Malaysian Journal of Analytical
Sciences, Vol 27
No 3 (2023): 573 - 585
PLACKETT-BURMAN DESIGN
OPTIMIZED DISPERSIVE LIQUID-LIQUID MICROEXTRACTION COUPLED WITH GAS CHROMATOGRAPHY-MASS
SPECTROMETRY FOR DETERMINATION OF METHAMPHETAMINE FROM LABORATORY COAT
MATERIALS
(Pengekstrakan
Mikro Cecair-Cecair Serakan Gandingan Kromatografi
Gas-Spektrometri
Jisim yang Dioptimumkan Secara Rekaan Plackett-Burman
untuk
Penentuan Metamfetamin Daripada Bahan Kot Makmal)
Su
Chien Quah1, Way Koon Teoh1, Vanitha Kunalan2,
Noor Zuhartini Md Muslim1, Warakorn Limbut3,4,5,
Chong Hooi Yew6, Kah Haw Chang1,
Ahmad Fahmi Lim Abdullah1*
1Forensic Science Programme, School
of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan,
Malaysia
2Narcotics Division, Forensic
Science Analysis Centre, Department of Chemistry, Jalan Sultan, 46661 Petaling
Jaya, Selangor, Malaysia
3Division of Health and Applied
Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla,
90112, Thailand
4 Center of Excellence for Trace Analysis and Biosensors
(TAB-CoE), Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
5 Center of Excellence for Innovation in Chemistry, Faculty of
Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
6Elmu Higher Education Sdn Bhd,
46200 Petaling Jaya, Selangor, Malaysia
*Corresponding author:
fahmilim@usm.my
Received: 5 February 2023; Accepted:
18 April 2023; Published: 23 June 2023
Abstract
Accumulated drug residues on contaminated clothing put
the wearer at adverse health risk. Therefore, monitoring on laboratory coat
contamination shall be in place to safeguard the analysts who have routine
exposure in forensic laboratory environment. Using methamphetamine as surrogate
drug, this study was aimed to detect the presence of methamphetamine from
laboratory coat materials through a response surface methodology optimized
dispersive liquid-liquid microextraction (DLLME) in couple with gas
chromatography-mass spectrometry (GC-MS). In this study, a Plackett-Burman
design was used to optimize the DLLME conditions, including the volumes of
extraction and dispersive solvents, the duration of vortex agitation, as well
as the speed and time of centrifugation. Residues collected upon DLLME
procedure was priorly derivatized with trifluoroacetic acid anhydride followed
by GC-MS analysis. Seven types of fabric materials which were contaminated with
methamphetamine were extracted and compared. From this study, a volume of 685
µL dichloromethane as extraction solvent, 1000 µL 2-propanol as dispersive
solvent, vortex agitation for 90 seconds, and centrifugation at 500 rpm for 5
minutes were determined as the optimum conditions for DLLME. Trace
methamphetamine residues were successfully extracted and detected from the
different types of laboratory coat materials with recovery percentage of at
least 45%. The method could be proposed to laboratories for their evaluation on
possible contamination to establish baseline for necessary in-house monitoring
and decontamination procedures.
Keywords: Illicit drugs, methamphetamine, dispersive
liquid-liquid microextraction, Plackett-Burman design, contaminated laboratory
coat
Abstrak
Sisa-sisa
dadah yang terkumpul pada pakaian tercemar membawa risiko mudarat kepada
pemakai. Justeru, pemantauan pencemaran kot makmal harus diberi perhatian untuk
melindungi penganalisis yang mempunyai pendedahan rutin dalam persekitaran
makmal forensik. Dengan menggunakan metamfetamin sebagai dadah surogat, kajian
ini bertujuan untuk mengesan kehadiran metamfetamin daripada bahan kot makmal
melalui pengekstrakan mikro cecair-cecair serakan (DLLME) yang digandingkan
dengan kromatografi gas-spektrometri jisim (GC-MS) yang telah dioptimumkan
dengan kaedah gerak balas permukaan merangkumi isipadu pelarut pengekstrakan dan pelarut
serakan, tempoh pengadukan pusaran, serta kelajuan dan masa pengemparan.
Sisa-sisa yang dikumpulkan setelah prosedur DLLME telah diterbitkan terlebih
dahulu dengan asid trifluoroasetik anhidrida diikuti dengan analisis GC-MS. Tujuh
jenis bahan fabrik yang telah dicemari dengan metamfetamin telah diekstrak dan
dibandingkan. Daripada kajian ini, 685 µL dikloromethana sebagai pelarut
pengekstrakan, 1000 µL 2-propanol sebagai pelarut serakan, pergerakan vorteks
selama 90 saat, serta pengemparan pada 500 rpm selama 5 minit telah ditentukan
sebagai keadaan optimum bagi DLLME. Sisa-sisa surih metamfetamin telah berjaya
diekstrak dan dikesan daripada jenis bahan kot makmal yang berbeza dengan
peratusan pemulihan semula sekurang-kurangnya 45%. Kaedah tersebut boleh
dicadangkan kepada makmal-makmal untuk penilaian mereka terhadap pencemaran
yang berkemungkinan untuk menetapkan garis dasar untuk pemantauan dalaman dan
prosedur penyahcemaran yang diperlukan.
Kata kunci: Dadah haram, metamfetamin, pengekstrakan mikro cecair-cecair
serakan, rekaan Plackett-Burman, kot makmal tercemar
References
1.
Sisco,
E., Najarro, M. and Burns, A. (2018). A snapshot of drug background levels on surfaces in a forensic
laboratory. Forensic Chemistry, 11: 47-57.
2.
Broadwater,
K. R., Jackson, D. A. and Li, J. F. (2020). Evaluation of occupational
exposures to illicit drugs at controlled substances laboratories. Health Hazard
Evaluation Report 2018-0090-3366. Department of Health and Human Services,
Centers for Disease Control and Prevention, National Institute for Occupational
Safety and Health.
3.
Sisco,
E. and Najarro, M. (2019). Multi-laboratory
investigation of drug background levels. Forensic Chemistry, 16: 100184.
4.
Wright,
J., Walker, G. S. and Ross, K. E. (2019). Contamination of homes with
methamphetamine: Is wipe sampling adequate to determine risk? International
Journal Environmental Research Public Health, 16(19): 3568.
5.
United
Nations Office on Drugs and Crime. (2021). Global overview: Drug demand and
drug supply. World Drug Report 2021. Vienna, Austria: United Nations.
6.
Daughton,
C. G. (2010). Illicit drugs and the environment. In: Castiglioni S, Zuccato E, Fanelli R. (Editors). Illicit Drugs in the
Environment, LA: John Wiley & Sons, Inc.
7.
Kairigo, P., Ngumba, E., Sundberg, L. R., Gachanja,
A. and Tuhkanen, T. (2020). Contamination of surface
water and river sediments by antibiotic and antiretroviral drug cocktails in
low and middle-income countries: Occurrence, risk and mitigation strategies. Water,
12(5): 1376.
8.
Lin,
Y. C, Hsiao, T. C. and Lin, A-YC. (2020). Urban wastewater treatment plants as a
potential source of ketamine and methamphetamine emissions to air. Water
Research, 172: 115495.
9.
Jenkins,
A. J. (2001). Drug contamination of US paper currency. Forensic Science
International, 121: 189-193.
10.
Smith,
F. P. and McGrath, K. R. (2011). Cocaine surface contamination and the
medico-legal implications of its transfer. Egyptian Journal Forensic
Sciences, (1): 1-4.
11.
Mastroianni,
N., Postigo, C., López de Alda,
M., Viana, M., Rodríguez, A., Alastuey, A. Querol, X.
and Barceló, D. (2015). Comprehensive monitoring of the occurrence of 22 drugs
of abuse and transformation products in airborne particulate matter in the city
of Barcelona. Science of Total Environment, 532: 344-352.
12.
Nair,
M. V. and Miskelly, G. M. (2019). Determination of
airborne methamphetamine via capillary microextraction of volatiles (CMV) with
on-sorbent derivatisation using o-pentafluorobenzyl
chloroformate. Forensic Chemistry, 14:100161.
13.
Chen,
X., Wu, X., Luan, T., Jiang, R. and Ouyang, G. (2021). Sample preparation and
instrumental methods for illicit drugs in environmental and biological samples:
A review. Journal of Chromatography A, 1640: 461961.
14.
Kuhn,
E. J., Walker, G. S., Whiley, H., Wright, J. and Ross, K. E. (2019). Household
contamination with methamphetamine: Knowledge and uncertainties. International
Journal of Environmental Research and Public Health, 16(23): 4676.
15.
Martyny, J. W., Arbuckle, S.
L., McCammon, C. S., Esswein, E. J., Erb, N. and Van
Dyke, M. (2007). Chemical concentrations and contamination associated with
clandestine methamphetamine laboratories. Journal of Chemical Health
and Safety, 14(4): 40-52.
16.
Doran,
G. S., Deans, R. M., Filippis, C. D., Kostakis, C. and Howitt, J. A. (2017). The presence of licit
and illicit drugs in police stations and their implications for workplace drug
testing. Forensic Science International, 278: 125-136.
17.
Yeh,
K., Li, L., Wania, F. and Abbatt,
J. P. (2022). Thirdhand smoke from tobacco, e-cigarettes, cannabis, methamphetamine
and cocaine: Partitioning, reactive fate, and human exposure in indoor
environments. Environment International, 160: 107063.
18.
Kerry,
G. L., Ross, K. E., Wright, J. L. and Walker, G. S. (2022). A review of methods
used to detect methamphetamine from indoor air and textiles in confined spaces.
Toxics, 10(11): 710.
19.
Doran,
G. S., Deans, R. M., Filippis, C. D., Kostakis, C. and Howitt, J. A. (2017). Quantification of
licit and illicit drugs on typical police station work surfaces using LC-MS/MS.
Analytical Methods, 9:198-210.
20.
United
Nations Office on Drugs and Crime. (2020). Synthetic Drugs in East and
Southeast Asia: Latest developments and challenges. Vienna, Austria: United
Nations.
21.
Teoh,
W. K., Mohamed Sadiq, N. S., Saisahas, K., Phoncai, A., Kunalan, V., Md
Muslim, N. Z., Limbut, W., Chang, K. H. and Abdullah,
A. F. L. (2022). Vortex-assisted dispersive liquid–liquid microextraction-gas
chromatography (VADLLME-GC) determination of residual ketamine, nimetazepam,
and xylazine from drug-spiked beverages appearing in liquid, droplet, and dry
forms. Journal of Forensic Sciences, 67(5): 1836-1845.
22.
Lemos, V. A., Barreto, J. A.,
Santos, L. B., de Assis, R. dos S., Novaes, C. G. and
Cassella, R. J. (2022). In-syringe
dispersive liquid-liquid microextraction. Talanta,
238:123002.
23.
Jain,
R., Jain, B., Chauhan, V., Deswal, B., Kaur, S.,
Sharma, S. and Abourehab, M. A. (2023). Simple
determination of dichlorvos in cases of fatal intoxication by gas
chromatography-mass spectrometry. Journal of Chromatography B, 1215:
123582.
24.
Meng, L., Zhang, W., Meng, P., Zhu, B. And Zheng, K.
(2015). Comparison of hollow fiber liquid-phase microextraction
and ultrasound-assisted low-density solvent dispersive liquid-liquid
microextraction for the determination of drugs of abuse in biological samples
by gas chromatography-mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical
and Life Sciences, 989: 46-53.
25.
Manwar, J., Mahadik, K. and Paradkar, A. (2013). Plackett–Burman
design: A statistical method for the optimization of fermentation process for
the yeast Saccharomyces cerevisiae isolated from the flowers of Woodfordia fruticosa. Fermentation
Technology, 2: 109.
26.
Abd
El-Hamid, H. T., Al-Prol, A. E. and Hafiz, M. A.
(2018). Plackett-Burman and response surface methodology for optimization of
oily wastewater bioremediation by Aspergillus sp. South Asian Journal
of Research in Microbiology, 2018: 1-9.
27.
Abdullah,
A. F. L. and Miskelly, G. M. (2010). Recoveries of
trace pseudoephedrine and methamphetamine residues from impermeable household
surfaces: Implications for sampling methods used during remediation of clandestine
methamphetamine laboratories. Talanta.
81(1-2): 455-461.
28.
Quigley,
A., Cummins, W. and Connolly, D. (2016). Dispersive liquid-liquid
microextraction in the analysis of milk and dairy products: A review. Journal
of Chemistry, 2016: 4040165.
29.
Saraji, M. And Boroujeni, M. K. (2014). Recent
developments in dispersive liquid–liquid microextraction. Analytical
and Bioanalytical Chemistry, 406:
2027-2066.
30.
Salim,
S. A., Sukor, R., Ismail, M. N. and Selamat, J. (2021). Dispersive liquid–liquid
microextraction (DLLME) and LC-MS/MS analysis for multi-mycotoxin in rice bran:
method development, optimization and validation. Toxins, 13(4): 280.
31.
Tan,
Y. H., Chai, M. K. and Wong, L. S. (2018). A review on extraction solvents in
the dispersive liquid-liquid microextraction. Malaysian Journal of
Analytical Sciences, 22(2): 166-174.
32.
Al-Saidi, H. M. and Emara, A. A. A.
(2014). The recent developments in dispersive liquid-liquid microextraction for
preconcentration and determination of inorganic analytes. Journal of Saudi
Chemical Society, 18(6): 745-761.
33.
Geiger,
E. O. (2014). Statistical methods for fermentation optimization. In: Todaro CC,
Vogel HC, editors. Fermentation and biochemical engineering handbook. NY:
William Andrew.
34.
Rahmani, M., Ghasemi, E. and Sasani, M.
(2017). Application of response surface methodology for air assisted-dispersive
liquid- liquid microextraction of deoxynivalenol in rice samples prior to
HPLC-DAD analysis and comparison with solid phase extraction cleanup. Talanta. 165: 27-32.
35.
Guo,
L. and Lee, H. K. (2013). Vortex-assisted micro-solid-phase extraction followed
by low-density solvent based dispersive liquid-liquid microextraction for the
fast and efficient determination of phthalate esters in river water samples. Journal of Chromatography A, 1300:
24-30.
36.
Sanagi, M. M., Mokhtar, S. U.,
Ibrahim, W. A. W. and Aboul-Enein, H. Y. (2013).
Application of dispersive liquid-liquid microextraction based on solidification
of floating organic droplet to the analysis of antidepressant drugs in water
samples. Sains Malaysiana, 42(2): 1490-157.
37.
Al-Dirbashi, O. Y., Ikeda, K., Takahashi, M., Kuroda,
N., Ikeda, S. and Nakashima, K. (2001). Drugs of abuse in a
non-conventional sample; detection of methamphetamine and its main metabolite,
amphetamine in abusers’ clothes by HPLC with UV and fluorescence detection. Biomedical
Chromatography, 15: 457-463.
38.
Keasey, S. J. (2011). Testing
for the presence of methamphetamine residues on clothing from suspected
clandestine labs. Master’s Thesis, AL: University of Alabama at Birmingham.
39.
Bitter,
J. L. (2017). The persistence of illicit drug smoke residues and their recovery
from common household surfaces. Drug Testing and Analysis, 9(4):
603-612.
40.
Lee,
S. and Obendorf, S. K. (2001). A statistical model to
predict pesticide penetration through nonwoven chemical protective fabrics. Textile
Research Journal, 71(11): 1000-1009.
41.
Saini,
A., Okeme, J. O., Mark Parnis,
J., McQueen, R. H. and Diamond, M. L. (2017). From air to clothing:
characterizing the accumulation of semi-volatile organic compounds to fabrics
in indoor environments. Indoor Air, 27(3): 631-641.
42.
Morrison,
G., Shakila, N. V. and Parker, K. (2015).
Accumulation of gas-phase methamphetamine on clothing, toy fabrics, and skin
oil. Indoor Air, 25(4): 405-414.
43.
Li,
M. J., Zhang, H. Y., Liu, X. Z., Cui, C. Y. and Shi, Z. H. (2015). Progress of
extraction solvent dispersion strategies for dispersive liquid-liquid
microextraction. Chinese Journal of Analytical Chemistry,
43(8):1231-1240.
44.
Majors,
R. E. (2013). Sample preparation fundamentals to chromatography. Canada:
Agilent Technologies.