Malaysian Journal of Analytical
Sciences, Vol 27
No 3 (2023): 453 - 462
SYNTHESIS AND
CHARACTERISATIONS OF NICKEL(II)–HYDRAZONE COMPLEX AS CATALYST IN SUZUKI
REACTION
(Sintesis, dan Pencirian Nikel(II)– Hidrazon Kompleks Sebagai
Pemangkin
dalam Tindak Balas Suzuki)
Aisyah Ahmad
Fauzi1, Norul Azilah Abdul Rahman1,2, and
Nur Rahimah Said1*
1School of Chemistry and Environment,
Faculty of Applied Sciences,
Universiti Teknologi MARA,
Cawangan Negeri Sembilan, Kampus
Kuala Pilah,
72000 Kuala Pilah, Negeri Sembilan,
Malaysia
2School of Chemistry and Environment,
Faculty of Applied Sciences
Universiti Teknologi MARA,
40450 Shah Alam, Selangor, Malaysia
*Corresponding author:
nurra1435@uitm.edu.my
Received: 24 October 2022; Accepted: 18
April 2023; Published: 23 June 2023
Abstract
Dichloro-N’-(3-chlorobenzylidene) benzohydrazide
nickel(II) complex was successfully synthesised using 4-chloro-N’-(4-chlorobenzylidene)
benzohydrazide ligand with nickel(II) chloride. The
synthesised ligand and complex were characterised by various instruments
including FTIR, 1H NMR, 13CNMR, and UV-Vis spectroscopy. The preliminary
complexation study between Ni2+cation and ligand showed that 1:1 stoichiometric formation corresponded
to the metal-ligand ratio. The catalytic performance of the complex was tested
using a Suzuki reaction between phenylboronic acid and four different aryl
bromides (1-bromo-4-nitrobenzene, 4-bromoanisole, 4-bromoacetophenone, and
bromobenzene) at different solvents and bases. The per cent (%) conversion rate
of reactant to the product was determined using GC-FID. The best catalytic
performance was found in the reaction between phenylboronic acid and
1-bromo-4-nitrobenzene using 0.5% mmol catalyst loading, methanol as a solvent,
and K2CO3 as a base at temperature of 65°C within 2 h
reaction time, giving a conversion rate of 81.86%.
Keywords: hydrazone ligand, nickel (II)-hydrazone complex,
Suzuki reaction
Abstrak
Kompleks
dikloro-N’-(3-klorobenzilidena) benzohidrazida nikel(II) telah berjaya
disintesis menggunakan ligan 4-kloro-N’-(4-klorobenzilidena)
benzohidrazida dengan nikel(II) klorida. Ligan dan komplex yang disintesis
dicirikan oleh pelbagai alat terdiri daripada FTIR, 1HNMR, 13CNMR,
dan spektroskopi UV-Vis. Kajian awal pembentukan kompleks antara kation Ni2+
dan ligan menunjukkan stoikiometri pembentukan ialah 1:1 sepadan dengan nisbah
logam-ligan. Prestasi pemangkinan komplek telah diuji menggunakan tindak balas
Suzuki antara asid fenilboronik dan empat aril bromida yang berbeza
(1-bromo-4-nitrobenzena, 4-bromoanisol, 4-bromoacetofinon, dan bromobenzena)
pada parameter yang berbeza seperti jenis pelarut dan bes. Peratus (%) kadar
penukaran bahan tindak balas kepada produk ditentukan menggunakan GC-FID.
Prestasi pemangkinan terbaik didapati dalam tindak balas antara asid
fenilboronik dan 1-bromo-4-nitrobenzena dengan menggunakan pemuatan mangkin
0.5% mmol, metanol sebagai pelarut, K2CO3 sebagai bes
pada suhu 65°C dalam masa tindak balas 2 jam memberi kadar penukaran sebanyak
81.86%.
Kata kunci: ligan
hidrazon, kompleks nikel (II)-hidrazon, tindak balas Suzuki
References
1. Maluenda,
I., and Navarro, O. (2015). Recent developments in the Suzuki-Miyaura reaction:
2010-2014. Molecules, 20(5):
7528-7557.
2. Alfahd,
A. Z. (2016). Synthesis of Ni(dppe)2
and Ni(I) catalysts and their ability to catalyzed cross coupling.
(Doctoral dissertation).
3. Bricout,
H., Carpentier, J. F., and Mortreux, A. (1998). Nickel vs. palladium catalysts
for coupling reactions of allyl alcohol with soft nucleophiles: Activities and
deactivation processes. Journal of Molecular Catalysis A: Chemical, 136(3): 243-251.
4. Bao,
Z., and Yu, F. (2018). Catalytic conversion of biogas to syngas via dry
reforming process. Advances in Bioenergy, 3: 43-76.
5. Muthumari, S., and Ramesh, R.
(2016). Highly efficient palladium (II) hydrazone-based catalysts for the
Suzuki coupling reaction in aqueous medium. RSC Advances, 6(57): 52101-52112.
6. Bhatt, V., and Ram, S.
(2015). The role of ligands, polytopic ligands and metal organic ligands (Mols)
in coordination chemistry. Chemical Science Review and Letters, 4(14): 414-428.
7. Said,
N. R., Md Adib, N. N., Roszaidi, R. M., Shamsuddin, N. A. M., and Saidul Badri,
N. N. H. (2020). Catalytic activity study of synthesized palladium(II)-hydrazone
complexes in the heck reaction: Optimization of the amount of catalyst loading
and reaction time. Malaysian Journal of Chemistry, 22(3): 17-24.
8. Malik,
M. A., Dar, O. A., Gull, P., Wani, M. Y., and Hashmi, A. A. (2018).
Heterocyclic Schiff base transition metal complexes in antimicrobial and
anticancer chemotherapy. MedChemComm, 9(3): 409-436.
9. Dhande, V. V., Badwaik, V. B., and Aswar, A. S.
(2007). Hydrazone as complexing agent: Synthesis, structural characterization,
and biological studies of some complexes. Russian Journal of Inorganic
Chemistry, 52(8):
1206-1210.
10. Adejumo, T. T., Tzouras, N. V, Zorba, L. P., Radanovi,
D., Pevec, A., and Grubiši,
S. (2020). Synthesis, characterization, catalytic activity, and DFT
calculations of Zn(II) hydrazone complexes. Molecules, 25(18): 1-18.
11. Camacho-Espinoza, M., Penieres-Carrillo, J. G., Rios-Guerra, H., Lagunas-Rivera,
S., and Ortega-Jiménez, F. (2019). An efficient and simple imidazole-hydrazone
ligand for palladium-catalyzed Suzuki-Miyaura
cross-coupling reactions in water under infrared irradiation. Journal of
Organometallic Chemistry, 880:
386-391.
12. Shamsuddin,
N. A. M., Rahman, N. A. A., Chandrasekaram, K., Alias, Y., and Said, N. R.
(2021). Catalytic activity study of synthesised polystyrene-supported palladium
(II)-hydrazone (CH3) as catalyst in heck reaction. Malaysian
Journal of Analytical Sciences, 25(6):
987-997.
13. Veeramanikandan,
S., and Benita Sherine, H. (2015). Synthesis, characterization and biological
applications of substituted benzohydrazide derivatives. Der Pharma Chem, 7:
70-84.
14. Shah,
N., Sattar, A., Benanti, M., Hollander, S., and Cheuck, L. (2006). Magnetic
resonance spectroscopy as an imaging tool for cancer: a review of the
literature. The Journal of the American Osteopathic Association, 106(1): 23-27.
15. Moloney,
M. G. (2008). Structure and reactivity
in organic chemistry. Blackwell Publishing.
16. Golestanzadeh,
M., and Naeimi, H. (2019). Palladium decorated on a new dendritic complex with
nitrogen ligation grafted to graphene oxide: Fabrication, characterization, and
catalytic application. RSC Advances, 9(47): 27560-27573.
17. Said,
N. R., Rezayi, M., Narimani, L., Al-Mohammed, N. N., Manan, N. S. A., and
Alias, Y. (2016). A new N-heterocyclic Carbene Ionophore in plasticizer-free
Polypyrrole membrane for determining Ag+ in tap water. Electrochimica
Acta, 197: 10-22.
18. Forryan,
C. L., Compton, R. G., Klymenko, O. V., Brennan, C. M., Taylor, C. L., and
Lennon, M. (2006). Comparative solubilisation of potassium carbonate, sodium
bicarbonate and sodium carbonate in hot dimethylformamide: Application of
cylindrical particle surface-controlled dissolution theory. Physical
Chemistry Chemical Physics, 8(5):
633–641.
19. Dyson, P. J., and
Jessop, P. G. (2016). Solvent effects in catalysis: Rational improvements of
catalysts: Via manipulation of solvent interactions. Catalysis Science and
Technology, 6(10):
3302–3316.
20. Xiong,
Y., Huang, T., Ji, X., Wu, J., and Cao, S. (2015). Nickel-catalyzed
Suzuki–Miyaura type cross-coupling reactions of (2, 2-difluorovinyl) benzene
derivatives with arylboronic acids. Organic & Biomolecular Chemistry, 13(27): 7389-7392.