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Abstract 

The interdigitated array of electrodes (IDAE) is a common choice for integration in small electrochemical sensors due to the 

amplified currents and fast response times. The design and assessment of IDAE performance in microfluidic cells require the use 

of mathematical models, in which the diffusion equation is widely applied. Analytical solutions for this equation are available for 

IDAEs in tall cells; however, they are not currently available for shallow cells, as is the case with microfluidic devices. The issue 

of whether it is possible to model the time response of IDAEs in shallow cells using simple exponential functions is addressed in 

this work. This is achieved by numerically solving the diffusion equation to obtain the time response of the current and later by 

applying non-linear regression to obtain exponential models. The current response is generally complex due to the many Fourier 

harmonics involved. However, the findings reveal that when the elapsed time is greater than some characteristic time, the current 

response can be approximated by an exponential curve. Furthermore, higher currents can be obtained at the expense of longer 

response times when the cell is tall, while shorter response times can be obtained at the expense of lower currents when the cell is 

shallow. 
 

Keywords: Shallow electrochemical cell, Interdigitated arrays, Numerical simulation, Current response. 

 

Abstrak 

Elektrod susunan interdigital (IDEA) adalah pilihan biasa bagi intergrasi dalam sensor elektrokimia kecil berdasarkan arus 

teramplikasi dan respons masa yang pantas. Rekabentuk dan penilaian bagi prestasi IDEA di dalam sel mikrobendalir memerlukan 

pemodelan matematik, di mana persamaan resapan digunakan secara meluas. Penyelesaian analitikal bagi persamaan ini sesuai 
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bagi IDEA dalam sel tinggi; namun belum ada bagi sel cetek, khusus bagi kes bersama mikrobendalir. Isu terhadap kebarangkalian 

ia berhasil terhadap model respons masa di dalam sel cetek menggunakan fungsi eksponen mudah telah dikaji. Ia dicapai melalui 

penyelesaian berangka persamaan resapan untuk mendapatkan respons masa bagi arus dan kemudian digunakan bagi regresi tak 

linear untuk mendapatkan model eksponen. Respons arus secara umum adalah kompleks disebabkan oleh penglibatan harmonik 

Fourier. Namun, hasil kajian mendapati apabila masa berlalu lebih kuat berbanding masa pencirian, responsa arus boleh dianggar 

oleh lengkung eksponen. Selanjutnya, arus yang tinggi boleh diperolehi pada masa respons yang lebih lama apabila susunan sel 

adalah tinggi, sebaliknya masa respons yang lebih pendek diperolehi pada arus yang rendah di mana kedudukan sel adalah cetek.  

 

Kata kunci: sel elektrokimia cetek, susunan interdigital, simulasi berangka, respons arus 

 

Introduction 

Microelectrodes are of interest in electrochemical 

detection due to their fast response, high current density, 

and reduced sample volumes [1]. Among these, the 

interdigitated array of electrodes (IDAE) is a common 

choice for integration in microfluidic electrochemical 

sensors due to the amplified currents obtained by redox 

cycling at multiple electrode bands and the fact that 

microfluidic devices and microelectrodes share similar 

fabrication techniques [2, 3]. 

 

Obtaining good designs or assessing the performance of 

IDAE in microfluidic electrochemical cells requires the 

use of mathematical models. In particular, the diffusion 

equation is a commonly used model and valid when the 

effects of convection and migration in the cell are 

negligible. An analytical solution of the diffusion 

equation is possible for IDAEs in very tall cells [4]; 

however, this is not currently available for shallow cells, 

as in the case of many microfluidic cells. For this reason, 

numerical simulations of the diffusion equation are 

commonly performed to obtain the concentration profile 

and subsequently the current through the cell for the 

device in question [5, 6]. 

 

The issue of whether it is possible to model the time 

response of the current using simple exponential 

functions is addressed in this research. This is achieved 

by numerically solving the diffusion equation for 

electrochemical cells of different heights containing an 

IDAE with bands and gaps of equal width. Once this has 

been done, non-linear regressions are performed on the 

simulated currents to obtain their fitting parameters, 

which correspond to the magnitude in steady state and 

the time constant (reciprocal of the exponential decay 

constant). The obtained exponential approximations are 

valid when the elapsed time is greater than some 

characteristic times. This model for the current shows 

that there is a trade-off between faster time responses 

and higher detection currents, depending on the 

dimensions of the electrochemical cell and IDAE. 

 

Materials and Methods 

Model of the IDAE 

Consider an IDAE located at the bottom of an 

electrochemical cell of height H (Figure 1a). The IDAE 

consists of two band arrays, A (black) and B (gray), 

where consecutive bands are separated by the distance 

W between their centers, have widths of wA and wB, and 

share a common length L which is in contact with the 

electrochemical solution in the channel. The 

electrochemical cell may also include a counter 

electrode, external to the IDAE, when each array is 

potentiostated independently with a bipotentiostat. 

 

The solution comprises a mixture of oxidized (O) and 

reduced (R) species, in uniform initial concentrations cO,i 

and cR,i, respectively, which are transported only by 

diffusion (with diffusion coefficient D) and react at the 

surface of the electrodes by exchanging ne electrons. 

 

O + ne e– ⇌ R (1) 

 

For the sake of simplicity, reversible electrode reactions 

are assumed, and therefore, the Nernst equation is valid 

even when the current flows through the electrodes [7]. 



Malaysian Journal of Analytical Sciences, Vol 26 No 6 (2022): 1249 - 1259 

 

1251 
 

 

 

 
(a) Cross section of the full cell 

 
(b) One unit of symmetry (unit cell) 

Figure 1. Shallow electrochemical cell with an IDAE. This cell can be regarded as an assembly of several unit 

cells. Here cσ is the concentration of species σ (either O or R), and cσ
A and cσ

B are the concentrations 

applied at bands A and B, respectively 

 

If the length L is sufficiently large, the fringing effects 

at the ends of each band can be neglected, and the 

electrochemical cell reduced to two dimensions. 

Moreover, if the number of bands is large enough, the 

fringing effects at both ends of the IDAE can also be 

neglected, allowing the IDAE to be represented as an 

assembly of two-dimensional unit cells (Figure 1b) due 

to its periodic arrangement [4, 8]. In the event of a 

counter electrode external to the IDAE, this is assumed 

to be located far away, such that the fringing effects at 

both ends of the IDAE are further avoided. 

 

Under these conditions, the concentration profile inside 

a single unit cell is given by the diffusion equation 

 

1

𝐷

𝜕𝑐𝜎

𝜕𝑡
=

𝜕2𝑐𝜎

𝜕𝑥2
+

𝜕2𝑐𝜎

𝜕𝑧2
                                                  (2) 

 

where cσ(x, z, t) is the concentration of species σ (either 

O or R), which is subject to the initial concentrations 

present in the electrochemical cell 

 

𝑐𝜎(𝑥, 𝑧, 0–) = 𝑐𝜎,𝑖                                                         (3) 

 

as well as boundary conditions for insulation (top and 

bottom), symmetry (left and right), and applied 

concentrations cσ
A and cσ

B at the bands, as indicated in 

Figure 1b. 

 

It should be noted that the concentrations applied at the 

surface of the bands E (which can be either A or B) are 

uniform. This is possible due to the validity of the Nernst 

equation 

 

𝑙𝑛 (
𝑐𝑂

𝐸

𝑐𝑅
𝐸) =

𝐹𝑛𝑒

𝑅𝑇
(𝑉𝐸 − 𝑉𝑜′)                                           (4) 

 

where F is Faraday’s constant, R is the universal gas 

constant, T is the temperature of the system, VE is the 

potential applied at bands E, and Vo’ is the formal 

potential of the redox couple. Furthermore, the sum of 

concentrations at any point in the unit cell is constant 

and uniform [4, 8] 

 

𝑐𝑂(𝑥, 𝑧, 𝑡) + 𝑐𝑅(𝑥, 𝑧, 𝑡) = 𝑐𝑂,𝑖 + 𝑐𝑅,𝑖  

 

Both facts make the concentrations of species O and R 

at each band E (either A or B) uniform and dependent 

only on the potential applied at that same band 

 

𝑐𝑂
𝐸 =

𝑐𝑂,𝑖+𝑐𝑅,𝑖

1+𝑒
−𝐹𝑛𝑒

𝑅𝑇
(𝑉𝐸−𝑉𝑜′)

                                                   (5) 

𝑐𝑅
𝐸 =

𝑐𝑅,𝑖+𝑐𝑂,𝑖

1+𝑒
+𝐹𝑛𝑒

𝑅𝑇
(𝑉𝐸−𝑉𝑜′)

                                                   (6) 

 

Once the concentration profile is known, the current at 

an individual band E (either A or B) can be obtained by 

integrating the current density on that band 

 

𝑖𝐸 = ∫ ∓𝐹
𝐸

𝑛𝑒𝐷
𝜕𝑐𝜎

𝜕𝑧
(𝑥, 0, 𝑡)𝐿𝑑𝑥                                   (7) 

 

where minus or plus signs should be used when the 

species σ corresponds to O or R, respectively. 
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Implementation of the simulations 

All equations were normalized using the relations γσ = 

[cσ – cσ
A]/[cσ

B – cσ
A], ξ = x/W, ζ = z/W and τ = π2Dt/W2, 

to make the results available for devices fabricated at 

different scales. In particular, the diffusion equation, its 

initial concentration, and the concentrations at the bands 

were transformed to 

 

𝜋2 𝜕𝛾𝜎

𝜕𝜏
=

𝜕2𝛾𝜎

𝜕𝜉2 +
𝜕2𝛾𝜎

𝜕𝜁2                                                  (8) 

𝛾𝜎(𝜉, 𝜁, 0–) = 𝛾𝜎,𝑖 =
𝑐𝜎,𝑖−𝑐𝜎

𝐴

𝑐𝜎
𝐵−𝑐𝜎

𝐴                                       (9) 

𝛾𝜎(𝜉, 0, 𝜏) = 0 for 𝜉 ∈ 𝐴                                           (10) 

𝛾𝜎(𝜉, 0, 𝜏) = 1 for 𝜉 ∈ 𝐵                                           (11) 

 

while the boundary conditions for insulation and 

symmetry remained equal to zero, and the normalized 

current at a single band resulted in 

 

𝑖𝐸 𝐿⁄

𝜋2𝐹𝑛𝑒𝐷[𝑐𝜎
𝐵−𝑐𝜎

𝐴]
= ∫

∓1

𝜋2

𝜕𝛾𝜎

𝜕𝜁
(𝜉, 0, 𝜏)𝑑𝜉

𝐸
                         (12) 

 

where minus or plus signs should be used when the 

species σ corresponds to O or R, respectively. 

 

Two cases were considered for initial concentrations: (i) 

The case γσ,i = 0, where the initial concentration of one 

species equals the concentration applied at one of the 

arrays cσ,i = cσ
A. This is a common setup for IDAEs, 

especially when cσ,i = 0 and the concentration cσ
A is 

forced to zero by potentiostating at a fixed extreme 

potential [4], while the concentration at the other array 

cσ
B is potentiostated at will. This configuration requires 

a bipotentiostat with a counter electrode external to the 

IDAE. 

 

(ii) The case γσ,i = 0.5, where the average concentration 

applied to the arrays is equal to the initial concentration 

(cσ
A + cσ

B)/2 = cσ,i. This condition, together with bands 

of equal width (wA = wB), produces symmetrical 

concentration profiles, leading to equal currents at the 

arrays [8, 9]. This last situation corresponds to the case 

where a conventional potentiostat drives one of the 

arrays while the other array performs as a counter 

electrode, thus sparing the need for an external counter 

electrode. 

 

In particular, IDAEs with bands and gaps of equal width 

(wA = wB = W/2) were considered for all simulations, 

since this is a common design choice, and also because 

it facilitates the display of results. This choice also 

simplifies the implementation of the meshes, chosen in 

this study to be of an exponential kind as shown in 

Figure 2. Each mesh used in the simulations consists of 

nx × nz elements, where the size of the smallest element 

is δx = δz = δ0, and the remaining elements increase in 

size according to the growth factor (stretching 

parameter) rx = rz = r [10]. The resolution of the meshes 

was tested for diffusion in steady state with a unit cell 

with an aspect ratio H/W = 1 (Figure 2) and successively 

refined until the absolute error of the normalized current 

between two consecutive iterations was less than 

0.0005, corresponding approximately to three decimal 

places of accuracy. The values obtained for the smallest 

element and the growth factor were δ0 = 0.00025 and r 

≈ 1.2496, respectively, and used for all simulations in 

this study. 

 

 



Malaysian Journal of Analytical Sciences, Vol 26 No 6 (2022): 1249 - 1259 

 

1253 
 

  
 

Figure 2. Exponential mesh (left) and normalized concentration in steady state (right) for the case H/W = 1. Number 

of elements is nx × nz = 100 × 31, and size of the smallest element δx = δz =δ0 = 0.00025 with a growth 

factor of rx = rz = r ≈ 1.2496. 

 

The simulations considered different aspect ratios H/W 

= {1, 1/2, 1/3, …, 1/10}, and were solved numerically 

by writing the normalized diffusion equation, its 

boundary conditions, and the corresponding meshes in 

Python with the aid of the FiPy package [11]. These 

simulations can be downloaded from [12]. 

 

Exponential fits for the current response 

The concentration profile in a shallow cell containing an 

IDAE evolves over time in a complex manner, with the 

addition of several Fourier harmonics to produce the 

right result. Each of these harmonics contains an 

exponential factor 

𝑒𝑥𝑝 (− [𝑛2 + 𝑘2 𝑊2

𝐻2 ]
𝜋2

𝑊2 𝐷𝑡)  for  
𝑛 = 1,2, . . .
𝑘 = 0,1, . . .

        (13) 
 

    

 

which dampens the influence of the harmonic over time. 

Some of these harmonics will decay faster than others. 

In particular, the harmonic (n, k) = (1, 0) is the slowest 

to decay and the only one remaining and contributing to 

the concentration for times π2Dt/W2 > 1 and aspect ratios 

H/W < 1/2. The exponential factors of all other 

harmonics (n ≥ 1 and k ≥ 1) are less than exp(–[12 + 12 

× 22]) = exp(–5) ≈ 0.0067 = 0.67% and therefore 

disappear quickly. This leads the concentration profile 

to behave like an exponential under the conditions stated 

previously [8]. 

 

The previous argument also suggests that the current 

may behave like an exponential after a certain time T 

iE = if + K exp(– t/τi)    for t ≳ T                              (14) 

 

where if is the current of a single band in steady state, K 

is a real number, and τi is the time constant of the current 

response. However, this time T may not be equal to its 

counterpart obtained for the concentration. 

 

After obtaining the time response of the current by 

numerically solving the diffusion equation, we searched 

for the time T and the parameters if, K and τi of the 

exponential curve. This was done in four steps (see 

Figure 3): (i) Search for the time tss where the current iE 

and its steady state if differ by 0.67%. This gives a rough 

approximation of the time when an exponential decays 

to 0.67% (which corresponds to 5τi). (ii) Find the time 

tss/5. This gives a rough approximation of the time 

constant of the current τi. However, this time may be too 

soon for the current to behave exponentially. (iii) Find 

the time T = 2tss/5. This time gives a rough 

approximation of 2τi, where it is more likely for the 

current to start behaving exponentially. We could have 

also chosen 3tss/5; however, 2tss/5 gave good results for 

exponential fit. Times near 4tss/5 or beyond are not 

advisable, since they would be too close to the time 

where the current reaches steady state, and thus the 

current would no longer be exponential but nearly 

constant. (iv) Once T = 2tss/5 is known, fit an 

exponential curve to the simulation data of the current 

between times T and tss to obtain the fitting parameters 

if, K, and τi. Since the model for the current is not linear 
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in its parameters, a non-linear fit needs to be performed. 

This procedure was also implemented in Python, whose 

script can be downloaded from [12]. 

 

 

 
 

Figure 3. Process to obtain the exponential fit (red) for the time response of the current (blue). (i) Find tss, which 

corresponds to the time where the current iE and if differ by 0.67%. (ii) Find tss/5, which gives a rough 

approximation of τi. (iii) Find T = 2tss/5, which gives a rough approximation of the time 2τi. (iv) Fit an 

exponential curve to the time response of the current iE, by taking the simulation data between T = 2tss/5 

and tss 

 

Results and Discussion 

The simulations of the currents and their respective 

exponential fits were performed for the cases involving 

external and internal counter electrodes, using a 

bipotentiostat and conventional potentiostat, 

respectively; the most common configurations to drive 

an IDAE. For both cases, electrochemical cells of 

different heights were used while fixing the width of the 

unit cell. The results are discussed below. 

 

Case of external counter electrode (cσ,i = cσA) 

For this case, we considered that the initial concentration 

of one species equals its concentration applied at one 

array cσ,i = cσ
A, achieved by potentiostating array A and 

forcing cσ
A to be equal to cσ,i, while array B is 

potentiostated at will. In practice, this requires the use of 

a bipotentiostat with a counter electrode external to the 

IDAE. 

 

Under these conditions, several simulations were 

performed using different values of W/H. The 

simulations produced currents of different magnitude at 

bands A and B, as shown in Figure 4. This provides clear 

evidence of the need for a counter electrode, external to 

the IDAE, to be responsible for collecting the net current 

inet = iA + iB ≠ 0 produced in every unit cell, as indicated 

in Figure 5. However, as the simulations reach steady 

state, the net current tends to zero, meaning that the 

currents at both bands must be balanced in steady state 

iA = – iB. This is only possible under the assumption of a 

large number of bands and an external counter electrode 

far away from the IDAE. 

 

As expected, all currents obtained by simulation 

(circles) can be approximated by exponentials (lines), as 

presented in Figures 4 and 5. In fact, in the case of 

currents at B in Figure 4, the exponential approximations 

show some deviation from their simulated counterparts 

for t > τi, while improving considerably for t > T (where 

T is roughly 2τi), and clearly showing a steady-state 

response for t > 5τi. The parameters if, K, and τi obtained 

from all exponential fits are given in Table 1, such that 

the exponential approximations can be easily 

reconstructed as required. 

 

In Figure 6, the magnitudes of currents at A and B are 

equal in steady state and decrease as the cell becomes 

shallower. This is because there are two main gradients 
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of concentration when the electrochemical cell is tall: (i) 

between the IDAE and the bulk concentration near the 

roof of the cell; and (ii) in between consecutive bands 

(Figure 2). However, when the cell becomes shallower, 

the gradient between the IDAE and the roof of the cell 

tends to disappear, leaving only the gradient of 

concentration between consecutive bands. The time 

constants of currents at A and B, as well as the net 

current, are all equal, decreasing as the cell becomes 

shallower. This is because the electrochemical species 

can escape to the region of bulk concentration near the 

roof of the cell when the cell is tall (Figure 2) and later 

diffuse to the external counter electrode. However, when 

the cell becomes shallower, the electrochemical species 

are forced to diffuse only between consecutive bands 

due to the low roof of the cell. Therefore, in the case of 

a shallow cell, the species diffuse through a shorter 

distance compared to the case of a taller cell. 

 

The previous results show that there is a compromise 

between sensitivity (current) and response time (time 

constant) of the sensor. The taller the electrochemical 

cell, the more sensitive it becomes, but the longer the 

response time. Conversely, the shallower the 

electrochemical cell, the less sensitive it becomes, but 

the shorter the response time. 

 

  

 

Figure 4. Normalized versions of the current through single bands iA (left) and iB (right) for selected aspect ratios W/H 

= {4, 6, 8, 10} (lines in order from blue to red) and initial concentration cσ,i = cσ
A. Circles correspond to the 

simulation points, while solid lines correspond to the exponential fit. Crosses on a line correspond to the 

times τi, T and 5τi (in order from left to right) 

 

 
 

Figure 5. Normalized version of the net current inet = iA + iB for selected aspect ratios W/H = {4, 6, 8, 10} (lines in 

order from blue to red) and initial concentration cσ,i = cσ
A. Circles correspond to the simulation points, while 

solid lines correspond to the exponential fit 
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Figure 6. Normalized versions of the absolute value of the steady-state current |if| (left) and the time constant of the 

current τi (right) for different aspect ratios W/H and initial concentration cσ,i = cσ
A. The case W/H = 1 has 

been omitted from the normalized time constant plot to maintain good visualization of the lower values 

 

Table 1. Parameters resulting from the exponential fit of normalized currents for different aspect ratios W/H and initial 

concentration cσ,i = cσ
A = 0. The parameters p0, p1, and p2 correspond to the normalized versions of if, K and 

τi, that is, (if/L)/(π2FneD[cσ
A – cσ

B]), (K/L)/(π2FneD[cσ
A – cσ

B]), and π2Dτi /W2. The coefficient of determination 

was R2 > 0.9999 for all cases 

 

  A   B   net  

W/H p0 p1 p2 p0 p1 p2 p0 p1 p2 

1 -0.1005 0.0878 5.1005 0.1005 0.0878 5.1002 0 0.1757 5.1003 

2 -0.0933 0.1447 1.5761 0.0933 0.1446 1.5611 0 0.2943 1.5685 

3 -0.0806 0.1643 0.8779 0.0806 0.1820 0.8549 0 0.3459 0.8662 

4 -0.0688 0.1581 0.6287 0.0688 0.1759 0.6118 0 0.3336 0.6201 

5 -0.0593 0.1406 0.5156 0.0593 0.1506 0.5065 0 0.2910 0.5110 

6 -0.0519 0.1215 0.4554 0.0519 0.1266 0.4505 0 0.2480 0.4529 

7 -0.0461 0.1054 0.4191 0.0461 0.1079 0.4165 0 0.2133 0.4178 

8 -0.0414 0.0925 0.3945 0.0414 0.0941 0.3927 0 0.1865 0.3936 

9 -0.0376 0.0823 0.3769 0.0376 0.0834 0.3756 0 0.1657 0.3763 

10 -0.0344 0.0742 0.3638 0.0344 0.0749 0.3630 0 0.1491 0.3634 

 

Case of internal counter electrode (cσ,i = [cσA + cσB]/2) 

In this case, the average concentration applied at the 

bands equals the initial concentration (cσ
A + cσ

B)/2 = cσ,i, 

corresponding to the case where a conventional 

potentiostat drives one of the arrays while the other array 

performs as a counter electrode. Here, the potential (and 

therefore the concentration) of the counter electrode is 

regulated automatically by the potentiostat following the 

previous average condition, which can be rewritten as 

[cσ
B – cσ,i] = – [cσ

A – cσ,i]. 

 

Under these conditions, several simulations were 

performed using different values of W/H. Unlike the 

case of the external counter electrode, these simulations 
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produced currents of the same magnitude at bands A and 

B, but with the opposite sign iA = – iB, and not only 

during steady state but for all simulation times (Figure 

7). This means that all current generated by bands B is 

always collected by bands A, thus confirming the use of 

an internal counter electrode. 

 

As before, all currents obtained by simulation (circles) 

can be approximated by exponentials (lines), as 

presented in Figure 7. For example, in the case of 

currents at bands B, the exponential approximations 

show some deviation for times t > τi, but a considerable 

improvement for t > T (roughly 2τi). All current 

responses reach steady state at times t > 5τi. The 

parameters if, K, and τi obtained from all exponential fits 

are given in Table 2, such that the exponential 

approximations can be easily reconstructed as required. 

 

In Figure 8, the magnitudes of the currents at bands A 

and B decrease as the cell becomes shallower, in the 

same way as in the case of the external counter electrode 

(at least for their normalized versions). In similarity to 

the case of the external counter electrode, this is due to 

the vertical gradient of concentration between the IDAE 

and the roof of the cell (Figure 2), which disappears as 

the cell becomes shallower. The time constants of the 

currents at bands A and B are equal, decreasing as the 

cell becomes shallower. However, the values obtained 

here are much shorter than those obtained for the 

external counter electrode (compared with Figure 6). 

This can be explained by the absence of an external 

counter electrode, and therefore, the species cannot 

escape far from the IDAE but diffuse only between 

consecutive bands, even in the case of a tall 

electrochemical cell. 

 

Finally, as in the case of the external counter electrode, 

a compromise exists between the sensitivity (current) 

and response time (time constant) of the electrochemical 

sensor. The shallower the electrochemical cell, the less 

sensitive it becomes, but the shorter the response time. 

And vice versa in the case of tall cells. 

 

  
 

Figure 7. Normalized versions of the current through single bands iA (left) and iB (right) for selected aspect ratios W/H 

= {4, 6, 8, 10} (lines in order from blue to red) and initial concentration cσ,i = (cσ
A + cσ

B)/2. Circles 

correspond to the simulation points, while solid lines correspond to the exponential fit. Crosses on a line 

correspond to the times τi, T, and 5τi (in order from left to right) 
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Figure 8. Normalized versions of the absolute value of the steady-state current |if| (left) and the time constant of the 

current τi (right) for different aspect ratios W/H and initial concentration cσ,i = (cσ
A + cσ

B)/2 

 

Table 2. Parameters resulting from the exponential fit of normalized currents for different aspect ratios W/H and initial 

concentration cσ,i = (cσ
A + cσ

B)/2. The parameters p0, p1, and p2 correspond to the normalized versions of if, 

K, and τi, that is, (if/L)/(π2FneD[cσ
A – cσ

B]), (K/L)/(π2FneD[cσ
A – cσ

B]), and π2Dτi/W2. The coefficient of 

determination was R2 > 0.9985 for all cases 

 

  A   B  

W/H p0 p1 p2 p0 p1 p2 

1 -0.1006 -0.0310 0.5825 0.1006 0.0310 0.5825 

2 -0.0933 -0.0601 0.5277 0.0933 0.0601 0.5277 

3 -0.0806 -0.1212 0.3392 0.0806 0.1212 0.3392 

4 -0.0688 -0.1800 0.2312 0.0688 0.1800 0.2312 

5 -0.0593 -0.2253 0.1694 0.0593 0.2253 0.1694 

6 -0.0519 -0.2479 0.1328 0.0519 0.2479 0.1328 

7 -0.0461 -0.2426 0.1111 0.0461 0.2426 0.1111 

8 -0.0414 -0.2132 0.0984 0.0414 0.2132 0.0984 

9 -0.0376 -0.1739 0.0913 0.0376 0.1739 0.0913 

10 -0.0344 -0.1363 0.0877 0.0344 0.1363 0.0877 

 

Conclusion 

In this work, the main issue of whether the current 

response of an IDAE in a shallow electrochemical cell 

can be modeled by an exponential function has been 

addressed. The results show that a simple exponential 

function can approximate the time response of the 

current for elapsed times greater than approximately 

two-time constants, reaching steady state after 

approximately five-time constants. Normalized steady-

state currents and time constants were tabulated for 

different aspect ratios (separation between bands with 

respect to height of the cell), such that they can be used 

for cells of different scales or dimensions. 

 

When driving the IDAE with a bipotentiostat (both 

arrays perform as working electrodes), the net current at 

the arrays is non-zero during the transient state 

(approaching zero in steady state) and must be collected 
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by an external counter electrode. On the other hand, 

when driving the IDAE with a conventional potentiostat 

(one array performs as a working electrode, while the 

other performs as an internal counter electrode), the 

currents at the arrays are always of equal magnitude and 

opposite signs (during the transient and steady states). 

 

In the cases of external and internal counter electrodes, 

the steady-state magnitude and time constant of the 

current decrease as the electrochemical cell becomes 

shallower. This shows a trade-off or compromise 

between sensitivity (in terms of current magnitude) and 

response time (in terms of time constant) for IDAEs in 

shallow cells. Higher currents can be obtained at the 

expense of longer response times when the cell is tall 

(compared to the separation between consecutive bands 

of the IDAE) and shorter response times at the expense 

of lower currents when the cell is shallow. 
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