Malaysian Journal of Analytical Sciences, Vol 27 No 3 (2023): 586 - 599

 

PHOTO-ESTERIFICATION OF WASTE COOKING OIL USING A NOVEL NANOCATALYST TIO2 IMPREGNATED WITH EMPTY FRUIT BUNCHES ASH HETEROGENEOUS CATALYST

 

(Foto-Esterifikasi Sisa Minyak Masak Menggunakan Novel Nanocatalyst TiO2 yang Diimpregnasi dengan Mangkin Heterogen Abu Tandan Buah Kelapa Sawit Kosong)

 

Siti Fadhilah Ibrahim1, Norshahidatul Akmar Mohd Shohaimi1, *, Mohd Lokman Ibrahim2,

Zul Adlan Mohd Hir1, Mohd Sufri Mastuli2, and Wan Nur Aini Wan Mokhtar3

 

1Faculty of Applied Sciences, Universiti Teknologi MARA Pahang, 26400 Bandar Tun Abdul Razak Jengka, Pahang, Malaysia

2School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia

3Centre for Advanced Materials and Renewable Resources, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author: akmarshohaimi@uitm.edu.my

 

 

Received: 29 September 2022; Accepted: 15 April 2023; Published:  23 June 2023

 

 

Abstract

Photo-esterification of Waste Cooking Oil (WCO) with TiO2/EFBA500 photocatalyst as heterogeneous photo-catalyst has been investigated in this study. WCO is nonedible oil with high free fatty acid (FFA) content which needs esterification to reduce its FFA content followed by transesterification to produce Fatty Acid Methyl Ester (FAME). WCO was esterified with methanol through photocatalytic process with UV light irradiation as the light source. TiO2/EFBA500 photocatalyst was synthesized using simple wet impregnation method. The samples were characterized by X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDX) and Ultraviolet Diffuse Reflectance Spectroscopy (UV-Vis DRS) analysis. Characterization results revealed that the bandgap energy of TiO2/EFBA500 was successfully reduced from 3.0 eV to 2.88 eV which was suitable in UV light irradiation and needed low energy in the process. TiO2 semiconductor composite doped with Empty Fruit Bunches Ash (EFBA) showed a very high catalytic activity for FFAs photo-esterification. Experimental results showed that the optimum condition of photo-esterification with catalyst loading to oil was 4 wt.%, 20:1 methanol to oil molar ratio and 2 h reaction time achieved the reduction of FFA content from 11.65% to 2.04% with FFA conversion of 83%. FFA content was successfully reduced indicating that photo-catalytic esterification is a viable option in order to produce FAME. Biodiesel analysis using Gas Chromatography Mass Spectrometry (GCMS) is used to calculate yield and methyl ester content according to international biodiesel standard European (EN14103).

 

Keywords: biodiesel, photo-esterification, transesterification, waste cooking oil, empty fruit bunches ash

 

 

Abstrak

Foto-esterifikasi sisa minyak masak (WCO) dengan foto-mangkin TiO2/EFBA500 sebagai mangkin foto heterogen telah dikaji dalam kajian ini. WCO ialah minyak tidak boleh dimakan dengan kandungan asid lemak bebas (FFA) yang tinggi, memerlukan pengesteran untuk mengurang kandungan FFA diikuti dengan transesterifikasi untuk menghasilkan asid lemak metil ester (FAME). WCO telah diesterkan dengan metanol melalui proses fotokatalitik dan penyinaran cahaya UV sebagai sumber cahaya. Foto-pemangkin TiO2/EFBA500 telah disintesis menggunakan kaedah impregnasi basah yang biasa. Sampel dicirikan dengan Pembelauan Sinar-X (XRD), Mikroskopi Imbasan Elektron (SEM), Serakan Tenaga Sinar (EDX) dan Spektroskopi Pemantulan Resap UV-vis (UV-Vis DRS) analisis. Keputusan perincian mendedahkan bahawa tenaga jurang jalur TiO2/EFBA500 berjaya dikurangkan daripada 3.0 eV kepada 2.88 eV yang sesuai dalam penyinaran cahaya UV dan tenaga yang rendah diperlukan dalam proses tersebut. Komposit semikonduktor TiO2 yang digabungkankan dengan abu tandan buah kelapa sawit kosong (EFBA) menunjukkan aktiviti pemangkinan yang sangat tinggi untuk pengesteran foto FFAs. Keputusan eksperimen menunjukkan keadaan optimum foto-esterifikasi dengan muatan mangkin nisbah kepada minyak ialah 4 wt.%, 20:1 metanol kepada nisbah molar minyak dan 2 jam masa tindak balas mencapai pengurangan kandungan FFA daripada 11.65% kepada 2.04% dengan penukaran FFA sebanyak 83%. Kandungan FFA telah berjaya dikurangkan menunjukkan bahawa pengesteran foto-mangkin adalah pilihan yang terbaik untuk menghasilkan FAME. Biodiesel dianalisis dengan Kromatografi Gas-Spektroskopi Jisim (GC-MS) analisis untuk mengira hasil dan kandungan metil ester mengikut piawaian biodiesel antarabangsa Eropah (EN14103).

 

Kata kunci: biodisel, foto-esterifikasi, transesterifikasi, sisa minyak masak, abu tandan buah kelapa sawit kosong

 


References

1.     Hazmi, B., Rashid, U., Taufiq-Yap, Y. H., Ibrahim, M. L. and Nehdi, I. A. (2020). Supermagnetic nano-bifunctional catalyst from rice husk: Synthesis, characterization and application for conversion of used cooking oil to biodiesel. Catalysts, 10(2): 1-21.

2.     Kefas, H. M., Yunus, R., Rashid, U. and Taufiq-Yap, Y. H. (2018). Modified sulfonation method for converting carbonized glucose into solid acid catalyst for the esterification of palm fatty acid distillate. Fuel, 229: 68-78.

3.     Oloruntoba, O. and Hamza, A. (2019). Photochemical and photocatalytic esterification of waste cooking oil under visible light irradiation using mechanochemically synthesized ZnO/silica. Journal of Faculty of Food Engineering, University Zaria, Nigeria., 18(2): 89-96.

4.     Singh, D., Sharma, D., Soni, S. L., Sharma, S., Sharma, P. K. and Jhalani, A. (2020). A review on feedstocks, production processes, and yield for different generations of biodiesel. Fuel, 262: 116553.

5.     Volli, V., Purkait, K. M. and Shu, C. (2019). Preparation and characterization of animal bone powder impregnated fly ash catalyst for transesterification. Science of the Total Environment, 669: 314-321.

6.     Lim, S. and Teong, L. K. (2010). Recent trends, opportunities and challenges of biodiesel in Malaysia: An overview. Renewable and Sustainable Energy Reviews, 14: 938-954.

7.     Khalit, W. N. A. W., Asikin-mijan, N., Marliza, T. S., Gamal, M. S., Shamsuddin, M. R., Saiman, M. I., and Taufiq-Yap, Y. H. (2021). Catalytic deoxygenation of waste cooking oil utilizing nickel oxide catalysts over various supports to produce renewable diesel fuel. Biomass and Bioenergy, 154: 106248.

8.     Razak, Z. K. A., Kamarullah, Shahida. H, Shohaimi, N. A. M., Kamalluddin, N. A. I. M. and Teh, W. N. S. W. (2020). Transesterification of palm oil for biodiesel production using Ni/Cao supported with alumina beads. GADING Journal of Science and Technology, 3(1): 100-106.

9.     Ibrahim, S. F., Asikin-mijan, N., Ibrahim, M. L., Abdulkareem-alsultan, G., Izham, S. M. and Taufiq-Yap, Y. H. (2020). Sulfonated functionalization of carbon derived corncob residue via hydrothermal synthesis route for esterification of palm fatty acid distillate. Energy Conversion and Management, 210(3): 112698.

10.  Zhang, Y., Wong, W.-T. and Yung, K.-F. (2014). Biodiesel production via esterification of oleic acid catalyzed by chlorosulfonic acid modified zirconia. Applied Energy, 116: 191-198.

11.  Shin, H.-Y., An, S.-H., Sheikh, R., Park, Y. H. and Bae, S.-Y. (2012). Transesterification of used vegetable oils with a Cs-doped heteropolyacid catalyst in supercritical methanol. Fuel, 96: 572-578.

12.  Lokman-Ibrahim, M., Khalil, N. N. A. N. A., Islam, A., Rashid, U., Fadhilah-Ibrahim, S., Mashuri, S. I. S. and Taufiq-Yap, Y. H. (2020). Preparation of Na2O supported CNTs nanocatalyst for efficient biodiesel production from waste-oil. Energy Conversion and Management Journal, 205: 112445.

13.  Naihi, H., Baini, R. and Yakub, I. (2021). Oil palm biomass-based activated carbons for the removal of cadmium—a review. AIMS Materials Science, 8(3): 453-468.

14.  Guo, M., Jiang, W., Chen, C., Qu, S., Lu, J., Yi, W. and Ding, J. (2021). Process optimization of biodiesel production from waste cooking oil by esterification of free fatty acids using La3+/ZnO-TiO2 photocatalyst. Energy Conversion and Management, 229: 113745.

15.  Mokhtar, W. N. A. W., Ramli, M. R., Jamaluddin, M. A. and Ramli, S. (2019). Rare earth metal doped CaO as catalyst for the transesterification reaction of cooking oil. Malaysian Journal of Analytical Sciences, 23(4): 660-666.

16.  Zhu, X., Kavitha, P., and Hwang, H.-M. (2019). Green synthesis of titanium dioxide and zinc oxide nanoparticles and their usage for antimicrobial applications and environmental remediation. In Green Synthesis, Characterization and Applications of Nanoparticles. Elsevier Inc.     

17. Manique, M. C., Silva, A. P., Alves, A. K. and Bergmann, C. P. (2016). Application of hydrothermally produced TiO2 nanotubes in photocatalytic esterification of oleic acid. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 206: 17-21.

18.  Corro, G., Sánchez, N., Pal, U., Cebada, S. and Fierro, J. L. G. (2017). Solar-irradiation driven biodiesel production using Cr/SiO2 photocatalyst exploiting cooperative interaction between Cr6+ and Cr3+ moieties. Applied Catalysis B: Environmental, 203: 43-52.

19. Gardy, J., Hassanpour, A., Lai, X., Ahmed, M. H. and Rehan, M. (2017). Biodiesel production from used cooking oil using a novel surface functionalised TiO2 nano-catalyst. Applied Catalysis B: Environmental, 207: 297-310.

20.  Mashuri, S. I. S., Ibrahim, M. L., Kasim, M. F., Mastuli, M. S., Rashid, U., Abdullah, A. H., Islam, A., Asikin-Mijan, N., Tan, Y. H., Mansir, N., Kaus, N. H. M. and Hin, T. Y. Y. (2020). Photocatalysis for organic wastewater treatment: From the basis to current challenges for society. Catalysts, 10: 1-29.

21.  Zhang, X., Sun, G., Jia, S., Xie, H., Kang, Z., Chen, W., Cui, M., Wang, B., Wang, B., Chen, X. and Yang, D. (2022). Intrinsic carbon defects induced nickel phosphate/carbon photocatalyst for high performance bacterial disinfection. Chemical Engineering Journal, 438: 135624.

22.  Pellegrino, F., Sordello, F., Minella, M., Minero, C. and Maurino, V. (2019). The role of surface texture on the photocatalytic H2 production on TiO2. Catalysts, 9: 1-28.

23. Wang, J., Wang, Y., Yu, M., Li, G., Zhang, S. and Zhong, Q. (2022). Formation of flaky carbon nitride and beta-Indium sulfide heterojunction with efficient separation of charge carriers for enhanced photocatalytic carbon dioxide reduction. Journal of Colloid And Interface Science, 611: 71-81.

24.  Citra Dewi, A. S. and Slamet. (2019). Novel approach of esterification process using heterogeneous catalyst in biodiesel synthesis from waste cooking oil. IOP Conference Series: Materials Science and Engineering, 509: 1-6.

25. Ghani, N., Iqbal, J., Sadaf, S., Nawaz Bhatti, H. and Asgher, M. (2020). comparison of photo-esterification capability of bismuth vanadate with reduced graphene oxide bismuth vanadate (RGO/BiVO4) composite for biodiesel production from high free fatty acid containing non-edible oil. Chemistry Select, 5: 9245-9253.

26.  Li, W., Liang, R., Zhou, N. Y. and Pan, Z. (2020). Carbon black-doped anatase TiO2 nanorods for solar light-induced photocatalytic degradation of methylene blue. ACS Omega, 5: 10042-10051.

27.  Lau, P. L. and Affam, A. C. (2019). Visible light driven photocatalyst for degradation of organophosphate pesticides: A review. Borneo Journal of Sciences and Technology, 1(2): 1-8.

28.  Rathi, A., Barman, S., Basu, S. and Kumar, R. (2022). Post-fabrication structural changes and enhanced photodegradation activity of semiconductors@zeolite composites towards noxious contaminants. Chemosphere, 288: 132609.

29.  Sawant, S. V, Patwardhan, A. W., Joshi, J. B. and Dasgupta, K. (2022). Boron doped carbon nanotubes: Synthesis, characterization and emerging applications – A review. Chemical Engineering Journal, 427: 131616.

30.  Kondo, K., Murakami, N., Ye, C., Tsubota, T. and Ohno, T. (2013). Development of highly efficient sulfur-doped TiO2 photocatalysts hybridized with graphitic carbon nitride. Applied Catalysis B: Environmental, 142: 362-367.

31.  Suliman, A., Isha, R. and Roslan, J. (2020). Effect of mass ratio of titanium dioxide and oil palm fiber ash (TiO2 : Ash) in hybrid photocatalyst on photocatalytic seawater pretreatment. National Conference for Postgraduate Research: 124–132.

32.  Corro, G., Pal, U. and Tellez, N. (2013). Biodiesel production from Jatropha curcas crude oil using ZnO/SiO2 photocatalyst for free fatty acids esterification. Applied Catalysis B: Environmental, 129(7): 39-47.

33.  Redjeki, A. S., Sukirno, S. and Slamet, S. (2021). Simultaneous photocatalytic esterification and addition reaction of fatty acids in kemiri sunan (Reutealis trisperma sp.) oil over CuO/TiO2 catalyst - A novel approach. Bulletin of Chemical Reaction Engineering and Catalysis, 16(4): 816-830.

34.  Alterary, S. S. and Marei, N. H. (2021). Fly ash properties, characterization, and applications: A review. Journal of King Saud University - Science, 33(6): 101536.

35.  Shi, Z., Yao, S. and Sui, C. (2011). Application of fly ash supported titanium dioxide for phenol  photodegradation in aqueous solution. Catalysis Science and Technology, 1: 817-822.

36.  Berrones-Hernández, R., del Carmen Pérez-Luna, Y., Sánchez-Roque, Y., Pantoja-Enríquez, J., Grajales-Penagos, A. L., López-Cruz, C. F., Longoria, A., Eapen, D. and Sebastian, P. J. (2019). Heterogeneous esterification of waste cooking oil with sulfated titanium dioxide (STi). Bioenergy Research, 12(3): 653-664.

37.  Lokman Nolhakim, M. A. H., Shohaimi, N. A. M., Mokhtar, W. N. A. W., Ibrahim, M. L. and Abdullah, R. F. (2021). Immobilization of potassium-based heterogeneous catalyst over alumina beads and powder support in the transesterification of waste cooking oil. Catalysts: 11(8): 976.

38.  Begum, A.,Hussain. A and Rahman, A. (2012). Effect of deposition temperature on the structural and optical properties of chemically prepared nanocrystalline lead selenide thin films. Beilstein Journal of Nanotechnology. 3(1): 438-443.

39.  Tauanov, Z., Tsakiridis, P. E., Mikhalovsky, S. V. and Inglezakis, V. J. (2018). Synthetic coal fly ash-derived zeolites doped with silver nanoparticles for mercury (II) removal from water. Journal of Environmental Management,. 224: 164-171.

40.  Naeem, A., Wali Khan, I., Farooq, Mahmood, T., Ud Din, I., Ali Ghazi, Z. and Saeed, T. (2021). Kinetic and optimization study of sustainable biodiesel production from waste cooking oil using novel heterogeneous solid base catalyst. Bioresource Technology, 328: 124831.

41.  Visa, M. and Duta, A. (2013). TiO2/fly ash novel substrate for simultaneous removal of heavy metals and surfactants. Chemical Engineering Journal, 223: 860-868.

42.  Klubnuan, S., Suwanboon, S. and Amornpitoksuk, P. (2016). Effects of optical band gap energy, band tail energy and particle shape on photocatalytic activities of different ZnO nanostructures prepared by a hydrothermal method. Optical Materials, 53: 134-141.

43.  Mekonnen, K. D. and Sendekie, Z. B. (2021). NaOH-catalyzed methanolysis optimization of biodiesel synthesis from desert date seed kernel oil. ACS Omega, 6(37): 24082-24091.

44.  Efavi, J. K. Kanbogtah, D., Apalangya, V., Nyankson, E., Tiburu, E. K., Dodoo Arhin, D., Onwona-Agyeman, B. and Yaya, A. (2018). The effect of NaOH catalyst concentration and extraction time on the yield and properties of Citrullus vulgaris seed oil as a potential biodiesel feed stock. South African Journal of Chemical Engineering, 25: 98-102.