Malaysian Journal of Analytical Sciences, Vol 27 No 3 (2023): 573 - 585

 

PLACKETT-BURMAN DESIGN OPTIMIZED DISPERSIVE LIQUID-LIQUID MICROEXTRACTION COUPLED WITH GAS CHROMATOGRAPHY-MASS SPECTROMETRY FOR DETERMINATION OF METHAMPHETAMINE FROM LABORATORY COAT MATERIALS

 

(Pengekstrakan Mikro Cecair-Cecair Serakan Gandingan Kromatografi

Gas-Spektrometri Jisim yang Dioptimumkan Secara Rekaan Plackett-Burman

untuk Penentuan Metamfetamin Daripada Bahan Kot Makmal)

 

Su Chien Quah1, Way Koon Teoh1, Vanitha Kunalan2, Noor Zuhartini Md Muslim1, Warakorn Limbut3,4,5,

Chong Hooi Yew6, Kah Haw Chang1, Ahmad Fahmi Lim Abdullah1*

 

1Forensic Science Programme, School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia

2Narcotics Division, Forensic Science Analysis Centre, Department of Chemistry, Jalan Sultan, 46661 Petaling Jaya, Selangor, Malaysia

3Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand

4 Center of Excellence for Trace Analysis and Biosensors (TAB-CoE), Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand

5 Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand

6Elmu Higher Education Sdn Bhd, 46200 Petaling Jaya, Selangor, Malaysia

 

*Corresponding author: fahmilim@usm.my

 

 

Received: 5 February 2023; Accepted: 18 April 2023; Published:  23 June 2023

 

 

Abstract

Accumulated drug residues on contaminated clothing put the wearer at adverse health risk. Therefore, monitoring on laboratory coat contamination shall be in place to safeguard the analysts who have routine exposure in forensic laboratory environment. Using methamphetamine as surrogate drug, this study was aimed to detect the presence of methamphetamine from laboratory coat materials through a response surface methodology optimized dispersive liquid-liquid microextraction (DLLME) in couple with gas chromatography-mass spectrometry (GC-MS). In this study, a Plackett-Burman design was used to optimize the DLLME conditions, including the volumes of extraction and dispersive solvents, the duration of vortex agitation, as well as the speed and time of centrifugation. Residues collected upon DLLME procedure was priorly derivatized with trifluoroacetic acid anhydride followed by GC-MS analysis. Seven types of fabric materials which were contaminated with methamphetamine were extracted and compared. From this study, a volume of 685 µL dichloromethane as extraction solvent, 1000 µL 2-propanol as dispersive solvent, vortex agitation for 90 seconds, and centrifugation at 500 rpm for 5 minutes were determined as the optimum conditions for DLLME. Trace methamphetamine residues were successfully extracted and detected from the different types of laboratory coat materials with recovery percentage of at least 45%. The method could be proposed to laboratories for their evaluation on possible contamination to establish baseline for necessary in-house monitoring and decontamination procedures.

 

Keywords: Illicit drugs, methamphetamine, dispersive liquid-liquid microextraction, Plackett-Burman design, contaminated laboratory coat

 

Abstrak

Sisa-sisa dadah yang terkumpul pada pakaian tercemar membawa risiko mudarat kepada pemakai. Justeru, pemantauan pencemaran kot makmal harus diberi perhatian untuk melindungi penganalisis yang mempunyai pendedahan rutin dalam persekitaran makmal forensik. Dengan menggunakan metamfetamin sebagai dadah surogat, kajian ini bertujuan untuk mengesan kehadiran metamfetamin daripada bahan kot makmal melalui pengekstrakan mikro cecair-cecair serakan (DLLME) yang digandingkan dengan kromatografi gas-spektrometri jisim (GC-MS) yang telah dioptimumkan dengan kaedah gerak balas permukaan merangkumi isipadu pelarut pengekstrakan dan pelarut serakan, tempoh pengadukan pusaran, serta kelajuan dan masa pengemparan. Sisa-sisa yang dikumpulkan setelah prosedur DLLME telah diterbitkan terlebih dahulu dengan asid trifluoroasetik anhidrida diikuti dengan analisis GC-MS. Tujuh jenis bahan fabrik yang telah dicemari dengan metamfetamin telah diekstrak dan dibandingkan. Daripada kajian ini, 685 µL dikloromethana sebagai pelarut pengekstrakan, 1000 µL 2-propanol sebagai pelarut serakan, pergerakan vorteks selama 90 saat, serta pengemparan pada 500 rpm selama 5 minit telah ditentukan sebagai keadaan optimum bagi DLLME. Sisa-sisa surih metamfetamin telah berjaya diekstrak dan dikesan daripada jenis bahan kot makmal yang berbeza dengan peratusan pemulihan semula sekurang-kurangnya 45%. Kaedah tersebut boleh dicadangkan kepada makmal-makmal untuk penilaian mereka terhadap pencemaran yang berkemungkinan untuk menetapkan garis dasar untuk pemantauan dalaman dan prosedur penyahcemaran yang diperlukan.

 

Kata kunci: Dadah haram, metamfetamin, pengekstrakan mikro cecair-cecair serakan, rekaan Plackett-Burman, kot makmal tercemar

 


References

1.       Sisco, E., Najarro, M. and Burns, A. (2018). A snapshot of drug background levels on surfaces in a forensic laboratory. Forensic Chemistry, 11: 47-57.

2.       Broadwater, K. R., Jackson, D. A. and Li, J. F. (2020). Evaluation of occupational exposures to illicit drugs at controlled substances laboratories. Health Hazard Evaluation Report 2018-0090-3366. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health.

3.       Sisco, E. and Najarro, M. (2019). Multi-laboratory investigation of drug background levels. Forensic Chemistry, 16: 100184.

4.       Wright, J., Walker, G. S. and Ross, K. E. (2019). Contamination of homes with methamphetamine: Is wipe sampling adequate to determine risk? International Journal Environmental Research Public Health, 16(19): 3568.

5.       United Nations Office on Drugs and Crime. (2021). Global overview: Drug demand and drug supply. World Drug Report 2021. Vienna, Austria: United Nations.

6.       Daughton, C. G. (2010). Illicit drugs and the environment. In: Castiglioni S, Zuccato E, Fanelli R. (Editors). Illicit Drugs in the Environment, LA: John Wiley & Sons, Inc.

7.       Kairigo, P., Ngumba, E., Sundberg, L. R., Gachanja, A. and Tuhkanen, T. (2020). Contamination of surface water and river sediments by antibiotic and antiretroviral drug cocktails in low and middle-income countries: Occurrence, risk and mitigation strategies. Water, 12(5): 1376.

8.       Lin, Y. C, Hsiao, T. C. and Lin, A-YC. (2020). Urban wastewater treatment plants as a potential source of ketamine and methamphetamine emissions to air. Water Research, 172: 115495.

9.       Jenkins, A. J. (2001). Drug contamination of US paper currency. Forensic Science International, 121: 189-193.

10.    Smith, F. P. and McGrath, K. R. (2011). Cocaine surface contamination and the medico-legal implications of its transfer. Egyptian Journal Forensic Sciences, (1): 1-4.

11.    Mastroianni, N., Postigo, C., López de Alda, M., Viana, M., Rodríguez, A., Alastuey, A. Querol, X. and Barceló, D. (2015). Comprehensive monitoring of the occurrence of 22 drugs of abuse and transformation products in airborne particulate matter in the city of Barcelona. Science of Total Environment, 532: 344-352.

12.    Nair, M. V. and Miskelly, G. M. (2019). Determination of airborne methamphetamine via capillary microextraction of volatiles (CMV) with on-sorbent derivatisation using o-pentafluorobenzyl chloroformate. Forensic Chemistry, 14:100161.

13.    Chen, X., Wu, X., Luan, T., Jiang, R. and Ouyang, G. (2021). Sample preparation and instrumental methods for illicit drugs in environmental and biological samples: A review. Journal of Chromatography A, 1640: 461961.

14.    Kuhn, E. J., Walker, G. S., Whiley, H., Wright, J. and Ross, K. E. (2019). Household contamination with methamphetamine: Knowledge and uncertainties. International Journal of Environmental Research and Public Health, 16(23): 4676.

15.    Martyny, J. W., Arbuckle, S. L., McCammon, C. S., Esswein, E. J., Erb, N. and Van Dyke, M. (2007). Chemical concentrations and contamination associated with clandestine methamphetamine laboratories. Journal of Chemical Health and Safety, 14(4): 40-52.

16.    Doran, G. S., Deans, R. M., Filippis, C. D., Kostakis, C. and Howitt, J. A. (2017). The presence of licit and illicit drugs in police stations and their implications for workplace drug testing. Forensic Science International, 278: 125-136.

17.    Yeh, K., Li, L., Wania, F. and Abbatt, J. P. (2022). Thirdhand smoke from tobacco, e-cigarettes, cannabis, methamphetamine and cocaine: Partitioning, reactive fate, and human exposure in indoor environments. Environment International, 160: 107063.

18.    Kerry, G. L., Ross, K. E., Wright, J. L. and Walker, G. S. (2022). A review of methods used to detect methamphetamine from indoor air and textiles in confined spaces. Toxics, 10(11): 710.

19.    Doran, G. S., Deans, R. M., Filippis, C. D., Kostakis, C. and Howitt, J. A. (2017). Quantification of licit and illicit drugs on typical police station work surfaces using LC-MS/MS. Analytical Methods, 9:198-210.

20.    United Nations Office on Drugs and Crime. (2020). Synthetic Drugs in East and Southeast Asia: Latest developments and challenges. Vienna, Austria: United Nations.

21.    Teoh, W. K., Mohamed Sadiq, N. S., Saisahas, K., Phoncai, A., Kunalan, V., Md Muslim, N. Z., Limbut, W., Chang, K. H. and Abdullah, A. F. L. (2022). Vortex-assisted dispersive liquid–liquid microextraction-gas chromatography (VADLLME-GC) determination of residual ketamine, nimetazepam, and xylazine from drug-spiked beverages appearing in liquid, droplet, and dry forms. Journal of Forensic Sciences, 67(5): 1836-1845.

22.    Lemos, V. A., Barreto, J. A., Santos, L. B., de Assis, R. dos S., Novaes, C. G. and Cassella, R. J. (2022). In-syringe dispersive liquid-liquid microextraction. Talanta, 238:123002.

23.    Jain, R., Jain, B., Chauhan, V., Deswal, B., Kaur, S., Sharma, S. and Abourehab, M. A. (2023). Simple determination of dichlorvos in cases of fatal intoxication by gas chromatography-mass spectrometry. Journal of Chromatography B, 1215: 123582.

24.    Meng, L., Zhang, W., Meng, P., Zhu, B. And Zheng, K. (2015). Comparison of hollow fiber liquid-phase microextraction and ultrasound-assisted low-density solvent dispersive liquid-liquid microextraction for the determination of drugs of abuse in biological samples by gas chromatography-mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 989: 46-53.

25.    Manwar, J., Mahadik, K. and Paradkar, A. (2013). Plackett–Burman design: A statistical method for the optimization of fermentation process for the yeast Saccharomyces cerevisiae isolated from the flowers of Woodfordia fruticosa. Fermentation Technology2: 109.

26.    Abd El-Hamid, H. T., Al-Prol, A. E. and Hafiz, M. A. (2018). Plackett-Burman and response surface methodology for optimization of oily wastewater bioremediation by Aspergillus sp. South Asian Journal of Research in Microbiology, 2018: 1-9.

27.    Abdullah, A. F. L. and Miskelly, G. M. (2010). Recoveries of trace pseudoephedrine and methamphetamine residues from impermeable household surfaces: Implications for sampling methods used during remediation of clandestine methamphetamine laboratories. Talanta. 81(1-2): 455-461.

28.    Quigley, A., Cummins, W. and Connolly, D. (2016). Dispersive liquid-liquid microextraction in the analysis of milk and dairy products: A review. Journal of Chemistry, 2016: 4040165.

29.    Saraji, M. And Boroujeni, M. K. (2014). Recent developments in dispersive liquid–liquid microextraction. Analytical and Bioanalytical Chemistry406: 2027-2066.

30.    Salim, S. A., Sukor, R., Ismail, M. N. and Selamat, J. (2021). Dispersive liquid–liquid microextraction (DLLME) and LC-MS/MS analysis for multi-mycotoxin in rice bran: method development, optimization and validation. Toxins13(4): 280.

31.    Tan, Y. H., Chai, M. K. and Wong, L. S. (2018). A review on extraction solvents in the dispersive liquid-liquid microextraction. Malaysian Journal of Analytical Sciences, 22(2): 166-174.

32.    Al-Saidi, H. M. and Emara, A. A. A. (2014). The recent developments in dispersive liquid-liquid microextraction for preconcentration and determination of inorganic analytes. Journal of Saudi Chemical Society, 18(6): 745-761.

33.    Geiger, E. O. (2014). Statistical methods for fermentation optimization. In: Todaro CC, Vogel HC, editors. Fermentation and biochemical engineering handbook. NY: William Andrew.

34.    Rahmani, M., Ghasemi, E. and Sasani, M. (2017). Application of response surface methodology for air assisted-dispersive liquid- liquid microextraction of deoxynivalenol in rice samples prior to HPLC-DAD analysis and comparison with solid phase extraction cleanup. Talanta. 165: 27-32.

35.    Guo, L. and Lee, H. K. (2013). Vortex-assisted micro-solid-phase extraction followed by low-density solvent based dispersive liquid-liquid microextraction for the fast and efficient determination of phthalate esters in river water samples. Journal of Chromatography A, 1300: 24-30.

36.    Sanagi, M. M., Mokhtar, S. U., Ibrahim, W. A. W. and Aboul-Enein, H. Y. (2013). Application of dispersive liquid-liquid microextraction based on solidification of floating organic droplet to the analysis of antidepressant drugs in water samples. Sains Malaysiana, 42(2): 1490-157.

37.    Al-Dirbashi, O. Y., Ikeda, K., Takahashi, M., Kuroda, N., Ikeda, S. and Nakashima, K. (2001). Drugs of abuse in a non-conventional sample; detection of methamphetamine and its main metabolite, amphetamine in abusers’ clothes by HPLC with UV and fluorescence detection. Biomedical Chromatography, 15: 457-463.

38.    Keasey, S. J. (2011). Testing for the presence of methamphetamine residues on clothing from suspected clandestine labs. Master’s Thesis, AL: University of Alabama at Birmingham.

39.    Bitter, J. L. (2017). The persistence of illicit drug smoke residues and their recovery from common household surfaces. Drug Testing and Analysis, 9(4): 603-612.

40.    Lee, S. and Obendorf, S. K. (2001). A statistical model to predict pesticide penetration through nonwoven chemical protective fabrics. Textile Research Journal, 71(11): 1000-1009.

41.    Saini, A., Okeme, J. O., Mark Parnis, J., McQueen, R. H. and Diamond, M. L. (2017). From air to clothing: characterizing the accumulation of semi-volatile organic compounds to fabrics in indoor environments. Indoor Air, 27(3): 631-641.

42.    Morrison, G., Shakila, N. V. and Parker, K. (2015). Accumulation of gas-phase methamphetamine on clothing, toy fabrics, and skin oil. Indoor Air, 25(4): 405-414.

43.    Li, M. J., Zhang, H. Y., Liu, X. Z., Cui, C. Y. and Shi, Z. H. (2015). Progress of extraction solvent dispersion strategies for dispersive liquid-liquid microextraction. Chinese Journal of Analytical Chemistry, 43(8):1231-1240.

44.    Majors, R. E. (2013). Sample preparation fundamentals to chromatography. Canada: Agilent Technologies.