Malaysian Journal of Analytical Sciences (MJAS)

Published by Malaysian Analytical Sciences Society

STUDIES ON THE SYNTHESIS OF β-CARBOLINE AND ITS DERIVATIVES AS POTENTIAL ANTIMALARIAL DRUG COMPONENTS

(Kajian Mengenai Sintesis β-Karbolina dan Terbitannya sebagai Komponen Ubat Anti Malaria yang Berpotensi)

Ruwaida Shamsujunaidi^{1,3}, Aimi Suhaily Saaidin^{1,2*}, Muhammad Hazim Abdul Aziz^{1,3}, Mohd Fazli Mohammat^{1,3}, Noor Hidayah Pungot^{1,3}

¹Organic Synthesis Laboratory,
Institute of Science,
Universiti Teknologi MARA Kampus Puncak Alam,
42300 Bandar Puncak Alam, Selangor, Malaysia

²Centre of Foundation Studies,
Universiti Teknologi MARA, Cawangan Selangor, Kampus Dengkil,
43800 Dengkil, Selangor, Malaysia

³School of Chemistry and Environment,
Faculty of Applied Sciences,
Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

*Corresponding author: aimisuhaily@uitm.edu.my

Received: 29 September 2022; Accepted: 17 January 2023; Published: 22 February 2023

Abstract

β-Carboline constitutes a tricyclic pyrido[3,4-b] indole ring structure and is widely recognized for its prevalent biological activities. In recent years, numerous studies have reported on its excellent biological activities, particularly anti-cancer, anti-fungal, anti-malarial agents and many more. Thus, a collective of β-carboline derivatives were synthesized to explore its pharmacological properties. The synthetic approach towards β-carboline derivatives has been constructed in a two-step reaction, including Pictet-Spengler condensation reaction and the iodine-mediated oxidative dehydrogenation reaction. Pictet-Spengler was carried out by treating aldehydes bearing different substituents with tryptamine in the presence of trifluoroacetic acid. The synthesized intermediates were then aromatized to give the desired β-carboline derivatives. All these synthesized intermediates and β-carboline derivatives were analyzed and confirmed by NMR and ATR-FTIR spectroscopy. The working foundation established in this study will be applied in future research and development of new broad-spectrum β-carboline based anti-malarial drugs. Compounds 6, 9 and 12 synthesized in this work could be promising anti-malaria candidates in this future user.

Keywords: β-carboline, oxidative dehydrogenation reaction, pictet-spengler condensation, tetrahydro-β-carboline, trifluoroacetic acid

Shamsujunaidi et al.: STUDIES ON THE SYNTHESIS OF β-CARBOLINE AND ITS DERIVATIVES AS POTENTIAL ANTIMALARIAL DRUG COMPONENTS

Abstrak

β-Karbolina membentuk struktur cincin indol pyrido trisiklik [3,4-b] dan diiktiraf secara meluas untuk aktiviti biologinya yang lazim. Dalam beberapa tahun kebelakangan ini, banyak kajian telah dilaporkan mengenai aktiviti biologinya yang sangat baik terutamanya sebagai agen anti-kanser, anti-kulat, anti-malaria dan banyak lagi. Oleh itu, satu kolektif terbitan β-karbolina telah disintesis untuk meneroka lebih lanjut sifat farmakologinya. Pendekatan sintetik terhadap terbitan β-karbolina telah dibina dalam tindak balas dua langkah yang merangkumi tindak balas pemeluwapan Pictet-Spengler dan tindak balas dehidrogenasi oksidatif pengantara iodin. Pictet-Spengler telah dijalankan dengan merawat aldehid yang mengandungi substituen berbeza dengan triptamina dengan kehadiran trifluoroasetik asid. Perantaraan yang disintesis kemudiannya diaromatis untuk memberikan terbitan β-karbolina yang dikehendaki. Semua perantaraan yang disintesis dan terbitan β-karbolina ini dianalisis dan disahkan oleh spektroskopi NMR dan ATR-FTIR. Asas kerja yang ditubuhkan dalam kajian ini akan digunakan dalam penyelidikan dan pembangunan masa depan ubat antimalaria berasaskan β-karbolina spektrum luas baharu. Kompaun 6, 9 dan 12 yang disintesis dalam kerja ini boleh menjanjikan calon anti-malaria pada pengguna masa hadapan ini.

Kata kunci: terbitan β-karbolina, tindak balas pendehidrogenan oksidatif, pemeluwapan picter-spengler, tetrahydro-β-karbolina, trifluoroasetik asid

Introduction

In the year 2020, WHO estimated 241 million malaria cases leading to 627 000 deaths, globally [1] whilst based on the annual Commonwealth Malaria Report 2022, the increment of malaria incidences and mortality rates has been reported and ever since the outbreaks of COVID-19. This pandemic disrupted all malaria services and progressed.

Malaria is a global disease induced by apicomplexan parasites derived from plasmodium species [2] where plasmodium falciparum and plasmodium vivax were found to be the most dominant genus contributed to the accession of mortality and morbidity rates [3]. These parasites are carried by female *Anopheles* mosquitoes and infect the human bloodstream upon bloodmeals.

Over the years, multiple treatments and approaches like vector control, vaccines and chemotherapy have been used to combat this infectious disease [4]. The most popular malaria treatments are the common artemisinin-based combination (Fig.1) therapies (ACTs). These first-line treatments comprise artemisinin derivatives such as artesunate-mefloquine (AS-MQ), artesunate-sulfadoxine-pyrimethamine (AS+SP) and artesunate-pyronaridine [5]. The absence of a vaccine and the complexity of these plasmodium species lifecycle triggers the resistance of these strains towards the ACTs [6] and other available drugs [7]. Thus, studies on such

artemisinin-based molecules will lead to the potential discovery of new and effective anti-malarial drugs.

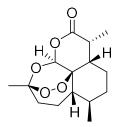


Figure 1. Parent structure of artemisinin

Natural β-carboline alkaloid 1 was found to hold the essential moiety in the exploration of various kinds of due to its excellent biological pharmacological activities which include plasmodial [8], anti-fungal [9], anti-microbial [10], anticancer [11] and more. The scaffolds of β -carboline are extensively distributed in natural products such as plants, insects, marine invertebrates and plant-derived foods [12]. β-Carboline is a part of the indole alkaloid family [13] with a deviating degree of aromaticity [14] of the N-containing six-membered rings. Unsaturated members of β-carboline are known as fully aromatic-βcarbolines (FAβCs). In contrast, the partially saturated and completely saturated rings are known as dihydro-βcarbolines (DHBCs) and tetrahydro-β-carboline (THβCs), respectively (Fig.2).

Figure 2. Aromaticity of β-carbolines: (1) FAβCs, (2) DHβCs, (3) THβCs

Yeung et al. (2010) discovered that β-carboline derivatives, spiroindolones or spirotetrahydro βcarbolines possess good anti-malarial activity with in vitro IC₅₀ of 90nM. The racemic mixture of spiroazepineindole has been identified to exhibit good efficacy against NF54 and chloroquine-resistant (KI) parasite strains [8]. Additionally, azepineindole (Fig.3) and tetrahydro-β-carboline derivative also (Fig.4) showed a moderate potency towards anti-malarial activity. Tetrahydro-β-carboline (THβCs) and fully aromatic-β-carboline (FAβCs) derivatives such as 5chloro-tetrahydro-β-carboline [6] exhibit satisfaction activities with low toxicity towards human cells. As for [15], they had reported two guanidine conjugated β carboline compounds composing excellent activities against malaria strains with IC₅₀ values of 0.6 to 1.0 μ M.

Figure 3. Azepineindole

Figure 4. Tetrahydro- β -carboline derivative

In line with our interest in finding and developing novel anti-plasmodial agents, we are intrigued to synthesize β -carboline derivatives using tryptamine with various

benzaldehyde substituents by applying two facile synthesis reactions. The application of the Pictet-Spengler condensation reaction was the most reported method to synthesize THβCs with the aid of strong Brønsted acids to promote the ring closure of imine. In order to synthesize FAβCs, an oxidative dehydrogenation reaction with iodine was found to be more feasible and convenient [16]. Herein, we report a collection of synthesis results upon applying the Pictet-Spengler reaction catalyzed by trifluoroacetic acid (TFA) and oxidative dehydrogenation reaction.

Materials and Methods

Procedure for the synthesis of compounds 6a-g:

Benzaldehyde (1.0 equiv.) was added to a stirred suspension of tryptamine (1.0 equiv.) and TFA (1.5 equiv.) in DCM. The resulting solution was stirred for 24 hours. The reaction mixture was extracted with EtOAc and dried over anhydrous Na₂SO₄. The combined organic layer was concentrated and purified by silica gel column chromatography with n-hexane, EtOAc (4:1) gradient and 3% triethylamine.

Procedure for the synthesis of compounds 7a-g:

Compound **6(a-g)** (1.0 equiv.) was added to DMSO, iodine, I₂ (0.5 equiv.) and followed by H₂O₂ (1.0 equiv.) and the resulting mixture was stirred at 100°C for 12 hours. The reaction mixture was poured over cold water extracted with EtOAc and dried over anhydrous Na₂SO₄. The organic layer was evaporated and purified by silica gel column chromatography eluting with a gradient of n-hexane and EtOAc (9:1).

Results and Discussion

4-(2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1-

yl)benzonitrile (6a). Yield: 82%, yellow solid. IR ν cm⁻¹: 3344, 2491, 1659,1449,641cm⁻¹. 1H-NMR (400 MHz, METHANOL-D4) δ 7.86 (dt, J = 8.4, 1.8 Hz, 2H), 7.59-7.54 (m, 3H), 7.29-7.27 (m, 1H), 7.17-7.06 (m, 2H), 6.01 (s, 1H), 3.65-3.53 (m, 2H), 3.23-3.12 (m, 1H). 13C-NMR (101 MHz, METHANOL-D4) δ 139.2, 137.3, 132.9, 130.6, 126.1, 125.8, 122.7, 119.5, 118.0, 117.6, 114.0, 111.2, 108.1, 56.1, 40.8, 18.1.

1-(4-bromophenyl)-2,3,4,9-tetrahydro-1H-

pyrido[3,4-b]indole (6b). Yield: 60%, brown oil. IR ν cm⁻¹: 3067,2174, 1670, 1455, 722 cm⁻¹. 1H-NMR (400 MHz, METHANOL-D4) δ 7.67-7.65 (m, 2H), 7.53 (d, J = 7.8 Hz, 1H), 7.32-7.26 (m, 3H), 7.14-7.07 (m, 2H), 5.89 (s, 1H), 3.28-3.15 (m, 4H). 13C-NMR (101 MHz, METHANOL-D4) δ 137.2, 133.4, 132.3, 131.4, 126.6, 125.9, 124.4, 122.5, 119.4, 117.9, 111.1, 107.9, 56.2, 40.7, 18.2.

1-(3-bromophenyl)-2,3,4,9-tetrahydro-1H-

pyrido[3,4-b]indole (6c). Yield: 66%, yellow oil. IR ν cm⁻¹: 3239, 2179, 1675, 1432, 744 cm⁻¹. 1H-NMR (400 MHz, METHANOL-D4) δ 7.61 (dt, J = 7.6, 1.7 Hz, 1H), 7.55-7.50 (m, 2H), 7.39-7.32 (m, 2H), 7.26 (d, J = 8.2 Hz, 1H), 7.14-7.03 (m, 2H), 5.68 (s, 1H), 3.51-3.38 (m, 2H), 3.12-3.05 (m, 2H). 13C-NMR (101 MHz, METHANOL-D4) δ 138.7, 137.1, 132.6, 132.3, 130.7, 128.2, 128.1, 126.1, 122.7, 122.2, 119.2, 117.8, 111.0, 108.3, 56.3, 41.0, 19.1.

1-(3-nitrophenyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (6d). Yield: 92%, yellow oil. IR $v \, \text{cm}^{-1}$: 3258, 2180,1667, 1135, 667 cm⁻¹. 1H-NMR (400 MHz, METHANOL-D4) δ 8.40-8.37 (m, 1H), 8.32 (t, J = 2.1 Hz, 1H), 7.80-7.73 (m, 2H), 7.56 (d, J = 7.8 Hz, 1H), 7.29 (d, J = 8.2 Hz, 1H), 7.19-7.07 (m, 2H), 6.10 (s, 1H), 3.67-3.58 (m, 2H), 3.24-3.18 (m, 2H). 13C-NMR (101 MHz, METHANOL-D4) δ 148.7, 137.3, 136.2, 135.7, 130.5, 126.1, 125.9, 125.0, 124.5, 122.7, 119.6, 118.1, 111.2, 108.3, 56.0, 41.0, 18.2.

1-(4-(trifluoromethyl)phenyl)-2,3,4,9-tetrahydro-1*H*-pyrido[3,4-*b*]indole (6e). Yield: 90%, yellow solid. IR ν cm⁻¹: 3055, 1617, 1415, 1321, 742 cm⁻¹. 1H-NMR $\begin{array}{l} (400 \ \text{MHz}, \ \text{METHANOL-D4}) \ \delta \ 7.63 \ (d, \ J=8.2 \ \text{Hz}, \ 2H), \\ 7.44 \ (d, \ J=8.2 \ \text{Hz}, \ 3H), \ 7.20-7.18 \ (m, \ 1H), \ 7.00 \ (tdd, \ J=14.9, \ 7.0, \ 1.2 \ \text{Hz}, \ 2H), \ 5.23 \ (s, \ 1H), \ 4.07 \ (q, \ J=7.2 \ \text{Hz}, \ 1H), \ 3.21 \ (dt, \ J=12.5, \ 5.4 \ \text{Hz}, \ 1H), \ 3.07-3.01 \ (m, \ 1H), \ 2.92-2.78 \ (m, \ 2H). \ 13C-NMR \ (101 \ \text{MHz}, \ \text{METHANOL-D4}) \ \delta \ 146.1, \ 136.7, \ 132.7, \ 129.3, \ 127.0, \ 125.1, \ 125.1, \ 121.1, \ 118.5, \ 117.5, \ 110.7, \ 109.2, \ 56.8, \ 41.2, \ 21.5. \end{array}$

1-(naphthalen-1-yl)-2,3,4,9-tetrahydro-1H-

pyridol[3,4-*b***]indole (6f).** Yield: 76%, brown oil. IR *ν* cm⁻¹: 3055, 1617, 1415, 1321, 742 cm⁻¹. 1H-NMR (400 MHz, CHLOROFORM-D) δ 8.22-8.29 (1H), 7.86-7.93 (1H), 7.80-7.84 (1H), 7.55-7.61 (2H), 7.47-7.53 (1H), 7.33-7.40 (1H), 7.21-7.30 (1H), 7.10-7.18 (2H), 5.85-5.95 (1H), 3.29-3.39 (1H), 3.13-3.22 (1H), 2.84-3.03 (2H). 13C-NMR (101 MHz, METHANOL-D4) δ 147.2, 146.1, 145.7, 138.8, 136.7, 136.7, 132.7, 129.3, 128.3, 127.0, 125.1, 125.1, 121.1, 118.5, 117.5, 110.7, 109.2, 56.8, 41.2, 21.5.

1-(4-isopropylphenyl)-2,3,4,9-tetrahydro-1H-

pyrido[3,4-b]indole (6g). Yield: 53%, yellow oil. IR *ν* cm⁻¹: 3136, 3057, 1453, 1359, 1710, 744 cm⁻¹. 1H-NMR (400 MHz, CHLOROFORM-D) δ 7.59-7.63 (1H), 7.52-7.55 (1H), 7.18-7.21 (4H), 7.09-7.13 (2H), 5.10-5.15 (1H), 4.08-4.14 (1H), 3.32-3.40 (1H), 3.07-3.15 (1H), 2.86-2.96 (2H), 2.80-2.84 (1H), 1.24-1.25 (3H), 1.22-1.23 (3H). 13C-NMR (101 MHz, CHLOROFORM-D) δ 149.0, 148.7, 141.3, 139.1, 135.9, 134.7, 128.5, 127.5, 126.9, 121.7, 119.4, 118.3, 110.9, 110.2, 57.9, 43.0, 34.0, 24.1, 24.1, 22.6.

4-(9H-pyrido[3,4-b]indol-1-yl)benzonitrile (7a). Yield: 33%, yellow oil. IR ν cm⁻¹: 3240, 2922, 1670, 1136, 746 cm⁻¹. 1H-NMR (400 MHz, METHANOL-D4) δ 8.42 (dd, J = 5.5, 1.8 Hz, 1H), 8.22 (d, J = 7.8 Hz, 1H), 8.15-8.09 (m, 3H), 7.97-7.93 (m, 2H), 7.61-7.54 (m, 2H), 7.29 (dd, J = 8.2, 6.9 Hz, 1H). 13C-NMR (101 MHz, METHANOL-D4) δ 139.2, 137.3, 132.9, 130.6, 126.1, 125.8, 122.7, 119.5, 118.0, 117.6, 114.0, 111.2, 108.1, 56.1, 40.8, 18.1.

1-(4-bromophenyl)-9H-pyrido[3,4-b]indole (7b). Yield: 71%, yellow solid. IR *v* cm⁻¹: 2983, 1736, 1372, 1233, 1043, 607 cm⁻¹. 1H-NMR (400 MHz,

CHLOROFORM-D) δ 8.54-8.57 (1H), 8.13-8.18 (1H), 7.93-7.97 (1H), 7.81-7.87 (2H), 7.68-7.73 (2H), 7.48-7.59 (2H), 7.29-7.35 (1H). 13C-NMR (101 MHz, METHANOL-D4) δ 137.2, 133.4, 132.3, 131.4, 126.6, 125.9, 124.4, 122.5, 119.4, 117.9, 111.1, 107.9, 56.2, 40.7, 18.2

1-(3-bromophenyl)-9H-pyrido[3,4-b]indole (7c). Yield: 41%, yellow solid. IR v cm⁻¹: 3061, 2925, 1231, 742, 673 cm⁻¹. 1H-NMR (400 MHz, ACETONE-D6) δ 8.48 (d, J = 4.8 Hz, 1H), 8.25 (d, J = 7.3 Hz, 1H), 8.20 (t, J = 1.8 Hz, 1H), 8.10-8.05 (m, 2H), 7.64-7.61 (m, 2H), 7.55-7.46 (m, 2H), 7.27 (td, J = 7.5, 0.9 Hz, 1H). 13C-NMR (101 MHz, METHANOL-D4) δ 138.6, 133.1, 132.7, 132.4, 131.6, 126.9, 124.4, 122.5, 117.4, 117.9, 111.3, 104.1, 56.2, 46.7, 19.2

1-(3-nitrophenyl)-9H-pyrido[3,4-b]indole (7d). Yield: 33%, yellow solid. IR v cm⁻¹: 3403, 2922, 1348, 729 cm⁻¹. 1H-NMR (400 MHz, ACETONE-D6) δ 8.57-8.47 (m, 3H), 8.41-8.15 (m, 4H), 7.62 (dd, J = 8.2, 0.9 Hz, 1H), 7.57-7.53 (m, 1H), 7.49 (d, J = 8.7 Hz, 0H), 7.29 (td, J = 7.5, 0.9 Hz, 1H). 13C-NMR (101 MHz, METHANOL-D4) δ 148.7, 137.3, 136.2, 135.7, 130.5, 126.1, 125.9, 125.0, 124.5, 122.7, 119.6, 118.1, 111.2, 108.3, 56.0, 41.0, 18.2

1-(4-(trifluoromethyl)phenyl)-9H-pyrido[3,4-

b]indole (7e). Yield: 48%, yellow oil. IR v cm⁻¹: 3018, 1214, 743, 668 cm⁻¹. 1H-NMR (400 MHz, CHLOROFORM-D) δ 8.58 (d, J = 5.5 Hz, 1H), 8.17 (d, J = 8.2 Hz, 1H), 8.07 (d, J = 7.8 Hz, 2H), 7.98 (d, J = 5.0 Hz, 1H), 7.81 (d, J = 8.2 Hz, 2H), 7.59-7.50 (m, 2H), 7.35-7.31 (m, 1H). 13C-NMR (101 MHz, CHLOROFORM-D) δ 139.8, 136.8, 128.9, 128.6, 128.4, 126.2, 126.2, 125.9, 125.9, 125.6, 125.1, 122.0, 120.8, 120.7, 120.2, 114.6, 112.2, 111.7.

1-(naphthalen-1-yl)-9H-pyrido[3,4-b]indole (7f). Yield: 56%, brown oil. IR ν cm⁻¹: 3345, 2921, 1625, 741 cm⁻¹. 1H-NMR (400 MHz, CHLOROFORM-D) δ 8.65 (d, J = 5.0 Hz, 1H), 8.20 (t, J = 8.2 Hz, 1H), 8.05 (d, J = 5.5 Hz, 1H), 7.98 (dd, J = 12.8, 8.2 Hz, 2H), 7.77 (dd, J = 7.1, 1.1 Hz, 1H), 7.71 (d, J = 8.2 Hz, 1H), 7.63 (dd, J = 8.0, 7.1 Hz, 1H), 7.54-7.49 (m, 2H), 7.42-7.36 (m, 2H), 7.33-7.29 (m, 1H). 13C-NMR (101 MHz,

CHLOROFORM-D) δ 142.4, 140.5, 138.8, 134.7, 134.1, 129.6, 128.9, 128.7, 128.0, 126.9, 126.4, 125.8, 125.5, 122.0, 121.7, 120.4, 114.2, 111.8.

1-(4-isopropylphenyl)-9H-pyrido[3,4-b]indole (**7g).** Yield: 46%, yellow solid. IR ν cm⁻¹: 3382, 2956, 1456, 743 cm⁻¹. 1H-NMR (400 MHz, CHLOROFORM-D) δ 8.54 (d, J = 5.5 Hz, 1H), 8.15 (d, J = 7.8 Hz, 1H), 7.91 (d, J = 5.5 Hz, 1H), 7.87 (dd, J = 6.4, 1.8 Hz, 2H), 7.54 (t, J = 1.1 Hz, 1H), 7.49 (s, 1H), 7.42 (d, J = 8.2 Hz, 2H), 7.32-7.28 (m, 1H), 2.99 (t, J = 6.9 Hz, 1H), 1.30 (d, J = 6.9 Hz, 6H). 13C-NMR (101 MHz, METHANOL-D4) δ 139.1, 137.2, 134.4, 132.3, 132.1, 128.6, 125.9, 124.4, 122.5, 120.8, 119.4, 117.9, 116.1, 111.1, 107.9, 74.3, 56.2, 40.7, 17.2.

Tryptamine was designated as the model substrate due to its readily synthetic availability. The utilization of benzaldehyde derivatives as the electrophile to undergo condensation with tryptamine commanded most of the initial attention. The Pictet-Spengler reaction was applied to induce the formation of the cyclic ring via C-C bond by the usage of tryptamine as the starting material.

Technically, the Pictet-Spengler reaction expressed the formation of iminium salt upon acid-catalyzed condensation of tryptamine with benzaldehyde derivatives followed by *endo* cyclization between the nucleophilic carbon at the C-2 position and resulting in the intermediate product of N-heterocyclic ring with new C-C bond. Looking at the structure of tryptamine, both carbon-2 and carbon-3 can act as a nucleophile. Spiroindolenine intermediate is produced if the reaction proceeds to attack at carbon-3 before undergoing the 1,2-alkyl shift to yield the tetrahydro- β -carboline (TH β Cs) intermediates.

In this study, a collective of benzaldehyde derivatives and tryptamine were used to develop a series of tetrahydro- β -carboline (TH β Cs) and fully aromatic- β -carbolines (FA β Cs). Generally, benzaldehyde (5) bearing electron-withdrawing group (EWG) provided a higher yield of intermediate TH β Cs (6) compared to those with an electron-donating group (EDG) (Table 1). This can be explained by the inductive and resonance

effects of the substituents. Benzaldehyde with electrondonating groups (EDG) in **6f-g** activated the ring and reduced the electrophilicity of the carbonyl carbon, resulting in weaker reactivity and lower product yields. On the contrary, benzaldehydes bearing electronwithdrawing groups (EWG) in **6a-e** contributed substantially greater yields.

Table 1. Scope of reactions of tryptamine with different substituted benzaldehydes

Entry	R_1	Yield (%)
6a	<i>p</i> -cyanophenyl	82
6b	<i>p</i> -bromophenyl	60
6c	<i>m</i> -bromophenyl	66
6d	<i>m</i> -nitrophenyl	92
6e	<i>p</i> -(trifluoromethyl)phenyl	90
6f	o-napthaldehyde	76
6g	<i>p</i> -isopropylphenyl	53

Each of the intermediate products, THβCs (6) proceeded for aromatization by utilizing the oxidative dehydrogenation reaction with iodine. There are various ways to promote the aromatization and construction of these β-carboline structures. However, a few drawbacks were highlighted. Some procedures such as applying heat with palladium, Pd on carbon, C [17] or sulphur, S [18] or boiling the intermediate THβCs with organic solvents over high temperature with oxidizing agents are not favorable because they require raucous condition. Method utilizing reagents such as chloranil [19], DDQ [20], trichloroisocyanuric acid [21], PhI(OAc)₂ [22], N-chlorosuccinimide [23] and IBX [24] could promote aromatization. However, they were reported to suffer from disadvantages of using excess reagents, having

massive waste production and affording low yield of target compounds.

According to Table 2, TH β Cs with both the electron-withdrawing group (EWG) and electron-donating group (EDG) provided moderate product yields since the electronic effect and activation profile of each of the benzaldehyde substituent does not affect the aromatization of the N-heterocyclic ring. The moderate yields of the target products, FA β Cs (12) can be explained by the formation of DH β Cs (9) as the minor products. Alternately, complete aromatization of TH β Cs could also be achieved by increasing the equivalent amount of H₂O₂ [16],[25].

Table 2. Aromatization of tetrahydro-β-carboline (THβCs) intermediates

Entry	\mathbf{R}_1	Yield (%)
7a	p-cyanophenyl	33
7b	<i>p</i> -bromophenyl	71
7c	<i>m</i> -bromophenyl	41
7d	<i>m</i> -nitrophenyl	33
7e	<i>p</i> -(trifluoromethyl)phenyl	48
7f	o-napthaldehyde	56
7g	<i>p</i> -isopropylphenyl	46

The mechanism of oxidative dehydrogenation reaction can be explained by the initial N-iodination of TH β Cs intermediate (6) where the lone pair of the nitrogen attacks the iodine, followed by the formation of imine intermediate, DH β Cs (9) *via* dehydroiodination process.

Next, DH β Cs undergo another N-iodination reaction to yield an ammonium intermediate (10). Subsequent deprotonation and dehydroiodination upon this intermediate promote aromatization and give our final target product of Fa β Cs (Scheme 1).

Scheme 1. Mechanism of iodine-mediated oxidative dehydrogenation

The regeneration of iodine, I₂ is crucial to maintain a continuous cycle for this reaction. Dehydroiodination reaction took at least twice to produce HI where its acidic proton will promote the removal of water, reduction of DMSO to dimethyl sulfate (DSM) and

regeneration of iodine, I_2 (Scheme 2). H_2O_2 promotes an atmospheric environment to control the reduction activity by oxidizing the DMS to DMSO and catalyzed the reaction activity [26].

Scheme 2. Mechanism on regeneration of iodine, I₂

Conclusion

In conclusion, a series of tetrahydro-β-carboline intermediates were synthesized via Pictet-Spengler reaction from tryptamine and benzaldehydes with different substituents. Benzaldehydes bearing the electron-withdrawing groups (EWG) provided higher yields compared to those with electron-donating groups (EDG). Application of iodine-mediated oxidative dehydrogenation method promoted the aromatization of N-heterocyclic ring of THβCs intermediates into fully aromatized-β-carbolines (FAβCs) as the major products and dihydro-β-carbolines (DHβCs) as the minor products. Further study on the biological properties of the synthesized products toward anti-malaria activities are currently in progress.

Acknowledgement

The authors acknowledge the generous support of Organic Synthesis Research Laboratory, Institute of Science (IOS), Universiti Teknologi MARA in providing required chemicals and instruments, as well as the financial support from Research Management Centre UiTM (grant 600-RMC/GPM LPHD 5/3 (113/2021).

References

 Health Organization, W. (2022). WHO Guidelines for malaria-3 June 2022. (No. WHO/UCN/ GMP/2022.01 Rev. 2). World Health Organization.

- 2. Phillips, M. A. and Rathod, P. K. (2010). Plasmodium dihydroorotate dehydrogenase: a promising target for novel anti-malarial chemotherapy. *Infectious Disorders Drug Targets*, 10(3): 226-239.
- Jaromin, A., Gryzło, B., Jamrozik, M., Parapini, S., Basilico, N., Cegła, M., Taramelli, D. and Zagórska, A. (2021). Synthesis, molecular docking and antiplasmodial activities of new tetrahydro-β-carbolines. *International Journal of Molecular Sciences*, 22(24):13569.
- Gorki, V., Singh, R., Walter, N. S., Bagai, U. and Salunke, D. B. (2018). Synthesis and evaluation of antiplasmodial efficacy of β-carboline derivatives against murine malaria. ACS Omega, 3(10): 13200-13210.
- World Health Organization. (2018). Artemisinin resistance and artemisinin-based combination therapy efficacy: status report (No. WHO/CDS/GMP/2018.18) World Health Organization.
- Eagon, S., Hammill, J. T., Bach, J., Everson, N., Sisley, T. A., Walls, M. J., Durham, S., Pillai, D. R., Falade, M. O., Rice, A. L., Kimball, J. J., Lazaro, H., DiBernardo, C. and Kiplin Guy, R. (2020). Antimalarial activity of tetrahydro-β-carbolines targeting the ATP binding pocket of the Plasmodium falciparum heat shock 90 protein. *Bioorganic & Medicinal Chemistry Letters*, 30(21): 127502.

- Morita, H., Tomizawa, Y., Deguchi, J., Ishikawa, T., Arai, H., Zaima, K., Hosoya, T., Hirasawa, Y., Matsumoto, T., Kamata, K., Ekasari, W., Widyawaruyanti, A., Wahyuni, T. S., Zaini, N. C. and Honda, T. (2009). Synthesis and structure-activity relationships of cassiarin A as potential antimalarials with vasorelaxant activity. *Bioorganic & Medicinal Chemistry*, 17(24): 8234-8240.
- Yeung, B. K. S., Zou, B., Rottmann, M., Lakshminarayana, S. B., Ang, S. H., Leong, S. Y., Tan, J., Wong, J., Keller-Maerki, S., Fischli, C., Goh, A., Schmitt, E. K., Krastel, P., Francotte, E., Kuhen, K., Plouffe, D., Henson, K., Wagner, T., Winzeler, E. A., ... Keller, T. H. (2010). Spirotetrahydro β-carbolines (spiroindolones): A new class of potent and orally efficacious compounds for the treatment of malaria. *Journal of Medicinal Chemistry*, 53(14): 5155–5164.
- 9. Singh, R., Jaisingh, A., Maurya, I. K. and Salunke, D. B. (2020). Design, synthesis and bioevaluation of C-1 alkylated tetrahydro-β-carboline derivatives as novel antifungal lead compounds. *Bioorganic & Medicinal Chemistry Letters*, 30(3): 126869.
- Saify, Z. S., Farhad, J., Mushtaq, N., Noor, F., Akhtar, S., Arif, M., Naqvi, B. S. and Shoaib, M. H. (2005). Antibacterial activity of 1-methyl-7methoxy-beta-carboline and its phenacyl and coumarine analogues. *Pakistan Journal of Pharmaceutical Sciences*, 18(3): 39-41.
- Mohamed, H. A., Girgis, N. M. R., Wilcken, R., Bauer, M. R., Tinsley, H. N., Gary, B. D., Piazza, G. A., Boeckler, F. M. and Abadi, A. H. (2010). Synthesis and molecular modeling of novel tetrahydro-β-carboline derivatives with phosphodiesterase 5 inhibitory and anticancer properties. *Journal of Medicinal Chemistry*, 54(2): 495-509.
- Ferraz, C. A. A., de Oliveira Júnior, R. G., Picot, L., da Silva Almeida, J. R. G. and Nunes, X. P. (2019). Pre-clinical investigations of β-carboline alkaloids as antidepressant agents: A systematic review. *Fitoterapia*, 137.
- 13. Yang, M. L., Kuo, P. C., Damu, A. G., Chang, R.

- J., Chiou, W. F. and Wu, T. S. (2006). A versatile route to the synthesis of 1-substituted β -carbolines by a single step Pictet–Spengler cyclization. *Tetrahedron*, 62(47): 10900-10906.
- 14. Zhang, J., Li, L., Dan, W., Li, J., Zhang, Q., Bai, H. and Wang, J. (2015). Synthesis and antimicrobial activities of 3-methyl-β-carboline derivatives. *Natural Product Communications*, 10(6): 9-12.
- Kumar, V., Sachdeva, C., Waidha, K., Sharma, S., Ray, D., Kumar Kaushik, N. and Saha, B. (2021). In vitro and in silico anti-plasmodial evaluation of newly synthesized β-carboline derivatives. ChemistrySelect, 6(21): 5338-5342.
- Ash'ari, N. A. N., Pungot, N. H., Shaameri, Z. and Jani, N. A. (2021). A facile synthesis of nalkylated daibucarboline a derivatives via pictet-spengler condensation of tryptamine. *Malaysian Journal of Analytical Sciences*, 25(5): 706-715.
- Soerens, D., Sandrin, J., Ungemach, F., Mokry, P., Wu, G. S., Yamanaka, E., Hutchins, L., DiPierro, M. and Cook, J. M. (1979). Study of the Pictet-Spengler reaction in aprotic media: synthesis of the β-galactosidase inhibitor, pyridindolol10. *Journal of Organic Chemistry*, 44(4): 535-545.
- Cain, M., Weber, R. W., Guzman, F., Cook, J. M., Barker, S. A., Rice, K. C., Crawley, J. N., Paul, S. M. and Skolnick, P. (1982). β-Carbolines: Synthesis and neurochemical and pharmacological actions on brain benzodiazepine receptors. *Journal of Medicinal Chemistry*, 25(9): 1081-1091.
- Lippke, K. P., Schunack, W. G., Wenning, W. and Muller, W. E. (1983). β-carbolines as benzodiazepine receptor ligands. 1. synthesis and benzodiazepine receptor interaction of esters of β-carboline-3-carboxylic acid. *Journal of Medicinal Chemistry*, 26(4): 499-503.
- Jun'ichi, K., Cheng, J. F., Ohizumi, Y., Ohta, T., Nozoe, S. and Sasaki, T. (1990). Eudistomidins B, C, and D: novel antileukemic alkaloids from the okinawan marine tunicate *Eudistoma* glaucus. Journal of Organic Chemistry, 55(11): 3666-3670.

Shamsujunaidi et al.: STUDIES ON THE SYNTHESIS OF β -CARBOLINE AND ITS DERIVATIVES AS POTENTIAL ANTIMALARIAL DRUG COMPONENTS

- Yin, W., Sarma, P. V. V. S., Ma, J., Han, D., Chen, J. L. and Cook, J. M. (2005). Synthesis of bivalent ligands of β-carboline-3-carboxylates via a palladium-catalyzed homocoupling process. *Tetrahedron Letters*, 46(37): 6363-6368.
- Kamal, A., Tangella, Y., Manasa, K. L., Sathish, M., Srinivasulu, V., Chetna, J. and Alarifi, A. (2015). PhI(OAc)2-mediated one-pot oxidative decarboxylation and aromatization of tetrahydro-β-carbolines: synthesis of norharmane, harmane, eudistomin U and eudistomin I. *Organic & Biomolecular Chemistry*, 13(32): 8652-8662.
- 23. Kamal, A., Sathish, M., Prasanthi, A. V. G., Chetna, J., Tangella, Y., Srinivasulu, V., Shankaraiah, N. and Alarifi, A. (2015). An efficient one-pot decarboxylative aromatization of tetrahydro-β-carbolines by using Nchlorosuccinimide: total synthesis of

- norharmane, harmane and eudistomins. *RSC Advances*, 5(109): 90121-90126.
- 24. Panarese, J. D. and Waters, S. P. (2010). Room-temperature aromatization of tetrahydro-β-carbolines by 2-iodoxybenzoic acid: Utility in a total synthesis of eudistomin U. *Organic Letters*, 12(18): 4086-4089.
- Gaikwad, S., Kamble, D. and Lokhande, P. (2018). Iodine-catalyzed chemoselective dehydrogenation and aromatization of tetrahydro-β-carbolines: A short synthesis of Kumujian-C, Eudistomin-U, Norharmane, Harmane Harmalan and Isoeudistomine-M. *Tetrahedron Letters*, 59(25): 2387-2392.
- 26. Chu, J. W. and Trout, B. L. (2004). On the mechanisms of oxidation of organic sulfides by H₂O₂ in aqueous solutions. *Journal of the American Chemical Society*, 126(3): 900-908.