Malaysian Journal of Analytical Sciences, Vol 27 No 3 (2023): 453 - 462

 

SYNTHESIS AND CHARACTERISATIONS OF NICKEL(II)–HYDRAZONE COMPLEX AS CATALYST IN SUZUKI REACTION

 

(Sintesis, dan Pencirian Nikel(II)– Hidrazon Kompleks Sebagai Pemangkin

dalam Tindak Balas Suzuki)

 

Aisyah Ahmad Fauzi1, Norul Azilah Abdul Rahman1,2, and Nur Rahimah Said1*

 

1School of Chemistry and Environment,

Faculty of Applied Sciences,

Universiti Teknologi MARA,

Cawangan Negeri Sembilan, Kampus Kuala Pilah,

72000 Kuala Pilah, Negeri Sembilan, Malaysia

2School of Chemistry and Environment,

Faculty of Applied Sciences Universiti Teknologi MARA,

40450 Shah Alam, Selangor, Malaysia

 

*Corresponding author: nurra1435@uitm.edu.my

 

 

Received: 24 October 2022; Accepted: 18 April 2023; Published:  23 June 2023

 

 

Abstract

Dichloro-N’-(3-chlorobenzylidene) benzohydrazide nickel(II) complex was successfully synthesised using 4-chloro-N’-(4-chlorobenzylidene) benzohydrazide ligand with nickel(II) chloride. The synthesised ligand and complex were characterised by various instruments including FTIR, 1H NMR, 13CNMR, and UV-Vis spectroscopy. The preliminary complexation study between Ni2+cation and ligand showed that 1:1 stoichiometric formation corresponded to the metal-ligand ratio. The catalytic performance of the complex was tested using a Suzuki reaction between phenylboronic acid and four different aryl bromides (1-bromo-4-nitrobenzene, 4-bromoanisole, 4-bromoacetophenone, and bromobenzene) at different solvents and bases. The per cent (%) conversion rate of reactant to the product was determined using GC-FID. The best catalytic performance was found in the reaction between phenylboronic acid and 1-bromo-4-nitrobenzene using 0.5% mmol catalyst loading, methanol as a solvent, and K2CO3 as a base at temperature of 65°C within 2 h reaction time, giving a conversion rate of 81.86%. 

 

Keywords: hydrazone ligand, nickel (II)-hydrazone complex, Suzuki reaction

 

Abstrak

Kompleks dikloro-N’-(3-klorobenzilidena) benzohidrazida nikel(II) telah berjaya disintesis menggunakan ligan 4-kloro-N’-(4-klorobenzilidena) benzohidrazida dengan nikel(II) klorida. Ligan dan komplex yang disintesis dicirikan oleh pelbagai alat terdiri daripada FTIR, 1HNMR, 13CNMR, dan spektroskopi UV-Vis. Kajian awal pembentukan kompleks antara kation Ni2+ dan ligan menunjukkan stoikiometri pembentukan ialah 1:1 sepadan dengan nisbah logam-ligan. Prestasi pemangkinan komplek telah diuji menggunakan tindak balas Suzuki antara asid fenilboronik dan empat aril bromida yang berbeza (1-bromo-4-nitrobenzena, 4-bromoanisol, 4-bromoacetofinon, dan bromobenzena) pada parameter yang berbeza seperti jenis pelarut dan bes. Peratus (%) kadar penukaran bahan tindak balas kepada produk ditentukan menggunakan GC-FID. Prestasi pemangkinan terbaik didapati dalam tindak balas antara asid fenilboronik dan 1-bromo-4-nitrobenzena dengan menggunakan pemuatan mangkin 0.5% mmol, metanol sebagai pelarut, K2CO3 sebagai bes pada suhu 65°C dalam masa tindak balas 2 jam memberi kadar penukaran sebanyak 81.86%.

 

Kata kunci: ligan hidrazon, kompleks nikel (II)-hidrazon, tindak balas Suzuki

 


References

1.       Maluenda, I., and Navarro, O. (2015). Recent developments in the Suzuki-Miyaura reaction: 2010-2014. Molecules, 20(5): 7528-7557.

2.       Alfahd, A. Z. (2016). Synthesis of Ni(dppe)2 and Ni(I) catalysts and their ability to catalyzed cross coupling. (Doctoral dissertation).

3.       Bricout, H., Carpentier, J. F., and Mortreux, A. (1998). Nickel vs. palladium catalysts for coupling reactions of allyl alcohol with soft nucleophiles: Activities and deactivation processes. Journal of Molecular Catalysis A: Chemical, 136(3): 243-251.

4.       Bao, Z., and Yu, F. (2018). Catalytic conversion of biogas to syngas via dry reforming process. Advances in Bioenergy, 3: 43-76.

5.       Muthumari, S., and Ramesh, R. (2016). Highly efficient palladium (II) hydrazone-based catalysts for the Suzuki coupling reaction in aqueous medium. RSC Advances, 6(57): 52101-52112.

6.       Bhatt, V., and Ram, S. (2015). The role of ligands, polytopic ligands and metal organic ligands (Mols) in coordination chemistry. Chemical Science Review and Letters, 4(14): 414-428.

7.       Said, N. R., Md Adib, N. N., Roszaidi, R. M., Shamsuddin, N. A. M., and Saidul Badri, N. N. H. (2020). Catalytic activity study of synthesized palladium(II)-hydrazone complexes in the heck reaction: Optimization of the amount of catalyst loading and reaction time. Malaysian Journal of Chemistry, 22(3): 17-24.

8.       Malik, M. A., Dar, O. A., Gull, P., Wani, M. Y., and Hashmi, A. A. (2018). Heterocyclic Schiff base transition metal complexes in antimicrobial and anticancer chemotherapy. MedChemComm, 9(3): 409-436.

9.       Dhande, V. V., Badwaik, V. B., and Aswar, A. S. (2007). Hydrazone as complexing agent: Synthesis, structural characterization, and biological studies of some complexes. Russian Journal of Inorganic Chemistry, 52(8): 1206-1210.

10.    Adejumo, T. T., Tzouras, N. V, Zorba, L. P., Radanovi, D., Pevec, A., and Grubiši, S. (2020). Synthesis, characterization, catalytic activity, and DFT calculations of Zn(II) hydrazone complexes. Molecules, 25(18): 1-18.

11.    Camacho-Espinoza, M., Penieres-Carrillo, J. G., Rios-Guerra, H., Lagunas-Rivera, S., and Ortega-Jiménez, F. (2019). An efficient and simple imidazole-hydrazone ligand for palladium-catalyzed Suzuki-Miyaura cross-coupling reactions in water under infrared irradiation. Journal of Organometallic Chemistry, 880: 386-391.

12.    Shamsuddin, N. A. M., Rahman, N. A. A., Chandrasekaram, K., Alias, Y., and Said, N. R. (2021). Catalytic activity study of synthesised polystyrene-supported palladium (II)-hydrazone (CH3) as catalyst in heck reaction. Malaysian Journal of Analytical Sciences25(6): 987-997.

13.    Veeramanikandan, S., and Benita Sherine, H. (2015). Synthesis, characterization and biological applications of substituted benzohydrazide derivatives. Der Pharma Chem, 7: 70-84.

14.    Shah, N., Sattar, A., Benanti, M., Hollander, S., and Cheuck, L. (2006). Magnetic resonance spectroscopy as an imaging tool for cancer: a review of the literature. The Journal of the American Osteopathic Association, 106(1): 23-27.

15.    Moloney, M. G. (2008). Structure and reactivity in organic chemistry. Blackwell Publishing.

16.    Golestanzadeh, M., and Naeimi, H. (2019). Palladium decorated on a new dendritic complex with nitrogen ligation grafted to graphene oxide: Fabrication, characterization, and catalytic application. RSC Advances, 9(47): 27560-27573.

17.    Said, N. R., Rezayi, M., Narimani, L., Al-Mohammed, N. N., Manan, N. S. A., and Alias, Y. (2016). A new N-heterocyclic Carbene Ionophore in plasticizer-free Polypyrrole membrane for determining Ag+ in tap water. Electrochimica Acta, 197: 10-22.

18.    Forryan, C. L., Compton, R. G., Klymenko, O. V., Brennan, C. M., Taylor, C. L., and Lennon, M. (2006). Comparative solubilisation of potassium carbonate, sodium bicarbonate and sodium carbonate in hot dimethylformamide: Application of cylindrical particle surface-controlled dissolution theory. Physical Chemistry Chemical Physics, 8(5): 633–641.

19.    Dyson, P. J., and Jessop, P. G. (2016). Solvent effects in catalysis: Rational improvements of catalysts: Via manipulation of solvent interactions. Catalysis Science and Technology, 6(10): 3302–3316.

20.    Xiong, Y., Huang, T., Ji, X., Wu, J., and Cao, S. (2015). Nickel-catalyzed Suzuki–Miyaura type cross-coupling reactions of (2, 2-difluorovinyl) benzene derivatives with arylboronic acids. Organic & Biomolecular Chemistry, 13(27): 7389-7392.