Malaysian Journal of Analytical Sciences, Vol 27 No 3 (2023): 626 - 640

 

MEDIUM DENSITY FIBREBOARD (MDF) FROM OIL PALM FIBRE:

A REVIEW

 

(Papan Gentian Kepadatan Sederhana daripada Fibre Kelapa Sawit: Satu Ulasan)

 

Roila Awang*, Noorshamsiana Abdul Wahab, Zawawi Ibrahim, and Astimar Abdul Aziz

 

Malaysian Palm Oil Board, No.6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia

 

*Corresponding author: roila@mpob.gov.my

 

 

Received: 24 October 2022; Accepted: 11 March 2023; Published:  23 June 2023

 

Abstract

Rubberwood was favored for the production of medium density fibreboard (MDF). However, with the increasing demand for MDF, the limited supply of rubberwood and the need for biomass conservation, fibre boards made from agricultural residue are under investigation, though their dimensional stability is a challenge. Several researchers have used various methods and techniques for the improvement of MDF mechanical and physical properties. This article reviews the current process of MDF manufacturing and performance indexes that help find the optimum criteria for board fabrication. It was discovered that oil palm fibre has its own chemical composition and thus impacts the properties of board when used as an alternative raw material for MDF production. Thus, the mechanical and physical properties of fibreboard made from oil palm-based fibre were discussed in various hybridization ratios with different types of fibre and compared with rubberwood board. Furthermore, chemical treatments, such as alkaline treatment, acetylation or soaking, and washing with boiling water or removing parenchyma cells were also studied. It was found that the dimensions of the fibre affected the mechanical properties, such as modulus of rupture (MOR), modulus of elasticity (MOE) and internal bonding (IB). The chemical changes in fibre that occur when oil palm fibre is chemically modified were also discussed and summarized.

 

Keywords: chemical composition, oil palm fibre, medium density fibreboard

 

Abstrak

Kayu getah digemari bagi pembuatan papan gentian kepadatan sederhana (MDF). Walau bagaimanapun, peningkatan permintaan bagi penghasilan MDF, bekalan kayu getah yang terhad, dan keperluan untuk pemuliharaan biojisim, papan gentian yang diperbuat daripada sisa pertanian sedang dikaji, walaupun terdapat cabaran terhadap kestabilan dimensinya. Beberapa penyelidik telah menggunakan pelbagai kaedah dan teknik bagi penambahbaikan sifat mekanikal dan fizikal MDF. Artikel ini mengkaji proses semasa dalam penghasilan MDF dan indeks prestasinya bagi membantu mengetahui kriteria optimum dalam pembuatan fabrikasi papan. Hasil kajian mendapati gentian kelapa sawit mempunyai komposisi kimianya sendiri dan seterusnya mempengaruhi sifat papan apabila digunakan sebagai bahan mentah alternatif bagi pembuatan MDF. Oleh itu, sifat mekanikal dan fizikal papan gentian yang diperbuat daripada gentian berasaskan kelapa sawit dalam pelbagai nisbah penghibridan bersama gentian yang berbeza jenis telah dibincangkan dan dibandingkan dengan papan kayu getah. Selain itu, rawatan kimia seperti rawatan alkali, asetilasi atau rendaman, dan mencuci dengan air mendidih atau mengeluarkan sel parenchyma juga turut dikaji. Kajian mendapati bahawa dimensi gentian mempengaruhi sifat mekanikal seperti modulus kepecahan (MOR), modulus kekenyalan (MOE), dan ikatan dalaman (IB). Perubahan kimia yang berlaku dalam gentian apabila gentian kelapa sawit diubah suai secara kimia turut dibincangkan dan diringkaskan.

 

Kata kunci: komposisi kimia, fibre kelapa sawit, papan gentian kepadatan sederhana

 


References

1.         Md. Rowson, A., Ummi Hani, A., Zaidon, A., Lee, S. H., Norul Hisham, H. and Siti Hasnah, K. (2022). Physical properties of hydrothermally treated rubberwood [Hevea brasiliensis (Willd. ex A. Juss.) Müll. Arg.] in Different Buffered Media. Forests 13(7): 1052.

2.         Sivabalan, K., Suhaimi, H., Hamdan, Y., Kartikeyan, P. N. and Mohammad, A. (2021). The utilisation of palm oil and oil palm residues and the related challenges as a sustainable alternative in biofuel, bioenergy and transportation sector: A review. Sustainability, 13:3110.

3.         Asyraf, M. R. M., Ishak, M. R., Agusril, S., Nurazzi, N. M., Sabaruddin, F. A., Shazleen, S. S., Norrahim, M. N. F., Rafidah, M., Ilyas, R. A., Mohamad Zakir, A. R. and Razman, M. R. (2022). Mechanical properties of oil palm fibre reinforced polymer composites: A review. Journal of Materials Research and Technology, 17: 33-65.

4.         Pugazhenti, N. and Anand, P. (2018). A review on preparation of medium density fibreboard with different materials. International Journal of Engineering & Technology, 7(3.34): 962-965.

5.         Philip, X. Y., James, J., Monlin, K., Womac, A. and Deland, M. (2007). Properties of medium density fibreboards made from renewable biomass. Bioresource Technology, 98(5): 1077-1084.

6.         Anis, M., Kamarudin, H., Astimar, A. A. and Choo, Y. M. (2001) - Oil palm biomass for various wood-based products, production, processing, characterization and uses, pp.  625-652.

7.         Zawawi, I, Astimar, A. A., Ridzuan, R., Wan Hasamuddin, W. H. and Zainal, N. H. (2006). Optimum parameters for the production of MDF using 100% oil palm trunks. MPOB Information Series 566, 2006.

8.         Büyüksari, Ü., Hiziroglu, S., Akkılıç, H. and Ayrılmış, N. (2012). Mechanical and physical properties of medium density fibreboard panels laminated with thermally compressed veneer. Composites Part B: Engineering, 43(2):110–114.

9.         Aisyah, H. A., Paridah, M. T., Sahri, M. H., Anwar, U. M. K. and Astimar, A. A. (2013).  Properties of medium density fibreboard (MDF) from kenaf (Hibiscus cannabinus L.) core as function of refining conditions. Composite Part B: Engineering, 44(1):592–596.

10.      Aisyah, H. A., Paridah, M. T., Sahri, M. H., Astimar, A. A. and Anwar, U. M. K. (2012). Influence of thermo mechanical pulping production parameters on properties of medium density fibreboard made from kenaf bast. Journal of Applied Science, 12(6): 575-580.

11.      Das, A. K., Islam, M. A., Shams, M. I., Hannan, M. O. and Biswas, S. K. (2014). Physical and mechanical properties of UF bonded and without binding agent bagasse MDF. Asian Journal Applied Science, 7(1):45-50.

12.      Yousefi, H. (2009). Canola straw as a bio-waste resource for medium density fibreboard (MDF) manufacture.  Waste Management, 29(10): 2644-2648.

13.      Li, X. (2004). Physical, chemical and mechanical properties of bamboo and its utilization potential for fibreboard manufacturing. Master Thesis: Louisiana State University and Agriculture and Mechanical College, USA.

14.      Harmaen, A. S., Jalaluddin, H. and Paridah, M. T. (2012). Properties of medium density fibreboard panels made from rubberwood and empty fruit bunches of oil palm biomass. Journal of Composite Materials, 47(22): 2875-2883.

15.      Ayrilmis, N., Jarusombuti, S., Fueangvivat, V. and Bauchongkol, P. (2011). Effects of thermal treatment of rubberwood fibres on physical and mechanical properties of medium density fibreboard. Journal of Tropical Forest Science, 23(1): 10-16.


16.      Pugazhenti, N. and Anand, P. (2021). Mechanical and thermal behavior of hybrid composite medium density fibreboard reinforced with phenol formaldehyde. Heliyon, 7(12): e08597.

17.      Rashid, M., Das, A. K., Shams, M. I. and Biswas, S. K. (2014). Physical and mechanical properties of medium density fibre board (MDF) fabricated from banana plant (Musa Sapientum) stem and midrib. Journal of the Indian Academy of Wood Science, 11: 1-4.

18.      Kargarfard, A., Nourbakhsh, A. and Hosseinkhani, H. (2007). Investigation on medium density fibreboard (MDF) properties produced from horn beam wood. Pajouhesh-va-Sazandegi, 20(1): 25–31.

19.      Thomas, E. (1997). Asia-Pacific Forestry Sector Outlook Study Working Paper Series. Technology Scenarios in the Asia Pacific Forestry Sector. pp. 10-46.

20.      Gul, W., Khan, A. and Shakoor. A. (2017). Impact of hot-pressing temperature on medium density fibreboard (MDF) performance. Advances in Materials Science and Engineering, (17): 2-6.

21.      Lee, S. H., Zaidon, A., Ang, A. F., Juliana, A. H., Lum, W. C., Dahali, R. and Halis, R. (2018). Effects of two-step post heat-treatment in palm oil on the properties of oil palm trunk particleboard. Industrial Crops & Products, 116(6): 249-258.

22.      Hakimi, N. M. F., Lee, S. H., Lum, W. C., Mohamad, S. F., Osman Al Edrus, S. S., Park, B. D. and Azmi, A. (2021). Surface modified nanocellulose and its reinforcement in natural rubber matrix nanocomposites: A review. Polymers, 13(19): 3241.

23.      Dahali, R., Lee, S. H., Ashaari, Z., Bakar, E. S., Ariffin, H., Khoo, P. S., Bawon, P. and Salleh, Q. N. (2020). Durability of superheated steam-treated light red meranti (Shorea spp.) and Kedondong (Canarium spp.) wood against white rot fungus and subterranean termite. Sustainability, 12(11): 4431.

24.      Li, T., Cheng, D. L., Avramidis, S., Wċlinder, M. E. P. and Zhou, D. G. (2017). Response of hygroscopicity to heat treatment and its relation to durability of thermally modified wood. Construction and Building Materials, 144(2017): 671-676.

25.      Lee, S. H., Ashaari, Z., Lum, W. C., Ang, A. F., Juliana, A. H. and Halis, R. (2018). Chemical, physico-mechanical properties and biological durability of rubberwood particleboards after post heat-treatment in palm oil. Holzforschung, 72: 159-167.

26.      Petrissans, M., Gerardin, P., Elbakali, D. and Serraj, M. (2003). Wettability of heat-treated wood. Holzforschung, 57: 301–307.

27.      Zaidon, A., Norhairul Nizam, A. M., Mohd Nor, M. Y., Abood, F., Paridah, M. T., Nor Yuziah, M. Y. and Jalaluddin, H. (2007). Properties of particleboard made from pretreated particles of rubberwood, EFB and rubberwood-EFB blend. Journal Applied Science, 7(8): 1145-1151.

28.      Libo, Y., Bohumil, K. and Liang, H. (2016). A review of recent research on the use of cellulosic fibres, their fibre fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering. Composites Part B: Engineering, 92(2016): 94-132.

29.      Wan Daud, W. R. and Law, N. K.  (2011). Oil palm fibre as papermaking materials: Potentials & challenges. Bioresources, 6(1): 901-907.

30.      Abdul Khalil, H. P. S., Nurul Fazita, M. R., Bhat, A. H., Jawaid, M. and Nik Fuad, N. A. (2010). Development and material properties of new hybrid plywood from oil palm biomass. Materials and Design, 31(1): 417-424.

31.      Bhat, I. U. H., Abdullah, C. K., Abdul Khalil, H. P. S., Hakimi Ibrahim, M. and Nurul Fazita, M. R. (2010). Properties enhancement of resin impregnated agro waste: Oil palm trunk lumber. Journal of Reinforced Plastics and Composites, 29(22): 3301-3308.

32.      Abdul Khalil, H. P. S., Firdaus, M. Y. N., Jawaid, M., Anis, M., Ridzuan, R. and Mohamed, A. R. (2010b). Development and material properties of new hybrid medium density fibreboard from empty fruit bunch and rubberwood. Materials and Design, 31(9): 4229-4236.

33.      Paridah, M. T., Juliana, A. H. and Abdul Khalil, H. P. S. (2015).  Nonwood based composites. Current Forestry Report, 1:221-238.

34.      Abdullah, C. K., Jawaid, M., Abdul Khalil, H. P. S., Zaidon, A. and Hadiyane, A. (2012). Oil palm trunk polymer composite: Morphology, water absorption and thickness swelling behaviours. Bioresources, 7(3): 2948-2959.

35.      Loh, Y. F., Paridah, M. T. and Hoong, Y. B. (2011). Density distribution of oil palm stem veneer and its influence on plywood mechanical properties. Journal Applied Science, 11(5): 824-831.

36.      Abdul Khalil, H. P. S., Siti Alwani M., Ridzuan, R., Kamarudin, H. and Khairul, A. (2008). Chemical composition, morphological characteristics, and cell wall structure of Malaysian oil palm fibres. Polymer-Plastics Technology Engineering, 47(3): 273-280.

37.      Abdul Khalil, H. P. S., Hanida, S., Kang, C. W. and Nik Fuaad, N. A. (2007). Agro-hybrid composite: The effects on mechanical and physical properties of oil palm fibre (EFB)/glass hybrid reinforced polyester composites. Journal of Reinforced Plastics and Composites, 26(2):203-218.

38.      Megashah, L.  N., Ariffin, H., Zakaria, M. R. and Hassan, M. A. (2017). Properties of cellulose extract from different types of oil palm biomass. IOP Conference Series: Materials Science and Engineering, 368 (2018) 012049.

39.      Asiah, A., Mohd Razi, I., Mohd Khanif, Y., Marziah, M. and Shaharuddin, M. (2004). Physical and chemical properties of coconut coir dust and oil palm empty fruit bunch and the growth of hybrid heat tolerant cauliflower plant. Pertanika Journal Tropical Agriculture Science, 27(2):121-133.

40.      Law, K., Daud, W. and Ghazali, A. (2007). Morphological and chemical nature of fibre strands of oil palm empty-fruit-bunch (OPEFB). Bioresource, 2(3):351-362.

41.      Saiful Azry, S. O. A. (2007). Evaluation of properties of 4-year-old rubberwood clones RRIM 2000 Series for particleboard manufacture. MSc. Thesis: Universiti Putra Malaysia, Selangor, Malaysia.

42.      Jirawat, R., Thitaporn, P., Trairat, N., Suteera, W., Krissada, S., Rangsarid, K. and Chalermpol, P. (2015). Rubberwood variability in chemical and mechanical properties of pará rubber (Hevea brasiliensis) trees. ScienceASia, 251-258.

43.      Mustapha, S. N. H., Norizan, C. W. C. W. N. F., Roslan, R. and Mustapha, R. (2020). Effect of kenaf/ empty fruit bunch (EFB) hybridization and weight fractions in oil palm blend polyester composite. Journal Natural Fibres, 2020: 1-14.

44.      Chaydarreh, K. C., Lin, X., Guan, L., Yun, H., Gu, J. and Hu, C. (2021). Utilization of tea oil camellia (Camellia oleifera Abel.) shells as alternative raw materials for manufacturing particleboard. Industrial Crops and Products, 161: 113221.

45.      Zawawi, I., Astimar, A. A., Ridzuan, R., Anis, M. and Ropandi, M. (2012). Production of medium density fibreboard (MDF) from oil palm fronds and its admixture. MPOB Information Series.

46.      Zawawi, I., Aisyah, H. A., Ridzuan, R.,   Noorshamsiana, A. W., Mansur, A.,  Syaiful, O. and Sheng, E. L. (2021).  Effects of refining parameters on the properties of oil palm frond (OPF) fibre for medium density fibreboard (MDF). Journal of Advanced Research in Fluid Mechanical and Thermal Sciences, 87(3): 64-77.

47.      Zawawi, I., Astimar, A. A., Ridzuan, R., Anis, M. and Lee, S. J. (2013). Effect of refining parameters on medium density fibreboard (MDF) properties from oil palm trunk (Elaeis Guineensis). Journal of Composite Materials, 3: 127-131.

48.      Zawawi, I., Astimar, A. A., Ridzuan, R., Anis, M., Rosmazi, O. and Lee, S. J. (2014). Production of medium density fibreboard (MDF) from oil palm trunk (OPT). Journal of Applied Sciences, 14(11): 1174-1179.

49.      Nurazzi, N. M., Asyraf, M. R. M.,  Rayung, M., Norrrahim, M. N. F., Shazleen, S. S., Rani, M. S. A., Shafi, A. R.,  Aisyah, H. A., Radzi, M. H. M., Sabaruddin, F. A., Ilyas, R. A., Zainudin, E. S. and Abdan, K. (2021). Thermogravimetric analysis properties of cellulosic natural fibre polymer composites: A review on influence of chemical treatments. Polymers, 2021: 13(16):2710.

50.      Che Ibrahim, A., Ahmad Danial, A., Nor Mas Mira, A., Aziz, H., and Rosiyah, Y. (2019). Optimizing treatment of oil palm-empty fruit bunch (OP-EFB) fibre: Chemical, thermal and physical properties of alkalized fibres. Fibres and Polymers, 20(3):527-537.

51.      Norul Izani, M. A., Paridah, U. M. K., Anwar, M. Y. and Mohd Nor, P. S. H. (2013).  Effects of fibre treatment on morphology, tensile and thermogravimetric analysis of oil palm empty fruit bunches fibres. Composites Part B: Engineering, 45(1):1251-1257.

52.      Norul Izani, M. A., Paridah, M. T., Mohd Nor, M. Y. and Anwar, U. M. K. (2013). Properties of medium density fibreboard (MDF) made from treated empty fruit bunch of oil palm. Journal Tropical Forest Science, 25(2): 175-186.

53.      Zawawi, I., Mansur, A., Astimar, A. A., Ridzuan, R., Mohd Ariff, J., Suhaimi, M. and Aisyah Humairaa, A. (2016). Dimensional stability properties of medium density fibreboard (MDF) from treated oil palm (Elaeis Guineensis) empty fruit bunches (EFB) fibres. Journal of Composite Materials, 6: 91-99.

54.      Zawawi, I., Mansur, A.,  Astimar, A. A., Ridzuan, R.,   Noorshamsiana, A. W., Aisyah, H. A., Syaiful, O. and Sheng, E. L. (2021).  Oil palm empty fruit bunches (EFB): Influence of alkali and acid treatment on the mechanical properties of medium density fibreboard (MDF). Journal of Advance Research in Fluid Mechanics and Thermal Sciences, 79(1): 44-53.


55.      Zawawi, I., Astimar, A. A., Ridzuan, R.,   Kamaruzaman, J., Mansur, A. and Mohd Ariff, J. (2015).  Effect of treatment on the oil content and surface morphology of oil palm (Elaeis Guineensis) empty fruit bunches (EFB) fibres. Wood Research, 60(1): 157-166.

56.      Bam, S. A., Gundu, D. T. and Onu, F. A. (2019). The effect of chemical treatments on the mechanical and physical properties of bagasse filler reinforced low density polyethylene composite. American Journal Engineering Resource, 8: 95-98.

57.      David Chukwudi, A. (2015). Comparison of acetylation and alkali treatments on the physical and morphological properties of raffia palm fibre reinforced Composite. Science Journal Chemistry, 3: 72-77.

58.      Zhang, C., Yu, L., Fatemah, F., Vijayaraghavan, S., Mesnager, J., Jollet, V. and Zhao, B. (2018). Behaviour of water/pMDI emulsion adhesive on bonding wood substrate with varied surface properties. Industrial & Research Chemistry Research, 57: 16318-16326.