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Abstract

The interdigitated array of electrodes (IDAE) is a common choice for integration in small electrochemical sensors due to the
amplified currents and fast response times. The design and assessment of IDAE performance in microfluidic cells require the use
of mathematical models, in which the diffusion equation is widely applied. Analytical solutions for this equation are available for
IDAE:s in tall cells; however, they are not currently available for shallow cells, as is the case with microfluidic devices. The issue
of whether it is possible to model the time response of IDAEs in shallow cells using simple exponential functions is addressed in
this work. This is achieved by numerically solving the diffusion equation to obtain the time response of the current and later by
applying non-linear regression to obtain exponential models. The current response is generally complex due to the many Fourier
harmonics involved. However, the findings reveal that when the elapsed time is greater than some characteristic time, the current
response can be approximated by an exponential curve. Furthermore, higher currents can be obtained at the expense of longer
response times when the cell is tall, while shorter response times can be obtained at the expense of lower currents when the cell is
shallow.

Keywords: Shallow electrochemical cell, Interdigitated arrays, Numerical simulation, Current response.
Abstrak
Elektrod susunan interdigital (IDEA) adalah pilihan biasa bagi intergrasi dalam sensor elektrokimia kecil berdasarkan arus

teramplikasi dan respons masa yang pantas. Rekabentuk dan penilaian bagi prestasi IDEA di dalam sel mikrobendalir memerlukan
pemodelan matematik, di mana persamaan resapan digunakan secara meluas. Penyelesaian analitikal bagi persamaan ini sesuai
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bagi IDEA dalam sel tinggi; namun belum ada bagi sel cetek, khusus bagi kes bersama mikrobendalir. Isu terhadap kebarangkalian
ia berhasil terhadap model respons masa di dalam sel cetek menggunakan fungsi eksponen mudah telah dikaji. Ia dicapai melalui

penyelesaian berangka persamaan resapan untuk mendapatkan respons masa bagi arus dan kemudian digunakan bagi regresi tak

linear untuk mendapatkan model eksponen. Respons arus secara umum adalah kompleks disebabkan oleh penglibatan harmonik
Fourier. Namun, hasil kajian mendapati apabila masa berlalu lebih kuat berbanding masa pencirian, responsa arus boleh dianggar

oleh lengkung eksponen. Selanjutnya, arus yang tinggi boleh diperolehi pada masa respons yang lebih lama apabila susunan sel
adalah tinggi, sebaliknya masa respons yang lebih pendek diperolehi pada arus yang rendah di mana kedudukan sel adalah cetek.

Kata kunci: sel elektrokimia cetek, susunan interdigital, simulasi berangka, respons arus

Introduction

Microelectrodes are of interest in electrochemical
detection due to their fast response, high current density,
and reduced sample volumes [1]. Among these, the
interdigitated array of electrodes (IDAE) is a common
choice for integration in microfluidic electrochemical
sensors due to the amplified currents obtained by redox
cycling at multiple electrode bands and the fact that
microfluidic devices and microelectrodes share similar
fabrication techniques [2, 3].

Obtaining good designs or assessing the performance of
IDAE in microfluidic electrochemical cells requires the
use of mathematical models. In particular, the diffusion
equation is a commonly used model and valid when the
effects of convection and migration in the cell are
negligible. An analytical solution of the diffusion
equation is possible for IDAEs in very tall cells [4];
however, this is not currently available for shallow cells,
as in the case of many microfluidic cells. For this reason,
numerical simulations of the diffusion equation are
commonly performed to obtain the concentration profile
and subsequently the current through the cell for the
device in question [5, 6].

The issue of whether it is possible to model the time
response of the current using simple exponential
functions is addressed in this research. This is achieved
by numerically solving the diffusion equation for
electrochemical cells of different heights containing an
IDAE with bands and gaps of equal width. Once this has
been done, non-linear regressions are performed on the
simulated currents to obtain their fitting parameters,
which correspond to the magnitude in steady state and
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the time constant (reciprocal of the exponential decay
constant). The obtained exponential approximations are
valid when the elapsed time is greater than some
characteristic times. This model for the current shows
that there is a trade-off between faster time responses
and higher detection currents, depending on the
dimensions of the electrochemical cell and IDAE.

Materials and Methods

Model of the IDAE

Consider an IDAE located at the bottom of an
electrochemical cell of height A (Figure 1a). The IDAE
consists of two band arrays, 4 (black) and B (gray),
where consecutive bands are separated by the distance
W between their centers, have widths of w4 and ws, and
share a common length L which is in contact with the
electrochemical solution in the channel. The
electrochemical cell may also include a counter
electrode, external to the IDAE, when each array is
potentiostated independently with a bipotentiostat.

The solution comprises a mixture of oxidized (O) and
reduced (R) species, in uniform initial concentrations co;
and cgr;, respectively, which are transported only by
diffusion (with diffusion coefficient D) and react at the
surface of the electrodes by exchanging 7. electrons.

O+n.e=R (D)

For the sake of simplicity, reversible electrode reactions
are assumed, and therefore, the Nernst equation is valid
even when the current flows through the electrodes [7].
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(a) Cross section of the full cell

(b) One unit of symmetry (unit cell)

Figure 1. Shallow electrochemical cell with an IDAE. This cell can be regarded as an assembly of several unit
cells. Here ¢, is the concentration of species o (either O or R), and ¢, and ¢,® are the concentrations

applied at bands 4 and B, respectively

If the length L is sufficiently large, the fringing effects
at the ends of each band can be neglected, and the
electrochemical cell reduced to two dimensions.
Moreover, if the number of bands is large enough, the
fringing effects at both ends of the IDAE can also be
neglected, allowing the IDAE to be represented as an
assembly of two-dimensional unit cells (Figure 1b) due
to its periodic arrangement [4, 8]. In the event of a
counter electrode external to the IDAE, this is assumed
to be located far away, such that the fringing effects at
both ends of the IDAE are further avoided.

Under these conditions, the concentration profile inside
a single unit cell is given by the diffusion equation

10dc, 0d%c,  0d%c,

9 _ 2
D odt dx?2 + 0z2 @)

where c,(x, z, t) is the concentration of species o (either
O or R), which is subject to the initial concentrations
present in the electrochemical cell

Ca(x' Z, 0_) = Ca,i (3)

as well as boundary conditions for insulation (top and
bottom), symmetry (left and right), and applied
concentrations ¢, and ¢,® at the bands, as indicated in
Figure 1b.

It should be noted that the concentrations applied at the
surface of the bands E (which can be either 4 or B) are
uniform. This is possible due to the validity of the Nernst
equation

E
co) _ Fne _ r
(%) = e e - v )

where F is Faraday’s constant, R is the universal gas
constant, T is the temperature of the system, Vg is the
potential applied at bands E, and 7 is the formal
potential of the redox couple. Furthermore, the sum of
concentrations at any point in the unit cell is constant
and uniform [4, 8]

CO(x: z, t) + CR(xI z, t) = CO,i + CR,i

Both facts make the concentrations of species O and R
at each band E (either 4 or B) uniform and dependent
only on the potential applied at that same band

E _ €0,i*tCR,i

Co = —Fne o (5)
1+¢ RT VEVO!)

E _ CRitCo,i

CR = (6)

T IFre, . on
1+¢ RT-VE-VO))

Once the concentration profile is known, the current at
an individual band E (either 4 or B) can be obtained by
integrating the current density on that band

ip = [, FFn,D % (x,0,t)Ldx (7)

where minus or plus signs should be used when the
species ¢ corresponds to O or R, respectively.
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Implementation of the simulations

All equations were normalized using the relations y, =
[co — eV [cs® — cot], E=xIW, {=z/W and © = n°Dt/ W2,
to make the results available for devices fabricated at
different scales. In particular, the diffusion equation, its
initial concentration, and the concentrations at the bands
were transformed to

2e _ ¥s | 0o
at  9&2 + FIE ®)
A
¥o(6,4.00) =voi = 5% ©)
Y,(&,0,7) =0foré €A (10)
y,(&,0,7) =1foré €B (11)

while the boundary conditions for insulation and
symmetry remained equal to zero, and the normalized
current at a single band resulted in

iE/L ] — fE ?1%(6’ O,T)df (12)

n2FneD[cB-c4 n2 9

where minus or plus signs should be used when the
species o corresponds to O or R, respectively.

Two cases were considered for initial concentrations: (i)
The case y,; = 0, where the initial concentration of one
species equals the concentration applied at one of the
arrays c,; = ¢,”. This is a common setup for IDAEs,
especially when ¢,; = 0 and the concentration ¢, is
forced to zero by potentiostating at a fixed extreme
potential [4], while the concentration at the other array
¢.? is potentiostated at will. This configuration requires
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a bipotentiostat with a counter electrode external to the
IDAE.

(i1) The case y5,; = 0.5, where the average concentration
applied to the arrays is equal to the initial concentration
(¢! + ¢,®)/2 = c5,. This condition, together with bands
of equal width (wy4 = wg), produces symmetrical
concentration profiles, leading to equal currents at the
arrays [8, 9]. This last situation corresponds to the case
where a conventional potentiostat drives one of the
arrays while the other array performs as a counter
electrode, thus sparing the need for an external counter
electrode.

In particular, IDAEs with bands and gaps of equal width
(wa = wp = W/2) were considered for all simulations,
since this is a common design choice, and also because
it facilitates the display of results. This choice also
simplifies the implementation of the meshes, chosen in
this study to be of an exponential kind as shown in
Figure 2. Each mesh used in the simulations consists of
ny X n; elements, where the size of the smallest element
is dx = 9. = do, and the remaining elements increase in
size according to the growth factor (stretching
parameter) 7 = 7. = r [10]. The resolution of the meshes
was tested for diffusion in steady state with a unit cell
with an aspect ratio H/W =1 (Figure 2) and successively
refined until the absolute error of the normalized current
between two consecutive iterations was less than
0.0005, corresponding approximately to three decimal
places of accuracy. The values obtained for the smallest
element and the growth factor were do = 0.00025 and r
~ 1.2496, respectively, and used for all simulations in
this study.
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Figure 2. Exponential mesh (left) and normalized concentration in steady state (right) for the case H/W = 1. Number
of elements is n, x n; = 100 x 31, and size of the smallest element J. = J. =do = 0.00025 with a growth

factor of ry = r. = r = 1.2496.

The simulations considered different aspect ratios H/W
= {1, 1/2, 1/3, ..., 1/10}, and were solved numerically
by writing the normalized diffusion equation, its
boundary conditions, and the corresponding meshes in
Python with the aid of the FiPy package [11]. These
simulations can be downloaded from [12].

Exponential fits for the current response
The concentration profile in a shallow cell containing an
IDAE evolves over time in a complex manner, with the
addition of several Fourier harmonics to produce the
right result. Each of these harmonics contains an
exponential factor

2

exp (— [nz + kz‘g—zz]%Dt) for Z : (1)?"" (13)

ydy e

which dampens the influence of the harmonic over time.
Some of these harmonics will decay faster than others.
In particular, the harmonic (n, k) = (1, 0) is the slowest
to decay and the only one remaining and contributing to
the concentration for times z2Dt/W? > 1 and aspect ratios
H/W < 1/2. The exponential factors of all other
harmonics (z > 1 and k > 1) are less than exp(-[1% + 12
x 22]) = exp(-5) = 0.0067 = 0.67% and therefore
disappear quickly. This leads the concentration profile
to behave like an exponential under the conditions stated
previously [8].

The previous argument also suggests that the current
may behave like an exponential after a certain time 7'

ig=ir+ Kexp(—t/t) fort=T (14)

where i is the current of a single band in steady state, K
is a real number, and 7; is the time constant of the current
response. However, this time 7 may not be equal to its
counterpart obtained for the concentration.

After obtaining the time response of the current by
numerically solving the diffusion equation, we searched
for the time 7 and the parameters i, K and z; of the
exponential curve. This was done in four steps (see
Figure 3): (i) Search for the time #; where the current ig
and its steady state i differ by 0.67%. This gives a rough
approximation of the time when an exponential decays
to 0.67% (which corresponds to 57;). (ii) Find the time
ti/5. This gives a rough approximation of the time
constant of the current 7, However, this time may be too
soon for the current to behave exponentially. (iii) Find
the time 7 = 2t,/5. This time gives a rough
approximation of 27;, where it is more likely for the
current to start behaving exponentially. We could have
also chosen 3t,/5; however, 2t,/5 gave good results for
exponential fit. Times near 44,/5 or beyond are not
advisable, since they would be too close to the time
where the current reaches steady state, and thus the
current would no longer be exponential but nearly
constant. (iv) Once T = 2f/5 is known, fit an
exponential curve to the simulation data of the current
between times 7" and # to obtain the fitting parameters
ir, K, and 7;. Since the model for the current is not linear
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in its parameters, a non-linear fit needs to be performed.
This procedure was also implemented in Python, whose

script can be downloaded from [12].

current

=~
~

Figure 3. Process to obtain the exponential fit (red) for the time response of the current (blue). (i) Find ¢, which
corresponds to the time where the current ir and ir differ by 0.67%. (ii) Find #./5, which gives a rough
approximation of z;. (iii) Find T = 2¢/5, which gives a rough approximation of the time 27;. (iv) Fit an
exponential curve to the time response of the current ig, by taking the simulation data between T' = 2¢,/5

and

Results and Discussion

The simulations of the currents and their respective
exponential fits were performed for the cases involving
external and internal counter electrodes, using a
bipotentiostat ~and  conventional  potentiostat,
respectively; the most common configurations to drive
an IDAE. For both cases, electrochemical cells of
different heights were used while fixing the width of the
unit cell. The results are discussed below.

Case of external counter electrode (co,i = ¢+)

For this case, we considered that the initial concentration
of one species equals its concentration applied at one
array c,; = c¢,, achieved by potentiostating array 4 and
forcing ¢, to be equal to c,;, while array B is
potentiostated at will. In practice, this requires the use of
a bipotentiostat with a counter electrode external to the
IDAE.

Under these conditions, several simulations were
performed wusing different values of W/H. The
simulations produced currents of different magnitude at
bands 4 and B, as shown in Figure 4. This provides clear
evidence of the need for a counter electrode, external to
the IDAE, to be responsible for collecting the net current

1254

inet = ig + ip # 0 produced in every unit cell, as indicated
in Figure 5. However, as the simulations reach steady
state, the net current tends to zero, meaning that the
currents at both bands must be balanced in steady state
is =— ip. This is only possible under the assumption of a
large number of bands and an external counter electrode
far away from the IDAE.

As expected, all currents obtained by simulation
(circles) can be approximated by exponentials (lines), as
presented in Figures 4 and 5. In fact, in the case of
currents at B in Figure 4, the exponential approximations
show some deviation from their simulated counterparts
for ¢ > 7;, while improving considerably for ¢ > T (where
T is roughly 27), and clearly showing a steady-state
response for > 57;. The parameters iy, K, and z; obtained
from all exponential fits are given in Table 1, such that
the exponential approximations can be
reconstructed as required.

easily

In Figure 6, the magnitudes of currents at 4 and B are
equal in steady state and decrease as the cell becomes
shallower. This is because there are two main gradients
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of concentration when the electrochemical cell is tall: (i)
between the IDAE and the bulk concentration near the
roof of the cell; and (ii) in between consecutive bands
(Figure 2). However, when the cell becomes shallower,
the gradient between the IDAE and the roof of the cell
tends to disappear, leaving only the gradient of
concentration between consecutive bands. The time
constants of currents at 4 and B, as well as the net
current, are all equal, decreasing as the cell becomes
shallower. This is because the electrochemical species
can escape to the region of bulk concentration near the
roof of the cell when the cell is tall (Figure 2) and later
diffuse to the external counter electrode. However, when

the cell becomes shallower, the electrochemical species
are forced to diffuse only between consecutive bands
due to the low roof of the cell. Therefore, in the case of
a shallow cell, the species diffuse through a shorter
distance compared to the case of a taller cell.

The previous results show that there is a compromise
between sensitivity (current) and response time (time
constant) of the sensor. The taller the electrochemical
cell, the more sensitive it becomes, but the longer the
response time. Conversely, the shallower the
electrochemical cell, the less sensitive it becomes, but
the shorter the response time.

(ia/L)/(m2Fn.D[cE — cA])

0.00 +=

-0.02
-0.04
-0.06

-0.08

n*Dt/W?

(is/L)/(w*Fn.D[cE — c*])

72 Dt/W?

Figure 4. Normalized versions of the current through single bands i4 (left) and iz (right) for selected aspect ratios W/H
= {4, 6, 8, 10} (lines in order from blue to red) and initial concentration c,; = ¢,*. Circles correspond to the
simulation points, while solid lines correspond to the exponential fit. Crosses on a line correspond to the

times 7;, T and 57; (in order from left to right)

(ined L)(x* Fn D[cE — c1)

0.10 1
0.08
0.06 -
0.04
0.02 1
0.00

-0.02 T

7*Dt/W?

Figure 5. Normalized version of the net current inet = iy + ip for selected aspect ratios W/H = {4, 6, 8, 10} (lines in

order from blue to red) and initial concentration ¢,,; = ¢,”. Circles correspond to the simulation points, while

solid lines correspond to the exponential fit
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lif L(z*>Fn.D[cE — cA))
0.12
0.10 ~ i
0.08
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0.02 — T T T
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W/H

Dt/ W?
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Figure 6. Normalized versions of the absolute value of the steady-state current |i] (left) and the time constant of the
current 7; (right) for different aspect ratios W/H and initial concentration c,; = ¢,.. The case W/H = 1 has
been omitted from the normalized time constant plot to maintain good visualization of the lower values

Table 1. Parameters resulting from the exponential fit of normalized currents for different aspect ratios W/H and initial

concentration ¢,; = ¢,/ = 0. The parameters po, p1, and p> correspond to the normalized versions of i, K and
7, that is, (i/L)/(m*Fn.D[cs"* - ¢,B]), (K/L)/(#*Fn.D[c;! — ¢,7]), and n*Dr; /W?. The coefficient of determination

was R?>0.9999 for all cases

A B net
WIH po p1 p2 po p1 p2 po pi p2
1 -0.1005 0.0878 5.1005 0.1005 0.0878 51002 0  0.1757 5.1003
2 -0.0933 0.1447 1.5761 0.0933 0.1446 15611 0 0.2943 1.5685
3 -0.0806 0.1643 0.8779 0.0806 0.1820 0.8549 0  0.3459 0.8662
4 -0.0688 0.1581 0.6287 0.0688 0.1759 06118 0  0.3336 0.6201
5 -0.0593 0.1406 0.5156 0.0593 0.1506 0.5065 0  0.2910 0.5110
6 -0.0519 0.1215 0.4554 0.0519 0.1266 0.4505 0 0.2480 0.4529
7 -0.0461 0.1054 0.4191 0.0461 0.1079 04165 0  0.2133 0.4178
8 -0.0414 0.0925 0.3945 0.0414 0.0941 03927 0  0.1865 0.3936
9 -0.0376 0.0823 0.3769 0.0376 0.0834 03756 0  0.1657 0.3763
10 -0.0344 0.0742 0.3638 0.0344 0.0749 03630 0  0.1491 0.3634

Case of internal counter electrode (cs,i = [cs! + ¢55]/2)
In this case, the average concentration applied at the
bands equals the initial concentration (¢, + ¢,°)/2 = ¢,
corresponding to the case where a conventional
potentiostat drives one of the arrays while the other array
performs as a counter electrode. Here, the potential (and
therefore the concentration) of the counter electrode is
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regulated automatically by the potentiostat following the
previous average condition, which can be rewritten as
[CO'B - Ca,i] == [CO'A - Ca,i]-

Under these conditions, several simulations were
performed using different values of W/H. Unlike the

case of the external counter electrode, these simulations



Malaysian Journal of Analytical Sciences, Vol 26 No 6 (2022): 1249 - 1259

produced currents of the same magnitude at bands 4 and
B, but with the opposite sign iy = — iz, and not only
during steady state but for all simulation times (Figure
7). This means that all current generated by bands B is
always collected by bands A4, thus confirming the use of
an internal counter electrode.

As before, all currents obtained by simulation (circles)
can be approximated by exponentials (lines), as
presented in Figure 7. For example, in the case of
currents at bands B, the exponential approximations
show some deviation for times ¢ > t;, but a considerable
improvement for ¢t > T (roughly 27). All current
responses reach steady state at times ¢ > 5t. The
parameters is; K, and z; obtained from all exponential fits
are given in Table 2, such that the exponential
approximations can be easily reconstructed as required.

In Figure 8, the magnitudes of the currents at bands 4
and B decrease as the cell becomes shallower, in the
same way as in the case of the external counter electrode

(at least for their normalized versions). In similarity to
the case of the external counter electrode, this is due to
the vertical gradient of concentration between the IDAE
and the roof of the cell (Figure 2), which disappears as
the cell becomes shallower. The time constants of the
currents at bands 4 and B are equal, decreasing as the
cell becomes shallower. However, the values obtained
here are much shorter than those obtained for the
external counter electrode (compared with Figure 6).
This can be explained by the absence of an external
counter electrode, and therefore, the species cannot
escape far from the IDAE but diffuse only between
consecutive bands, even in the case of a tall
electrochemical cell.

Finally, as in the case of the external counter electrode,
a compromise exists between the sensitivity (current)
and response time (time constant) of the electrochemical
sensor. The shallower the electrochemical cell, the less
sensitive it becomes, but the shorter the response time.
And vice versa in the case of tall cells.

(ia/L)/(w*FneD[cB — c4))

-0.02
-0.04 ~
-0.06 -
-0.08
-0.10
-0.12 1
-0.14 1
-0.16

0.0 02 04 06 0.8 1.0 1.2 1.4
n*Dt/W?

(is/L)((x*FnD[c? — c2])

0.14 4| |X
0.12
0.10
0.08

0.06 S
0.04

0.02

0.0 02 04 06 08 1.0 1.2 14
z*Dt/W?

Figure 7. Normalized versions of the current through single bands i4 (left) and iz (right) for selected aspect ratios W/H
= {4, 6, 8, 10} (lines in order from blue to red) and initial concentration c,; = (¢! + ¢,©)/2. Circles
correspond to the simulation points, while solid lines correspond to the exponential fit. Crosses on a line

correspond to the times 7;, 7, and 57; (in order from left to right)
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lif LV/(x*> Fn.D[cZ — c21) Dt/ W?

0.12 0.6
0.10 a 0.5 - A
0.08 - 0.4 1
0.06 - 0.3 -

' 0.2
0.04 014
0.02 . 0.0 . [ . . .

0 2 6 10 0 2 4 6 8 10
W/H W/H

Figure 8. Normalized versions of the absolute value of the steady-state current |if (left) and the time constant of the
current 7; (right) for different aspect ratios W/H and initial concentration c,; = (¢! + c,?)/2

Table 2. Parameters resulting from the exponential fit of normalized currents for different aspect ratios W/H and initial

concentration ¢,; = (¢4 + ¢,°)/2. The parameters po, p1, and p, correspond to the normalized versions of i,
K, and 1, that is, (i/L)/(x*Fn.D[c," — ¢,°)), (KIL)/(@w*Fn.D[c! — ¢,®]), and 7Dt/ W?. The coefficient of
determination was R? > 0.9985 for all cases

A B
WIH po p1 p2 po p1 p2
1 -0.1006 -0.0310 0.5825 0.1006 0.0310 0.5825
2 -0.0933 -0.0601 0.5277 0.0933 0.0601 0.5277
3 -0.0806 -0.1212 0.3392 0.0806 0.1212 0.3392
4 -0.0688 -0.1800 0.2312 0.0688 0.1800 0.2312
5 -0.0593 -0.2253 0.1694 0.0593 0.2253 0.1694
6 -0.0519 -0.2479 0.1328 0.0519 0.2479 0.1328
7 -0.0461 -0.2426 0.1111 0.0461 0.2426 0.1111
8 -0.0414 -0.2132 0.0984 0.0414 0.2132 0.0984
9 -0.0376 -0.1739 0.0913 0.0376 0.1739 0.0913
10 -0.0344 -0.1363 0.0877 0.0344 0.1363 0.0877
Conclusion state currents and time constants were tabulated for

In this work, the main issue of whether the current
response of an IDAE in a shallow electrochemical cell
can be modeled by an exponential function has been
addressed. The results show that a simple exponential
function can approximate the time response of the
current for elapsed times greater than approximately
two-time constants, reaching steady state after
approximately five-time constants. Normalized steady-
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different aspect ratios (separation between bands with
respect to height of the cell), such that they can be used
for cells of different scales or dimensions.

When driving the IDAE with a bipotentiostat (both
arrays perform as working electrodes), the net current at
the arrays is non-zero during the transient state
(approaching zero in steady state) and must be collected
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by an external counter electrode. On the other hand,
when driving the IDAE with a conventional potentiostat
(one array performs as a working electrode, while the
other performs as an internal counter electrode), the
currents at the arrays are always of equal magnitude and
opposite signs (during the transient and steady states).

In the cases of external and internal counter electrodes,
the steady-state magnitude and time constant of the
current decrease as the electrochemical cell becomes
shallower. This shows a trade-off or compromise
between sensitivity (in terms of current magnitude) and
response time (in terms of time constant) for IDAEs in
shallow cells. Higher currents can be obtained at the
expense of longer response times when the cell is tall
(compared to the separation between consecutive bands
of the IDAE) and shorter response times at the expense
of lower currents when the cell is shallow.
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