Malaysian Journal of Analytical
Sciences, Vol 27
No 3 (2023): 612 - 625
A
VALIDATED RP-HPLC METHOD FOR THE QUANTIFICATION OF LIQUID SELF-EMULSIFYING
CURCUMIN: PHARMACOKINETIC APPROACH
(Penentusahkan
Kaedah FB-KCPT Untuk Kuantifikasi Kurkumin Pememulsi Diri Cecair: Pendekatan
Farmakokinetik)
Xin-Yen Chiang1,
Sheau-Chin Lim2, Kah-Hay Yuen1, Jia-Rou Khor1,
and Siok-Yee Chan1*
1Departmental of Pharmaceutical
Technology,
School of Pharmaceutical Sciences,
Universiti Sains Malaysia, 11800,
Penang, Malaysia
2AvantSar Sdn. Bhd.,
98007, Miri, Sarawak, Malaysia
*Corresponding author: sychan@usm.my
Received: 26 February 2023; Accepted:
15 May 2023; Published: 23 June 2023
Abstract
The current study describes a
validated, reliable, simple, and sensitive high-performance liquid
chromatographic method with fluorescence detection (HPLC-FL) for the
determination of curcumin at the in vitro and in vivo levels in
pure and Self Emulsifying Drug Delivery System (SEDDS). The mean recovery of
pure curcumin was 99.1%. The calibration curves were linear over the range from
31.3 to 1000 ng/mL with correlation coefficient of R2 ≥0.9999.
The lower limit of quantification (LLOQ) was 31.3 ng/mL. The validation results
confirmed the linearity, accuracy, and precision of the developed method.
Furthermore, the curcumin-SEDDS excipients solubility were conducted, and later
curcumin loading content (LC) was determined. Moreover, pharmacokinetic
parameters, mean peak plasma concentration (Cmax), time to reach
peak concentration (Tmax), and total area under the plasma
concentration-time curve from time zero to the last sampling time, i.e.,
1440-minute (AUC0-1440m) were successfully measured with the values of 238.81
ng/mL, 70.83 min and 11249.60 ng.min/mL, respectively. This method is suitable
to detect curcumin in pure and SEDDS formulation in vitro and in vivo.
Keywords: curcumin, plasma,
self-emulsifying drug delivery system, pharmacokinetic
Abstrak
Kajian
semasa menerangkan kaedah kromatografi cecair (HPLC) berprestasi tinggi yang
disahkan, boleh dipercayai, mudah dan sensitif dengan pengesanan pendarfluor
untuk penentuan kurkumin pada tahap in vitro dan in vivo dalam
Sistem Penghantaran Ubat Pengemulsi Sendiri (SEDDS) dan tulen. Purata pemulihan
kurkumin tulen ialah 99.1%. Keluk penentukuran adalah linear dalam julat dari
31.3 hingga 1000 ng/mL dengan pekali korelasi R2 ≥0.9999. Had
kuantifikasi yang lebih rendah (LLOQ) ialah 31.3 ng/mL. Keputusan pengesahan
mengesahkan kelinearan, ketepatan dan ketepatan kaedah yang dibangunkan.
Tambahan pula, keterlarutan eksipien kurkumin-SEDDS telah dijalankan, dan
kandungan pemuatan kurkumin (LC) kemudiannya ditentukan. Selain itu, parameter
farmakokinetik berjaya diukur dengan kaedah ini termasuk purata kepekatan
plasma puncak (Cmax), masa untuk mencapai kepekatan puncak (Tmax),
dan jumlah kawasan di bawah keluk masa kepekatan plasma dari masa sifar hingga
masa pensampelan terakhir, iaitu, nilai 1440-minit (AUC0-1440m) masing-masing
238.81 ng/mL, 70.83 min dan 11249.60 ng.min/mL Kaedah ini sesuai untuk mengesan
kurkumin dalam formula tulen dan SEDDS daripada penilaian in vitro
kepada in vivo.
Kata kunci:
kurkumin, plasma, sistem penyampaian ubat pengemulsi sendiri, farmakokinetik
References
1.
Brouk, B. (1975). Plants consumed by man. Academic
Press 2nd, New York: pp. 331-337
2.
Sharma, R. A., Gescher, A. J. and Steward, W. P. (2005). Curcumin: The story so far. European
Journal of Cancer, 41: 1955-1968.
3.
Nadkarni, K. M. and Nadkarni, A. K. (1954). Dr. K.M. Nadkarni's Indian materia medica:
with Ayurvedic, Unani-Tibbi, Siddha, allopathic, homeopathic, naturopathic
& home remedies, appendices & indexes. Popular Prakashan Private Ltd,
Bombay: pp. 45-52.
4.
Bhowmik, D., Chiranjib, Kumar, K. P. S., Chandira, M. and Jayakar,
B. (2009). Turmeric: a herbal and traditional medicine. Archives of Applied Science
Research, 1(2): 86-108.
5.
Sahdeo, P. and Bharat, B. (2013). Turmeric, the golden
spice: from traditional medicine to modern medicine. CRC Press, Boca Raton: pp.
87-95.
6.
Araujo, C. C. and Leon, L. L. (2001). Biological activities of Curcuma longa L. Mem Inst Oswaldo Cruz, 96(5): 723-728.
7.
Maheshwari, R. K., Singh, A. K., Gaddipati, J. and Srimal,
R. C. (2006). Multiple biological
activities of curcumin: A short review.
Journal of Life Sciences, 78(18):
2081-2087.
8.
Hsu, C. H. and Cheng, A. L. (2007). Clinical studies with curcumin.
Springer, Boston: pp. 471-480.
9.
Menon, V. P. and Sudheer, A. R. (2007). Antioxidant and anti-inflammatory properties
of curcumin. Springer, Advances Experiment Medicine Biology, 2007: 105-125.
10.
Cox, K. H. M., Pipingas, A. and Scholey, A. B. (2015). Investigation of the effects of solid lipid
curcumin on cognition and mood in a healthy older popu. Journal of
Psychopharmacology, 29(5): 642-651.
11.
Liu, A., Lou, H., Zhao, L. and Fan, P. (2006). Validated LC/MS/MS assay for
curcumin and tetrahydrocurcumin in rat plasma and application to
pharmacokinetic study of phospholipid complex of curcumin. Journal of Pharmaceutical
and Biomedical Analysis, 40: 720-727.
12.
May, L. A., Tourkina, E., Hoffman, S. R., and Dix, T. A. (2005). Detection and quantitation of curcumin in
mouse lung cell cultures by matrix-assisted laser desorption ionization time of
flight mass spectrometry. Analytical Biochemistry, 337: 62-69.
13.
Chambers, E., Wagrowski-Diehl, D. M., Lu, Z. and Mazzeo, J. R. (2007). Systematic and comprehensive strategy for
reducing matrix effects in LC/MS/MS analyses.
Journal of Chromatography B, 852:
22-34.
14.
Heath, D. D., Pruitt, M. A., Brenner, D. E. and Rock, C. L. (2003). Curcumin in plasma and urine: quantitation
by high-performance liquid chromatography.
Journal of Chromatography B, 783:
287-295.
15.
Pak, Y., Patek, R. and Mayersohn, M. (2003). Sensitive
and rapid isocratic liquid chromatography method for the quantitation of
curcumin in plasma. Journal of Chromatography B, 796:
339-346.
16.
Schiborr, C., Eckert, G.P., Rimbach, G. and Frank, J. (2010). A validated method for the
quantification of curcumin in plasma and brain tissue by fast narrow-bore
high-performance liquid chromatography with fluorescence detection. Analytical
and Bioanalytical Chemistry, 397: 1917-1925.
17.
Ma, Z., Shayeganpour, A., Brocks, D. R., Lavasanifar, A. and Samuel, J. (2007). High-performance liquid
chromatography analysis of curcumin in rat plasma: application to
pharmacokinetics of polymeric micellar formulation of curcumin. Biomedical
Chromatography, 21: 546-552.
18.
Li, J., Jiang, Y., Wen, J., Fan, G., Wu, Y. and Zhang, C. (2009). A rapid and simple HPLC method
for the determination of curcumin in rat plasma: assay development, validation
and application to a pharmacokinetic study of curcumin liposome. Biomedical
Chromatography, 23: 1201-1207.
19.
Anwar, M., Ahmad, I., Warsi, M. H., Mohapatra, S., Ahmad, N., Akhter, S., Ali, A. and
Ahmad, F. J. (2015). Experimental
investigation and oral bioavailability enhancement of nano-sized curcumin by
using supercritical anti-solvent process.
European Journal of Pharmaceutics and
Biopharmaceutic, 96: 162-172.
20.
The European Medicines Agency (2005). ICH guideline:
Harmonised tripartite guideline, validation of analytical procedures: Test and methodology, 5-6.
21.
Food and Drug Administration (1994). Reviewer guidance,
validation of chromatographic methods, 1994: 4-32.
22.
United States Pharmacopeial Convention (1994). U.S. Pharmacopeia, 23: 1982-1984.
23.
Abou Assi, R., M. Abdulbaqi, I., Seok Ming, T., Siok
Yee, C., A. Wahab, H., Asif, S. M., and Darwis, Y. (2020).
Liquid and solid self-emulsifying drug delivery systems (SEDDs) as carriers for
the oral delivery of azithromycin: optimization, in vitro
characterization and stability assessment.
Pharmaceutics, 12 (11): 1052-1060.
24.
Van Staden, D., Du Plessis, J. and Viljoen, J. (2020).
Development of a self-emulsifying drug delivery system for optimized topical
delivery of clofazimine. Pharmaceutics, 12(6): 523-528.
25.
Patton, T. F. and Gilford, P. (1981).
Effect of various vehicles and vehicle volumes on oral absorption of
triamterene in rats. Journal of Pharmaceutical Sciences, 70(10): 1131-1134.
26.
Nascimento, T. C. F. D., Casa, D. M., Dalmolin, L. F., Mattos, A. C. D., Khalil, N. M. and Mainardes, R. M. (2012). Development and validation of an HPLC method
using fluorescence detection for the quantitative determination of curcumin in
PLGA and PLGA-PEG nanoparticles.
Current Pharmaceutical Analysis, 8:
324-333.
27.
Zarzycki, P., Zarzycka, M., Ślączka, M. and Clifton, V. (2010). Acetonitrile, the polarity
chameleon. Analytical and Bioanalytical Chemistry, 397: 905-908.
28.
Blanchard, J. (1981). Evaluation of the relative
efficacy of various techniques for deproteinizing plasma samples prior to
high-performance liquid chromatographic analysis. Journal of Chromatography B,
226 (2): 455-460.
29.
Polson, C., Sarkar, P., Incledon, B., Raguvaran, V. and Grant, R. (2003). Optimization of protein
precipitation based upon effectiveness of protein removal and ionization effect
in liquid chromatography-tandem mass spectrometry. Journal of Chromatography B,
785: 263-275.
30.
Whittington, D., Sheffels, P. and Kharasch, E.D. (2004). Stereoselective
determination of methadone and the primary metabolite EDDP in human plasma by automated
on-line extraction and liquid chromatography mass spectrometry. Journal
of Chromatography B, 809: 313-321.
31.
United States Pharmacopeial Convention (2009). U.S.
Pharmacopeia, 32: 1-7.
32.
Wang, X.-M., Zhang, Q.-Z., Yang, J., Zhu, R.-H., Zhang,
J., Cai, L.-J. and Peng, W.-X. (2012).
Validated HPLC-MS/MS method for simultaneous determination of curcumin and
piperine in human plasma. Tropical Journal of Pharmaceutical Research,
11: 621-629.
33.
Gugulothu, D., Desai, P. and Patravale, V. (2013). A versatile liquid
chromatographic technique for pharmacokinetic estimation of curcumin in human
plasma. Journal of Chromatographic Science, 52(8): 872-879.
34.
Zhongfa, L., Chiu, M., Wang, J., Chen, W., Yen, W.,
Fan-Havard, P., Yee, L. D. and Chan, K. K. (2012). Enhancement of curcumin oral absorption and
pharmacokinetics of curcuminoids and curcumin metabolites in mice. Cancer
chemotherapy and pharmacology, 69(3): 679-689.
35.
Wang, W., Zhu, R., Xie, Q., Li, A., Xiao, Y., Li, K.,
Liu, H., Cui, D., Chen, Y. and Wang, S. (2012). Enhanced bioavailability and
efficiency of curcumin for the treatment of asthma by its formulation in solid
lipid nanoparticles. International Journal of Nanomedicine, 7: 3667-3677.
36.
Grill, A.E., Koniar, B. and Panyam, J. (2014). Co-delivery of natural metabolic
inhibitors in a self-microemulsifying drug delivery system for improved oral
bioavailability of curcumin. Drug Delivery and Translational Research, 4(4): 344-352.