Malaysian Journal of Analytical
Sciences, Vol 27
No 3 (2023): 600 - 611
IN-SYRINGE
DISPERSIVE SOLID PHASE MICROEXTRACTION FOR THE DETERMINATION OF
ORGANOPHOSPHORUS PESTICIDE RESIDUES IN VEGETABLES
(Pengestrakan Mikro Fasa Pepejal
Secara Penyerakan dalam Picagari bagi Penentuan Sisa Racun Jenis Organofosforus
dalam Sayur-Sayuran)
Hairul Nizwan Manap1,
Faizah Binti Mohammad Yunus1, Nur Nadhirah Mohamad Zain2,
Noorfatimah Yahaya2, Hemavathy Surikumaran3, Kumuthini Chandrasekaram4,6, Kavirajaa Pandian
Sambasevam5,7, Muggundha
Raoov1,4*
1Department
of Chemistry, Faculty of Science,
University of Malaya, 50603 Kuala Lumpur, Malaysia.
2Department
of Toxicology, Advanced Medical & Dental Institute,
Universiti Sains Malaysia, 13200 Kepala Batas, Pulau Pinang,
Malaysia
3Faculty
of Bioeconomic and Health Sciences,
Universiti Geomatika Malaysia, 54200 Kuala Lumpur, Malaysia
4Universiti
Malaya Centre for Ionic Liquids (UMCIL), Department of Chemistry,
Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
5Advanced
Materials for Environmental Remediation (AMER), Faculty of Applied Sciences,
Universiti Teknologi MARA, Negeri Sembilan Branch, Kuala
Pilah Campus, Kuala Pilah, Malaysia
6Research
Services Division (BPP, Institute of Research Management & Services (IPPP),
University of Malaya, 50603 Kuala Lumpur, Malaysia
7Electrochemical
Materi and Sensor (EMaS) Research Group,
Universiti Teknologi MARA, 40450 Shah Alam, Selangor,
Malaysia
*Corresponding author: muggundha@um.edu.my
Received: 29 December 2022; Accepted:
20 May 2023; Published: 23 June 2023
Abstract
In-syringe
dispersive solid-phase microextraction with activated carbon as adsorbent was
successfully developed to determine organophosphorus pesticide (OPP) residues
in vegetable samples and the analytes were detected using gas
chromatography-flame photometric detector (GC-FPD). Under optimized conditions
(6 mg of activated carbon in 10 mL sample volume with 3 min extraction time and
desorption with 300 µL of acetone), activated carbon was proven to be an
effective adsorbent for the organophosphorus pesticide residues in vegetable
samples with a satisfactory percentage recovery achieved from 81.46 to 108.93%.
All the studied analytes showed good linearity in the range of 10 to 500 µg kg-1
and the correlation of determination (R2) was from 0.9962 to 0.9985.
The LODs obtained were from 0.39 to 0.84 µg kg-1, and LOQs were from
1.18 to 2.56 µg kg-1. This method gives precision values for both
intra- and inter-day within accepted variable limits (<15 % of RSD). The
in-syringe dispersive solid-phase microextraction managed to eliminate the
centrifugation process, reduce chemical consumption during extraction, and
additionally speed up the extraction process, making it more efficient. This
developed method can be applied to real samples such as vegetables and fruit
juices as well as tap, river, or ground water analysis for the determination of
OPPs.
Keywords:
organophosphorus pesticide, in-syringe dispersive solid phase microextraction,
gas chromatography-flame photometric detector
Abstrak
Pengekstrakan mikro fasa pepejal dalam picagari dengan menggunakan
karbon aktif sebagai penyerap telah berjaya dibangunkan untuk menentukan sisa
racun perosak jenis organofosforus (OPP) dalam sampel sayur-sayuran dan
analisis telah dikesan dengan menggunakan peralatan analisis kromatografi gas –
pengesan fotometrik nyalaan (GC-FPD). Di bawah keadaan yang dioptimumkan (6 mg
karbon aktif dalam isipadu sampel 10 mL dengan masa pengekstrakan selama 3
minit dan diserap dengan 300 μL aseton), karbon aktif terbukti sebagai
penyerap berkesan bagi sisa racun perosak organofosforus dalam sampel
sayur-sayuran berdasarkan peratusan pengesanan semula yang dicapai dari 81.5
hingga 108.9%. Semua analit yang dikaji menunjukkan garis lurus yang baik dalam
julat 10 hingga 500 μg kg-1 dan memberikan korelasi penentuan
(R2) dari 0.9962 hingga 0.9985. Had pengesanan yang di dapati adalah
dari 0.39 hingga 0.84 μg kg-1, dan had pengkuantitian adalah
dari 1.18 hingga 2.56 μg kg-1. Kaedah ini memberi nilai
ketepatan pada kedua-dua intra dan antara hari dalam sisihan piawai relatif
(RSD) yang diterima (<15% daripada RSD). Pengestrakan mikro fasa pepejal
secara penyerakan dalam picagari berjaya mengelakkan proses pengemparan,
mengurangkan penggunaan bahan kimia dalam proses pengekstrakan dan juga proses
pengekstrakan menjadi lebih pantas dan lebih cekap. Kaedah yang dibangunkan ini
boleh digunakan untuk sampel sebenar seperti sayur-sayuran, jus buah-buahan dan
juga sesuai untuk analisis air paip, air sungai dan air tanah untuk penentuan
sisa racun perosak organofosforus.
Kata kunci: perosak jenis organofosforus, pengekstrakan mikro fasa pepejal dalam
picagari, kromatografi gas –
pengesan fotometrik nyalaan
References
1.
Sharma, D., Nagpal, A., Pakade, Y. B. and Katnoria, J.
K. (2010). Analytical methods for estimation of organophosphorus pesticide
residues in fruits and vegetables: A review. Talanta, 82(4): 1077-1089.
2.
Samsidar, A., Siddiquee, S., & Shaarani, S. M. (2018). A
review of extraction, analytical and advanced methods for determination of
pesticides in environment and foodstuffs. Trends in Food Science &
Technology, 71, 188-201.
3.
Mukwevho, N., Fosso-Kankeu, E., Waanders, F., Kumar, N., Ray,
S. S. and Yangkou Mbianda, X. (2019). Photocatalytic activity of Gd2O2CO3·ZnO·CuO
nanocomposite used for the degradation of phenanthrene. SN Applied Sciences,
1: 1-11.
4.
Mohd, M. S., Siti, U. M., Mazidatul, A. M. and Wan, A. W. I.
(2011). Determination of organophosphorus pesticides by dispersive
liquid-liquid micro extraction coupled with gas chromatography-electron capture
detection. Malaysian Journal of Analytical Sciences, 15(2): 232-239.
5.
Dozein, S. V., Masrournia, M., Es’ haghi, Z. and Bozorgmehr,
M. R. (2021). Development of a new magnetic dispersive solid-phase
microextraction coupled with GC-MS for the determination of five
organophosphorus pesticides from vegetable samples. Food Analytical Methods,
14(4): 674-686.
6.
Chambers, A. G. S. (2020). Food (Amendment) (No3) Regulations 2020.
7.
Farina, Y., Abdullah, M. P., Bibi, N. and Khalik, W. M. A. W.
M. (2016). Pesticides residues in
agricultural soils and its health assessment for humans in Cameron Highlands,
Malaysia. Malaysian Journal of Analytical Science, 20(6): 1346-1358.
8.
Chen, J., Duan, C. and Guan, Y. (2010). Sorptive extraction
techniques in sample preparation for organophosphorus pesticides in complex
matrices. Journal of Chromatography B, 878(17-18): 1216-1225.
9.
Amiri, A., Tayebee, R., Abdar, A. and Sani, F. N. (2019).
Synthesis of a zinc-based metal-organic framework with histamine as an organic
linker for the dispersive solid-phase extraction of organophosphorus pesticides
in water and fruit juice samples. Journal of Chromatography A, 1597:
39-45.
10. Wang, P., Luo, M., Liu, D., Zhan, J.,
Liu, X., Wang, F. and Zhou, Z. (2018). Application of a magnetic graphene
nanocomposite for organophosphorus pesticide extraction in environmental water
samples. Journal of Chromatography A, 1535: 9-16
11. Wu, L., Song,
Y., Hu, M., Zhang, H., Yu, A., Yu, C., ... and Wang, Z. (2015). Application of
magnetic solvent bar liquid-phase microextraction for determination of
organophosphorus pesticides in fruit juice samples by gas chromatography mass
spectrometry. Food Chemistry, 176: 197-204.
12. Farajzadeh, M. A., Sohrabi, H. and
Mohebbi, A. (2019). Combination of modified QuEChERS extraction method and
dispersive liquid–liquid microextraction as an efficient sample preparation approach
for extraction and preconcentration of pesticides from fruit and vegetable
samples. Food Analytical Methods, 12: 534-543.
13. Gorji, S., Biparva, P., Bahram, M.
and Nematzadeh, G. (2019). Rapid and direct microextraction of pesticide
residues from rice and vegetable samples by supramolecular solvent in
combination with chemometrical data processing. Food Analytical Methods,
12: 394-408.
14. Fernandes, V.
C., Freitas, M., Pacheco, J. P., Oliveira, J. M., Domingues, V. F. and
Delerue-Matos, C. (2018). Magnetic dispersive micro solid-phase extraction and gas
chromatography determination of organophosphorus pesticides in strawberries. Journal
of chromatography A, 1566: 1-12.
15. Ghorbani, M., Aghamohammadhassan, M.,
Chamsaz, M., Akhlaghi, H., and Pedramrad, T. (2019). Dispersive solid phase
microextraction. TrAC Trends in Analytical Chemistry, 118: 793-809
16. Sapahin, H. A., Makahleh, A. and
Saad, B. (2019). Determination of organophosphorus pesticide residues in
vegetables using solid phase micro-extraction coupled with gas
chromatography–flame photometric detector. Arabian Journal of Chemistry, 12(8):
1934-1944.
17. Markus, A., Gbadamosi, A. O., Yusuff,
A. S., Agi, A. and Oseh, J. (2018). Magnetite-sporopollenin/graphene oxide as
new preconcentration adsorbent for removal of polar organophosphorus pesticides
in vegetables. Environmental Science and Pollution Research, 25:
35130-35142.
18. Xiao, Z., He, M., Chen, B. and Hu, B.
(2016). Polydimethylsiloxane/metal-organic frameworks coated stir bar sorptive
extraction coupled to gas chromatography-flame photometric detection for the
determination of organophosphorus pesticides in environmental water samples. Talanta,
156: 126-133.
19. Nodeh, H. R., Ibrahim, W. A. W.,
Kamboh, M. A. and Sanagi, M. M. (2017). New magnetic graphene-based inorganic–organic
sol-gel hybrid nanocomposite for simultaneous analysis of polar and non-polar
organophosphorus pesticides from water samples using solid-phase extraction. Chemosphere,
166: 21-30.
20. Amri, F.,
Niazi, A. and Yazdanipour, A. (2022). Three-pesticide residue analysis in tomato using a fast
pressure variation in-syringe dispersive liquid-phase microextraction technique
coupled with gas chromatography-mass spectrometry by assisting experimental
design. International Journal of Environmental Analytical Chemistry, 102(3):
615-632.
21. Ayazi, Z., Jaafarzadeh, R. and Matin,
A. A. (2017). Montmorillonite/polyaniline/polyamide nanocomposite as a novel
stir bar coating for sorptive extraction of organophosphorous pesticides in
fruit juices and vegetables applying response surface methodology. Analytical
Methods, 9(31): 4547-4557.
22. de Souza
Pinheiro, A. and de Andrade, J. B. (2009). Development, validation and
application of a SDME/GC-FID methodology for the multiresidue determination of
organophosphate and pyrethroid pesticides in water. Talanta, 79(5):
1354-1359.
23. Kermani, M.,
Jafari, M. T. and Saraji, M. (2019). Porous magnetized carbon sheet nanocomposites for
dispersive solid-phase microextraction of organophosphorus pesticides prior to
analysis by gas chromatography-ion mobility spectrometry. Microchimica Acta,
186: 1-11.
24. Zohrabi, P., Shamsipur, M., Hashemi,
M. and Hashemi, B. (2016). Liquid-phase microextraction of organophosphorus
pesticides using supramolecular solvent as a carrier for ferrofluid. Talanta,
160: 340-346.
25. Hadjmohammadi, M. R., Peyrovi, M. and
Biparva, P. (2010). Comparison of C18 silica and multi‐walled
carbon nanotubes as the adsorbents for the solid‐phase extraction of
Chlorpyrifos and Phosalone in water samples using HPLC. Journal of
Separation Science, 33(8): 1044-1051.