Malaysian Journal of Analytical
Sciences, Vol 27
No 3 (2023): 586 - 599
PHOTO-ESTERIFICATION
OF WASTE COOKING OIL USING A NOVEL NANOCATALYST TIO2 IMPREGNATED
WITH EMPTY FRUIT BUNCHES ASH HETEROGENEOUS CATALYST
(Foto-Esterifikasi Sisa Minyak Masak Menggunakan Novel
Nanocatalyst TiO2 yang Diimpregnasi dengan Mangkin Heterogen Abu
Tandan Buah Kelapa Sawit Kosong)
Siti Fadhilah Ibrahim1, Norshahidatul Akmar Mohd
Shohaimi1, *, Mohd Lokman Ibrahim2,
Zul Adlan Mohd Hir1, Mohd Sufri Mastuli2,
and Wan Nur Aini Wan Mokhtar3
1Faculty
of Applied Sciences, Universiti Teknologi MARA Pahang, 26400 Bandar Tun Abdul
Razak Jengka, Pahang, Malaysia
2School
of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi
MARA, 40450, Shah Alam, Selangor, Malaysia
3Centre
for Advanced Materials and Renewable Resources, Faculty of Science and
Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
*Corresponding author: akmarshohaimi@uitm.edu.my
Received: 29 September 2022;
Accepted: 15 April 2023; Published: 23 June
2023
Keywords: biodiesel,
photo-esterification, transesterification, waste cooking oil, empty fruit
bunches ash
Abstrak
Foto-esterifikasi sisa minyak masak (WCO) dengan foto-mangkin
TiO2/EFBA500 sebagai mangkin foto heterogen telah dikaji dalam
kajian ini. WCO ialah minyak tidak boleh dimakan dengan kandungan asid lemak
bebas (FFA) yang tinggi, memerlukan pengesteran untuk mengurang kandungan FFA
diikuti dengan transesterifikasi untuk menghasilkan asid lemak metil ester
(FAME). WCO telah diesterkan dengan metanol melalui proses fotokatalitik dan
penyinaran cahaya UV sebagai sumber cahaya. Foto-pemangkin TiO2/EFBA500
telah disintesis menggunakan kaedah impregnasi basah yang biasa. Sampel dicirikan
dengan Pembelauan Sinar-X (XRD), Mikroskopi Imbasan Elektron (SEM), Serakan
Tenaga Sinar (EDX) dan Spektroskopi Pemantulan Resap UV-vis (UV-Vis DRS)
analisis. Keputusan perincian mendedahkan bahawa tenaga jurang jalur TiO2/EFBA500
berjaya dikurangkan daripada 3.0 eV kepada 2.88 eV yang sesuai dalam penyinaran
cahaya UV dan tenaga yang rendah diperlukan dalam proses tersebut. Komposit
semikonduktor TiO2 yang digabungkankan dengan abu tandan buah kelapa
sawit kosong (EFBA) menunjukkan aktiviti pemangkinan yang sangat tinggi untuk
pengesteran foto FFAs. Keputusan eksperimen menunjukkan keadaan optimum
foto-esterifikasi dengan muatan mangkin nisbah kepada minyak ialah 4 wt.%, 20:1
metanol kepada nisbah molar minyak dan 2 jam masa tindak balas mencapai pengurangan
kandungan FFA daripada 11.65% kepada 2.04% dengan penukaran FFA sebanyak 83%.
Kandungan FFA telah berjaya dikurangkan menunjukkan bahawa pengesteran
foto-mangkin adalah pilihan yang terbaik untuk menghasilkan FAME. Biodiesel
dianalisis dengan Kromatografi Gas-Spektroskopi Jisim (GC-MS) analisis untuk
mengira hasil dan kandungan metil ester mengikut piawaian biodiesel
antarabangsa Eropah (EN14103).
Kata
kunci: biodisel, foto-esterifikasi, transesterifikasi, sisa minyak
masak, abu tandan buah kelapa sawit kosong
References
1. Hazmi, B.,
Rashid, U., Taufiq-Yap, Y. H., Ibrahim, M. L. and Nehdi,
I. A. (2020). Supermagnetic nano-bifunctional catalyst from rice husk: Synthesis,
characterization and application for conversion of used cooking oil to
biodiesel. Catalysts, 10(2): 1-21.
2. Kefas, H.
M., Yunus, R., Rashid, U. and Taufiq-Yap, Y. H. (2018). Modified sulfonation
method for converting carbonized glucose into solid acid catalyst for the
esterification of palm fatty acid distillate. Fuel, 229: 68-78.
3. Oloruntoba,
O. and Hamza, A. (2019). Photochemical and photocatalytic esterification of
waste cooking oil under visible light irradiation using mechanochemically
synthesized ZnO/silica. Journal of Faculty of Food Engineering, University
Zaria, Nigeria., 18(2): 89-96.
4. Singh, D.,
Sharma, D., Soni, S. L., Sharma, S., Sharma, P. K. and Jhalani, A. (2020). A
review on feedstocks, production processes, and yield for different generations
of biodiesel. Fuel, 262: 116553.
5. Volli, V.,
Purkait, K. M. and Shu, C. (2019). Preparation and characterization of animal
bone powder impregnated fly ash catalyst for transesterification. Science of
the Total Environment, 669: 314-321.
6. Lim, S. and
Teong, L. K. (2010). Recent trends, opportunities and challenges of biodiesel
in Malaysia: An overview. Renewable and Sustainable Energy Reviews, 14:
938-954.
7. Khalit,
W. N. A. W., Asikin-mijan, N., Marliza, T. S., Gamal, M. S., Shamsuddin, M. R.,
Saiman, M. I., and Taufiq-Yap, Y. H. (2021). Catalytic deoxygenation of waste
cooking oil utilizing nickel oxide catalysts over various supports to produce
renewable diesel fuel. Biomass and Bioenergy, 154: 106248.
8. Razak, Z.
K. A., Kamarullah, Shahida. H, Shohaimi, N. A. M., Kamalluddin, N. A. I. M. and
Teh, W. N. S. W. (2020). Transesterification of palm oil for biodiesel
production using Ni/Cao supported with alumina beads. GADING Journal of
Science and Technology, 3(1): 100-106.
9. Ibrahim, S.
F., Asikin-mijan, N., Ibrahim, M. L., Abdulkareem-alsultan, G., Izham, S. M.
and Taufiq-Yap, Y. H. (2020). Sulfonated functionalization of carbon derived
corncob residue via hydrothermal synthesis route for esterification of palm
fatty acid distillate. Energy Conversion and Management, 210(3): 112698.
10. Zhang, Y.,
Wong, W.-T. and Yung, K.-F. (2014). Biodiesel production via esterification of
oleic acid catalyzed by chlorosulfonic acid modified zirconia. Applied
Energy, 116: 191-198.
11. Shin, H.-Y.,
An, S.-H., Sheikh, R., Park, Y. H. and Bae, S.-Y. (2012). Transesterification
of used vegetable oils with a Cs-doped heteropolyacid catalyst in supercritical
methanol. Fuel, 96: 572-578.
12. Lokman-Ibrahim,
M., Khalil, N. N. A. N. A., Islam, A., Rashid, U., Fadhilah-Ibrahim, S.,
Mashuri, S. I. S. and Taufiq-Yap, Y. H. (2020). Preparation of Na2O
supported CNTs nanocatalyst for efficient biodiesel production from waste-oil. Energy
Conversion and Management Journal, 205: 112445.
13. Naihi, H.,
Baini, R. and Yakub, I. (2021). Oil palm biomass-based activated carbons for
the removal of cadmium—a review. AIMS Materials Science, 8(3): 453-468.
14. Guo, M.,
Jiang, W., Chen, C., Qu, S., Lu, J., Yi, W. and Ding, J. (2021). Process
optimization of biodiesel production from waste cooking oil by esterification
of free fatty acids using La3+/ZnO-TiO2 photocatalyst. Energy
Conversion and Management, 229: 113745.
15. Mokhtar, W.
N. A. W., Ramli, M. R., Jamaluddin, M. A. and Ramli, S. (2019). Rare earth
metal doped CaO as catalyst for the transesterification reaction of cooking
oil. Malaysian Journal of Analytical Sciences, 23(4): 660-666.
16. Zhu, X.,
Kavitha, P., and Hwang, H.-M. (2019). Green synthesis of titanium dioxide and
zinc oxide nanoparticles and their usage for antimicrobial applications and
environmental remediation. In Green Synthesis, Characterization and
Applications of Nanoparticles. Elsevier Inc.
17. Manique, M.
C., Silva, A. P., Alves, A. K. and Bergmann, C. P. (2016). Application of
hydrothermally produced TiO2 nanotubes in photocatalytic
esterification of oleic acid. Materials Science and Engineering B:
Solid-State Materials for Advanced Technology, 206: 17-21.
18. Corro, G.,
Sánchez, N., Pal, U., Cebada, S. and Fierro, J. L. G. (2017). Solar-irradiation
driven biodiesel production using Cr/SiO2 photocatalyst exploiting
cooperative interaction between Cr6+ and Cr3+ moieties. Applied
Catalysis B: Environmental, 203: 43-52.
19. Gardy, J.,
Hassanpour, A., Lai, X., Ahmed, M. H. and Rehan, M. (2017). Biodiesel
production from used cooking oil using a novel surface functionalised TiO2
nano-catalyst. Applied Catalysis B: Environmental, 207: 297-310.
20. Mashuri, S.
I. S., Ibrahim, M. L., Kasim, M. F., Mastuli, M. S., Rashid, U., Abdullah, A.
H., Islam, A., Asikin-Mijan, N., Tan, Y. H., Mansir, N., Kaus, N. H. M. and
Hin, T. Y. Y. (2020). Photocatalysis for organic wastewater treatment: From the
basis to current challenges for society. Catalysts, 10: 1-29.
21. Zhang, X.,
Sun, G., Jia, S., Xie, H., Kang, Z., Chen, W., Cui, M., Wang, B., Wang, B.,
Chen, X. and Yang, D. (2022). Intrinsic carbon defects induced nickel
phosphate/carbon photocatalyst for high performance bacterial disinfection. Chemical
Engineering Journal, 438: 135624.
22. Pellegrino,
F., Sordello, F., Minella, M., Minero, C. and Maurino, V. (2019). The role of
surface texture on the photocatalytic H2 production on TiO2.
Catalysts, 9: 1-28.
23. Wang, J.,
Wang, Y., Yu, M., Li, G., Zhang, S. and Zhong, Q. (2022). Formation of flaky
carbon nitride and beta-Indium sulfide heterojunction with efficient separation
of charge carriers for enhanced photocatalytic carbon dioxide reduction. Journal
of Colloid And Interface Science, 611: 71-81.
24. Citra Dewi,
A. S. and Slamet. (2019). Novel approach of esterification process using
heterogeneous catalyst in biodiesel synthesis from waste cooking oil. IOP
Conference Series: Materials Science and Engineering, 509: 1-6.
25. Ghani, N.,
Iqbal, J., Sadaf, S., Nawaz Bhatti, H. and Asgher, M. (2020). comparison of
photo-esterification capability of bismuth vanadate with reduced graphene oxide
bismuth vanadate (RGO/BiVO4) composite for biodiesel production from
high free fatty acid containing non-edible oil. Chemistry Select, 5:
9245-9253.
26. Li, W.,
Liang, R., Zhou, N. Y. and Pan, Z. (2020). Carbon black-doped anatase TiO2
nanorods for solar light-induced photocatalytic degradation of methylene blue. ACS
Omega, 5: 10042-10051.
27. Lau, P. L.
and Affam, A. C. (2019). Visible light driven photocatalyst for degradation of
organophosphate pesticides: A review. Borneo Journal of Sciences and
Technology, 1(2): 1-8.
28. Rathi,
A., Barman, S., Basu, S. and Kumar, R. (2022). Post-fabrication structural
changes and enhanced photodegradation activity of semiconductors@zeolite
composites towards noxious contaminants. Chemosphere, 288: 132609.
29. Sawant, S. V,
Patwardhan, A. W., Joshi, J. B. and Dasgupta, K. (2022). Boron doped carbon
nanotubes: Synthesis, characterization and emerging applications – A review. Chemical
Engineering Journal, 427: 131616.
30. Kondo, K.,
Murakami, N., Ye, C., Tsubota, T. and Ohno, T. (2013). Development of highly
efficient sulfur-doped TiO2 photocatalysts hybridized with graphitic carbon
nitride. Applied Catalysis B: Environmental, 142: 362-367.
31. Suliman, A.,
Isha, R. and Roslan, J. (2020). Effect of mass ratio of titanium dioxide and
oil palm fiber ash (TiO2 : Ash) in hybrid photocatalyst on
photocatalytic seawater pretreatment. National Conference for Postgraduate
Research: 124–132.
32. Corro, G.,
Pal, U. and Tellez, N. (2013). Biodiesel production from Jatropha curcas crude
oil using ZnO/SiO2 photocatalyst for free fatty acids
esterification. Applied Catalysis B: Environmental, 129(7): 39-47.
33. Redjeki,
A. S., Sukirno, S. and Slamet, S. (2021). Simultaneous photocatalytic
esterification and addition reaction of fatty acids in kemiri sunan (Reutealis
trisperma sp.) oil over CuO/TiO2 catalyst - A novel approach. Bulletin
of Chemical Reaction Engineering and Catalysis, 16(4): 816-830.
34. Alterary, S.
S. and Marei, N. H. (2021). Fly ash properties, characterization, and
applications: A review. Journal of King Saud University - Science,
33(6): 101536.
35. Shi,
Z., Yao, S. and Sui, C. (2011). Application of fly ash supported titanium
dioxide for phenol photodegradation in
aqueous solution. Catalysis Science and Technology, 1: 817-822.
36. Berrones-Hernández,
R., del Carmen Pérez-Luna, Y., Sánchez-Roque, Y., Pantoja-Enríquez, J.,
Grajales-Penagos, A. L., López-Cruz, C. F., Longoria, A., Eapen, D. and
Sebastian, P. J. (2019). Heterogeneous esterification of waste cooking oil with
sulfated titanium dioxide (STi). Bioenergy Research, 12(3): 653-664.
37. Lokman
Nolhakim, M. A. H., Shohaimi, N. A. M., Mokhtar, W. N. A. W., Ibrahim, M. L.
and Abdullah, R. F. (2021). Immobilization of potassium-based heterogeneous catalyst
over alumina beads and powder support in the transesterification of waste
cooking oil. Catalysts: 11(8): 976.
38. Begum, A.,Hussain.
A and Rahman, A. (2012). Effect of deposition temperature on the
structural and optical properties of chemically prepared nanocrystalline lead
selenide thin films. Beilstein Journal of Nanotechnology. 3(1): 438-443.
39. Tauanov,
Z., Tsakiridis, P. E.,
Mikhalovsky, S. V. and Inglezakis, V. J. (2018). Synthetic coal fly ash-derived
zeolites doped with silver nanoparticles for mercury (II) removal from water. Journal
of Environmental Management,. 224: 164-171.
40. Naeem, A., Wali
Khan, I., Farooq, Mahmood, T., Ud Din, I., Ali Ghazi, Z. and Saeed, T. (2021). Kinetic and
optimization study of sustainable biodiesel production from waste cooking oil
using novel heterogeneous solid base catalyst. Bioresource Technology, 328:
124831.
41. Visa,
M. and Duta, A. (2013). TiO2/fly ash novel substrate for
simultaneous removal of heavy metals and surfactants. Chemical Engineering
Journal, 223: 860-868.
42. Klubnuan, S., Suwanboon, S. and Amornpitoksuk, P. (2016). Effects of optical band gap
energy, band tail energy and particle shape on photocatalytic activities of
different ZnO nanostructures prepared by a
hydrothermal method. Optical Materials, 53: 134-141.
43. Mekonnen, K. D. and Sendekie, Z. B. (2021).
NaOH-catalyzed methanolysis optimization of biodiesel
synthesis from desert date seed kernel oil. ACS Omega, 6(37):
24082-24091.
44. Efavi, J. K. Kanbogtah, D., Apalangya,
V., Nyankson, E., Tiburu,
E. K., Dodoo Arhin, D., Onwona-Agyeman,
B. and Yaya, A. (2018). The effect of NaOH catalyst concentration and
extraction time on the yield and properties of Citrullus vulgaris seed oil as a
potential biodiesel feed stock. South African Journal of Chemical
Engineering, 25: 98-102.