan Cymbopogon
nardus- Penilaian FTIR, Kemometrik dan Penentuan Menggunakan GC-MS)
Hazrulrizawati
Abd Hamid
Faculty
of Industrial Sciences & Technology,
Universiti
Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang Kuantan, Pahang, Malaysia
*Corresponding
author: hazrulrizawati@ump.edu.my
Received: 24 October 2022; Accepted:
12 May 2023; Published: 23 June 2023
Abstract
Cymbopogon citratus and Cymbopogon
nardus essential oil are high-value natural products due to their special
qualities and commercial significance. In this work, the volatile compounds of
the C. citratus and C. nardus natural essential oils obtained by
hydro distillation and commercial sources using gas chromatography-mass
spectrometry (GC-MS), Fourier transformation infrared spectroscopy (FTIR) and
chemometrics methods were systematically detected and
identified. The GC-MS results indicated that the main compound in the natural
essential oil of C. citratus is citral while citronellal commercial
samples of both Cymbopogan species are positively significant. Based
on the results of GC-MS, citral was the major component in C. citratus
while citronellal was the major component in C. nardus. Analyzing the
FTIR data using principal component analysis (PCA), hierarchical cluster
analysis (HCA), and discriminant analysis (DA) further revealed that the
chemical composition of natural essential oils C. citratus and C.
nardus samples were significantly different from commercial samples. This
study revealed the first insight into metabolite compositional differences
among C. citratus and C. nardus using quick and affordable
analytical procedures.
Keywords:
Fourier transformation infrared spectroscopy, chemometrics,
principal component analysis, hierarchical cluster analysis, Cymbopogon
Abstrak
Minyak pati Cymbopogon citratus dan Cymbopogon
nardus ialah produk semula jadi bernilai tinggi kerana kualitinya yang
istimewa dan kepentingan komersialnya. Dalam kajian ini, sebatian meruap minyak
pati semula jadi C. citratus dan C. nardus yang diperoleh melalui
penyulingan hidro dan sumber komersial dikenalpasti dengan menggunakan
kromatografi gas spektrometri jisim (GC-MS), spektroskopi inframerah
transformasi Fourier (FTIR) dan kaedah kemometrik. Keputusan GC-MS menunjukkan
bahawa sebatian utama dalam sampel komersial bagi kedua-dua spesies Cymbopogan
secara signifikan berkorelasi positif dengan minyak pati semulajadi.
Berdasarkan keputusan GC-MS, sitral adalah komponen utama dalam C. citratus
manakala sitronelal adalah komponen utama dalam C. nardus. Melalui
analisis data FTIR menggunakan analisis prinsip komponen (PCA)
dan analisis kluster hierarki (HCA) seterusnya mendedahkan bahawa komposisi
kimia minyak pati semulajadi C. citratus dan C. nardus sampel
adalah berbeza dengan ketara daripada sampel komersial. Kajian ini memberikan
keputusan yang jelas tentang perbezaan komposisi metabolit antara C.
citratus dan C. nardus menggunakan prosedur analisis yang cepat dan
berpatutan.
Kata
kunci: Spektroskopi inframerah transformasi
Fourier, kemometrik, analisis prinsip komponen,analisis kluster hierarki, Cymbopogon
References
1. Verma,
R. S, Singh, S., Padalia, R. C., Tandon, S., Venkatesh, K. and Chauhan A.
(2019). Essential oil composition of the sub-aerial parts of eight species of
Cymbopogon (Poaceae). Industrial Crops Products, 142: 111839.
2. Ganjewala,
D. (2009). Cymbopogon essential oils: Chemical compositions and bioactivities. International
journal of Essential Oil Therapeutics, 3:56-65.
3. Otify,
A. M., Serag, A., Porzel, A., Wessjohann, L. A. and Farag, M. A. (2022). NMR
metabolome-based classification of Cymbopogon species: A prospect for
phyto-equivalency of its different accessions using chemometric tools. Food
Analytical Methods, 2022: 1-12.
4. Hassoun,
A., Shumilina, E., Di Donato, F., Foschi, M., Simal-Gandara, J. and Biancolillo
A. (2020). Emerging techniques for differentiation of fresh and frozen–thawed
seafoods: Highlighting the potential of spectroscopic techniques. Molecular
Cells, 25: 4472.
5. Ng,
L. M. and Simmons, R. (1999). Infrared spectroscopy. Analytical Chemistry
(Wash) 71:343-350.
6. Bansal,
A. Chhabra, V., Rawal, R. K. and Sharma
S. (2014). Chemometrics: A new scenario in herbal drug standardization. Journal
of Pharmaceutical Analysis, 4(4): 223-233.
7. Makowicz,
E., Jasicka-Misiak, I., Teper, D. and Kafarski, P. (2018). HPTLC
fingerprinting—rapid method for the differentiation of honeys of different
botanical origin based on the composition of the lipophilic fractions. Molecules,
23(7) :1811.
8. Ju,
J., Xie, Y., Yu, H., Guo, Y., Cheng, Y., Zhang, R. and Yao, W. (2020). Synergistic
inhibition effect of citral and eugenol against Aspergillus niger and their
application in bread preservation. Food Chemistry, 310: 125974.
9. Sharma,
S., Habib, S., Sahu, D. and Gupta, J. (2021). Chemical
properties and therapeutic potential of citral, a monoterpene isolated from
lemongrass. Medicinal Chemistry, 17(1): 2-12.
10. Chanthai,
S., Prachakoll, S., Ruangviriyachai, C. and Luthria, D. L. (2012).
Influence of extraction methodologies on the analysis of five major volatile
aromatic compounds of citronella grass (Cymbopogon nardus) and
lemongrass (Cymbopogon citratus) grown in Thailand. Journal
AOAC International, 95: 763-772.
11. Dhifi,
W., Bellili, S., Jazi, S., Bahloul, N. and Mnif, W. (2016). Essential
oils’ chemical characterization and investigation of some biological
activities: A critical review. Medicines, 3(4): 25.
12. Mellado-Mojica
E, Seeram, N. P., López, M. G. (2016). Comparative analysis of maple syrups and
natural sweeteners: Carbohydrates composition and classification
(differentiation) by HPAEC-PAD and FTIR spectroscopy-chemometrics. Journal
Food Composition Analysis, 52:1-8.
13. Tankeu,
S. Y., Vermaak, I., Kamatou, G. P. and Viljoen, A. M. (2014). Vibrational
spectroscopy and chemometric modelling: An economical and robust quality
control method for lavender oil. Industrial Crops Products 59: 234-240.
14. Baranska,
M., Schulz, H., Walter, A., Rösch, P., Quilitzsch, R., Lösing, G. and Popp, J.
(2006). Investigation of eucalyptus essential oil by using vibrational
spectroscopy methods. Vibrational
Spectroscopy, 42: 341-345.
15. Gok,
S., Severcan, M., Goormaghtigh, E., Kandemir, I. and Severcan F. (2015).
Differentiation of Anatolian honey samples from different botanical origins by
ATR-FTIR spectroscopy using multivariate analysis. Food Chemistry, 170:
234-240.
16.
Rottiers, H., Tzompa Sosa, D. A., Van de Vyver, L., Hinneh, M., Everaert,
H., De Wever, J., ... and Dewettinck, K. (2019). Discrimination of cocoa
liquors based on their odor fingerprint: A fast GC electronic nose suitability
study. Food Analytical Methods, 12(2): 475-488.
17. Abas,
F., Khatib, A., Shitan, M., Shaari, K., & Lajis, N. H. (2013). Comparison
of partial least squares and artificial neural network for the prediction of
antioxidant activity in extract of Pegaga (Centella) varieties from 1H
nuclear magnetic resonance spectroscopy. Food Research International,
54(1): 852-860.