Malaysian Journal of Analytical Sciences

RECENT DEVELOPMENT ON THE SYNTHESIS OF THIOUREA DERIVATIVES AND EFFECT OF SUBSTITUENTS ON THE ANTICANCER **ACTIVITY: A SHORT REVIEW**

(Perkembangan Terkini Sintesis Sebatian Terbitan Tiourea dan Kesan Kumpulan Penukargantian Terhadap Aktiviti Antikanser: Ulasan Ringkas)

Norashikin Roslan^{1,5}, Noraslinda Muhamad Bunnori^{2,5}, Khairul Bariyyah Abdul Halim^{2,5}, Karimah Kassim³, Mohd Fadhlizil Fasihi Mohd Aluwi⁴, Nurziana Ngah^{1,6*}

¹Department of Chemistry,

Kulliyah of Science, International Islamic University Malaysia, Kuantan Campus, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia

²Department of Biotechnology,

Kulliyah of Science, International Islamic University Malaysia, Kuantan Campus, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia ³Institute of Sciences,

Universiti Teknologi MARA Shah Alam, 40450 Shah Alam, Selangor, Malaysia ⁴Faculty of Industrial Sciences and Technology,

Universiti Malaysia Pahang, Gambang, 26300 Kuantan, Pahang, Malaysia ⁵Research Unit for Bioinoformatic & Computional (RUBIC),

Kulliyyah of Science, International Islamic University Malaysia, Kuantan Campus, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia ⁶ Synthetic and Functional Material Research Group,

Department of Chemistry,

Kulliyyah of Science, International Islamic University Malaysia, Kuantan Campus, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia

*Corresponding author: nurziana@iium.edu.my

Received: 1 June 2022; Accepted: 18 August 2022; Published: 30 October 2022

Abstract

Thiourea is a carbon, hydrogen, sulphur, and nitrogen-based organic molecule. The thiourea group has been improved by replacing various substituents for its hydrogen atoms at the nitrogen terminal, resulting in a wide range of biological activities, especially on anticancer properties. Despite the fact that thiourea derivatives have remarkable anticancer potential, finding a novel anticancer agent that is both safe and selective remains a challenge. This paper summarizes recent research on thiourea compounds that can be used to treat malignant cell lines. Several synthesis methods and the effects of substituents as well as their anticancer therapeutic potential in a variety of healthy and malignant cell lines are discussed. As a result, it is envisaged that this review will guide the design and synthesis of new thiourea derivatives in the future for the development of highly effective and selective anticancer

drugs.

Keywords: thiourea derivatives, synthesis method, anticancer activity, substituents

Abstrak

Tiourea merupakan sebatian organik yang mempunyai atom karbon, hidrogen, sulfur dan nitrogen. Modifikasi sebatian organik tiourea ini dengan menggantikan atom hidrogen pada terminal nitrogen dengan pelbagai kumpulan penukargantian yang terpilih telah menghasilkan sebatian yang mempunyai pelbagai aktiviti biologi. Salah satu daripada aktiviti biologinya adalah sebagai agen antikanser. Meskipun sebatian terbitan tiourea ini dilaporkan mempunyai aktiviti antikanser yang signifikan, namun masih terdapat cabaran untuk mencari sebatian terbitan tiourea baru yang selamat dan bersifat selektif. Kertas ini meringkaskan kajian terkini mengenai sebatian terbitan tiourea yang boleh diaplikasi untuk kajian merawat sel kanser. Pelbagai kaedah sintesis, kesan kumpulan penukargantian serta potensi sebatian ke atas pelbagai jenis sel termasuk sel sihat dan malignan telah dibincangkan. Ulasan ringkas ini dapat memberi panduan untuk meningkatkan kemajuan dalam mencipta dan mensintesis sebatian antikanser baru yang berkesan dan selektif berasaskan tiourea.

Kata kunci: terbitan tiourea, kaedah sintesis, aktiviti antikanser, kesan kumpulan penukargantian

Introduction

The incidence and mortality of cancer-related diseases are quickly growing year after year, with 19.3 million new cases and 10 million deaths reported in 2020. Despite the availability of advanced treatments including immunotherapy, radiotherapy chemotherapy, the number of cancer cases has not decreased in the last 30 years [1]. This pattern was linked to acquired resistance, rapid mutability as well as bad effects that occurred for a year after taking current anticancer drugs [2, 3]. Therefore, finding a new anticancer drug that is efficient and safe is crucial to solving the alarming issue. The anticancer properties of thiourea derivatives are undeniable. Besides that, they also play an important role in a wide range of biological activities such as anti-thyroid [4], anti-bacterial [5], anti-inflammatory [6], anti-malaria [7], antioxidant [5], antihypertensive [8], anti-viral [9] and anticancer [10].

The discovery of 5-fluorouracil (5-FU), sorafenib, and tenovin medicines spurred substantial research into thiourea derivatives as potential anticancer therapies (Figure 1). A compound of 5-FU, cyclic fluorinated urea has been used to treat colorectal cancer [11] and other solid tumours (gastrointestinal tract, pancreas, ovary, liver, brain, and breast) for over 50 years, whereas Sorafenib is a diaryl urea-containing compound that has been clinically tested for lung, breast, colon, ovarian, pancreatic, and gastric cancer. Meanwhile, tenovin with thiourea-based compounds exerted inhibitation towards the colon, prostate, gastric

and lung cancer [12, 13].

Figure 1. Thio(urea) scaffold-containing anticancer chemotherapeutics [12, 13]

Over the years, many reports have been published on the synthesis of thiourea derivatives and their evaluation as anticancer agents along with the structure-activity relationships (SAR). The nature and different types of substitutions on nitrogen atoms of thiourea moiety considerably boosted the anticancer activity and determined whether the thiourea was mono-substituted, di-substituted or multi-substituted [14]. However, the substitution of one hydrogen atom at each thiourea nitrogen atom with desirable moieties dominates the structural pattern of thiourea derivatives as an active chemical [14, 15]. It is concluded that coupling the thiourea scaffold with other substituents results in

pharmacophore molecules which are extremely good anticancer agents [15, 5, 6]. The derivatives were reported to demonstrate potent cytotoxic activities against a series of cancer cells including breast [16], lung [17], renal [18], colon [5], prostate [19], liver [20] and ovarian [18] cancers. These have sparked an interest in expanding the research by synthesising novel thiourea compounds as possible anticancer drugs. Thus, the present review aims to summarize the recent development in thiourea derivatives in terms of the synthesis pathway, anticancer activities as well as the effect of substituents on the anticancer activities.

Chemistry of thiourea

Thiourea or thiocarbamide moiety is the first urea analogue which was synthesized for the first time by Marceli Nencki, a Polish scientist [21]. It is defined by the substitution of a sulfur atom for the oxygen atom. A lot of research articles are focused on thiourea scaffold as anticancer chemotherapeutics than urea moiety because of their remarkable polarity, reactivity, and efficient process of preparation [22]. A sulfur atom has a large size and is less electronegative resulting in the electrons being more polarizable as well as a stronger nucleophile for better reactivity than an oxygen atom [23]. Thiourea is considered an important group in drug design due to its extensive biological properties [22].

The thiourea scaffold serves as an excellent building block in constructing anticancer molecules with the presence of C=S regarded as an excellent acceptor, while thiourea N-H moiety is a favourable hydrogen bond donor. This dual nature of thiourea functionality is crucial in the drug's aqueous solubility and permeability [24]. The unique feature of thiourea moiety with desirable electron-rich characteristics is beneficial for thiourea derivatives which allows them to easily bind with a variety of enzymes and receptors in biological systems. Moreover, these interactions play a key role in the stability of ligand-receptor interactions subsequently, inhibiting the progression of cancer [25].

Thiourea (Figure 2a) compound is a needle-like glossy crystal with a colourless to pale yellow, bitter-tasting and ammonia-like odour. Thiourea is slightly soluble in cold water and soluble in hot water with a boiling point of 150-160 °C [17]. Figure 2b shows the resonance forms of thiourea in which the amphoteric character of thiourea is demonstrated by its resonance, which indicates electrophilic attack at the C-1 position; nucleophilic attack at either N-1 or N-2. Meanwhile, the tautomerization at H-atom that is attached to either N-1 or N-2 position would form two pairs of isomers namely thione and thiol (Figure 2c).

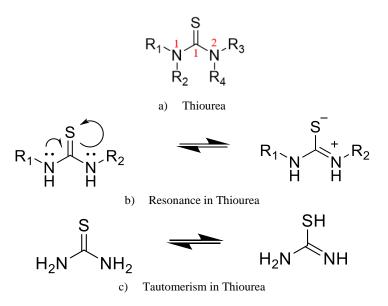


Figure 2. Thiourea scaffold showing numbering (a), resonance (b) and tautomerism (c)

Thiourea is a chemically interesting compound over the years due to its planar and flexible structure which exhibits greater π -electron delocalisation which also would enhance the binding ability to a variety of proteins in the biological system. The thiourea moiety is easily protonated under acidic conditions and interact with important amino acid residues on cancer cells such as carboxyl and phosphate groups, thus enhancing the anticancer activities [26].

Synthesis pathway of thiourea derivatives and their anticancer activities

A lot of research on the thiourea moiety is currently ongoing to identify novel lead compounds to combat various cancers. The thiourea pharmacophore (-HN-C(=S)-NH-) is important in designing novel anticancer chemotherapeutics which leads to further development through structural modification. This pharmacophore acquires specific binding sites such as the hydrogen binding area thus increasing the binding affinity of the ligand-protein complex. The presence of C=S and N-H functional groups on thiourea which represents weak hydrogen bond acceptor as well as hydrogen bond donor respectively would significantly enhance the blocking of the enzymatic activity and simultaneously be a potent anticancer agent.

A novel of podophyllotoxin-thiourea derivatives

(Scheme 1) were synthesized and evaluated for their in vitro cytotoxicity against A549 (human lung cancer), MDA MB-231 (human breast carcinoma), DU-145 (human prostate cancer), LNCaP (androgen-sensitive human prostate adenocarcinoma) and HGC- 27 (human gastric carcinoma) cell lines by MTT assays [27]. The of podophyllotoxin-thiourea synthesis strategy congeners **4a–u** was successfully performed by reaction with various isothiocyanates in the presence of NH₂SO₃H and NaI from 4β-azido intermediate (3) and 4ß-deoxy-epipodophyllotoxin (2). Among compounds synthesized, compound 4a was found to be effective in the DU-145 cell line compared to etoposide (standard drug) with half-maximal inhibitory concentration (IC₅₀) values less than 10 µM which is the range of 0.50-7.89µM. These compounds were further assayed for cytotoxicity on normal human prostate cell line (RWPE-1) and were shown as safe to be used. The introduction of bulky groups at the C-4 position at the podophyllotoxin thiourea derivative (4) significantly aids the antitumor activity [28]. The N-substituted benzene thiourea derivatives at the C-4 position showed that R₃ substituent (4) was significant for anticancer activity. For example, the presence of a small group such as methoxy (4a) increases the electron density and activates the ring. However, a bulky substituent at the R₃ position of the phenyl ring resulted in no cytotoxic activity.

Scheme 1. Synthesis of novel podophyllotoxin-thiourea congeners

The 1-benzoyl-3-methyl thiourea derivatives were designed with different substitutions at meta and para positions on the phenyl ring of 1-benzoyl-3-methyl thiourea [29]. The compounds 7a-c were synthesized from the reaction of starting material N-methylthiourea (6) with several ring-substituted benzoyl chlorides (5) (Scheme 2). The standard MTT assay was used to assess in vitro cytotoxicity against cervical cancer cell lines (HeLa). All of the compounds had higher cytotoxicity, with IC₅₀ values ranging from 160 to 383µg/mL, than hydroxyurea (HU) as a reference drug, which had an IC₅₀ of 428 μg/mL. It is revealed that the presence of benzoyl and methyl group on thiourea would increase the resonance within the compounds thus improving the compound stability and enhancing cytotoxic activity. The nitro substituents on the *para*-position (7c) had the highest activity, making it more active than HU. The electron-withdrawing group (EWG) substitutions such as chloro at the *meta*-position and nitro at the *para*-position of the aromatic ring improve the lipophilicity of molecules and are responsible for increased cytotoxicity [29]. The strong EWG would withdraw electrons through a π -bond due to the overlap of a p orbital on the substituent with a p orbital on the aromatic ring and stabilized by the electron-donating group (EDG) from methyl by resonance. Meanwhile, the absence of a sidechain on benzoyl showed the lowest activity among the synthesized compounds (7a). These findings suggest that 1-benzoyl-3-methylthiourea derivatives could be used as anticancer agents in HeLa cells.

R:
$$a = H, b = -3-C1, c = -4-NO_2$$

Scheme 2. Synthesis reaction of the 1-benzoyl-3-methylthioureas

Encouraged by the outstanding anticancer activity from the presence of EWG as substituents at phenyl

rings, the effect of EDG on the phenyl ring was also studied. The EDG group has been introduced to the phenyl ring of benzoyl moiety linked thiourea in a N-4-methoxybenzoyl-N'-(4compound of fluorophenyl)thiourea (11) and tested against HeLa cell line and compared with HU as a standard drug [30]. Scheme 3 shows that the compound was synthesized by the reaction of 4-methoxybenzoyl chloride (8) with ammonium thiocyanate to give an intermediate compound namely methoxybenzoylisothiocyanate (9). Further reaction of (9) with 4-fluoroaniline (10) yielded the desired compound. The MTT results displayed that the compound has a lower inhibitory concentration IC50 value $(0.720 \pm 0.07 \text{ mM})$ which is more potent than HU $(16.535 \pm 2.092 \text{ mM})$. The presence of p-methoxy on benzoyl moiety and p-fluoro on phenyl ring enhanced the cytotoxic activity due to the lipophilic, electronic and steric properties. The methoxy (EDG) is a strongly activating group with the electron donor which imparts the resonance effect whereas fluorine (EWG) deactivates the ring by withdrawing the electron of the ring and stabilizing the compound. Thus, the combination of EWG and EDG in a thiourea compound potentially enhanced anticancer properties.

Scheme 3. Synthesis of N-methoxybenzoyl-N'-(4-fluorophenyl)thiourea derivatives

Subsequently, several novel thiourea derivatives bearing sulfonamide were synthesized and screened against HepG2, MCF-7, Caco-2, HCT-116, PC-3 cancer cell lines and Vero-B normal cell line [6]. The compounds were synthesized from the starting compound *N*-(2,6-dimethoxypyrimidin-4-yl)-4-isothiocyanatobenzenesulfonamide (13) as represented in Scheme 4. Among the compounds synthesized, compound 14a which contains 2,4-dibromobenzene as

a substituent exhibited broad selective cytotoxicity against cancer cells HepG2, MCF-7, Caco-2, and PC-3 with IC₅₀ values 19.3, 20.5, 15.08 15.6 μ g/ml respectively. This compound is a potent anticancer agent which might be due to the substitution of EWG (bromine atom) at *ortho* and *para* positions which activates the benzene ring through inductive effect, thus enhancing the anticancer properties.

14a: Ar = 2,4-dibromobenzene

Scheme 4. Synthesis thioureas derivatives bearing a sulfonamide moiety

Another series is the novel 7-trifluoromethyl-2pyridylquinazolin-4(3H)-one-based acyl derivatives (20a-j) as potential antiproliferative agents. The compounds were synthesized and tested for cytotoxicity in both cancerous human ovarian cancer (SK-OV-3), cervical cancer (HeLa), renal cancer (Caki-2) as well as noncancerous human umbilical vein endothelial cell (HUVEC) cell lines [18]. From the MTT bioassay results, the fluorine substitution on the benzoyl group was the most advantageous compared to other EWG due to the high electronegativity, highest carbon-fluorine bond strength, and smallest atomic radius (50 pm) as well as increased hydrophobic properties [31]. Compounds containing halogen atoms have higher potency overall. The presence of nicotinoyl and acetyl as the substituents contributed more to electron delocalization in the compound resulting in outstanding efficacy, whereas the absence of any functional or donor group on the benzoyl ring resulted in inert compounds. In addition, the conjugation bonds contributed by the quinazoline group in substituted thiourea derivatives correlated to the increase of lipophilic properties which is a salient feature for inhibition of DNA replication thus leading to the increased antiproliferative activity. However, all compounds showed desirable cytotoxicity towards the noncancerous cell line. It was discovered that modifying the substituent at the thiourea linkage gave different cytotoxic potentials to specific cell lines as summarized in Scheme 5. Specifically, thioureabearing quinazoline compounds with 4-fluorophenyl functionality (20h) and pyridyl moieties (20e) showed encouraging anticancer effects and could be used as a platform to design further chemotherapeutic agents.

Scheme 5. Synthesis of acyl thiourea derivatives of 7-trifluoromethyl-2-pyridylquinazolin-4(3H)-one

A new series of benzothiazole thiourea derivatives (23a-d) were tested for anticancer activity on human breast cancer cells (MCF-7), human cervix epithelial carcinoma (HeLa), human colon cancer cell line (HT-29), human leukaemia cell line (K-562), and mouse neuroblastoma cell line (Neuro-2a) [5]. The derivatives were prepared by the treatment of substituted 2-amino benzothiazole (21) with carbon disulfide and the ammonolysis of intermediate (22) in ethanol under reflux conditions as shown in Scheme 6. The compounds showed weakly to moderately cytotoxic activity with IC₅₀ values ranging from 0.39

 μM and up to 200 μM . Compound **23d** exhibited the most potent cytotoxic activity which was roughly four times more effective than cisplatin against the two cancer cell lines MCF-7 and HT-29, as depicted in Table 1. The synthesized compounds showed no cytotoxic effects on normal cells (L-929). The highest cytotoxicity of compound **23d** reflects the higher EDG nature of the ethoxy group and its steric effect. Therefore, combining benzothiazole and thiourea moieties might contribute to the improvement of the antiproliferation action.

Scheme 6. General synthesis of the benzothiazole thiourea derivatives

Cell Lines (µM)									
Compound	MCF-7	HeLa	HT-29	K-562	Neuro-2a	L-929			
23a	8.55	21.7	8.1	69.7	57.4	134.1			
23b	11.9	47.3	14.8	85.3	235.3	135.0			
23c	12.8	45.2	15.0	98.1	200.5	230.7			
23d	6.72	4.97	3.90	40.5	22.7	107.6			
Cisplatin	6.25	0.39	16.2	25.8	211.0	0.7			

Table 1. Cytotoxic activities of compounds (**23a–d**) against MCF-7, HeLa, HT-29, K-562, and Neuro-2a cancer cell lines

Inspired by the activity profile of a previous report [6] on thiourea-based sulfonamide derivatives, a new compound was developed namely N-(2,6-dimethoxypyrimidin-4-yl)-4-(3-

(arylthioureido)benzenesulfonamides derivatives [20]. The desired compound was synthesized and tested for antiproliferative activity. The reaction scheme is depicted in Scheme 7. The antiproliferative assay showed that compound (26) with more EWG

(fluorine atom) substituted to phenyl ring showed broad selective cytotoxicity against HepG2, MCF-7, Caco-2, and PC-3 cancer cells with IC₅₀ values ranging from 15.08 μ g/mL to 20.5 μ g/mL. This compound also exhibited no cytotoxicity toward healthy cells (Vero-B). This work is in line with the previous study [6,20,29,18,15] which stated that EWG attached to phenyl ring bearing thiourea moiety would enhance the anticancer activity.

Scheme 7. Synthesis of thiourea derivatives bearing sulfonamides 26

Besides, two novel compounds namely *N*-(allylcarbamothioyl)-3-chlorobenzamide (**29a**) and *N*-(allylcarbamothioyl)-3,4-dichlorobenzamide (**29b**) were synthesized by reacting ally thiourea (**28**) and *N*-benzoyl chloride (**27**) as presented in Scheme 8 [15]. The compounds that have a different number of chlorine atoms on the phenyl ring were screened for cytotoxicity study on human breast cancer cell lines (T47D) using the MTT assay. This study concluded that an extra chlorine atom in compound **29b** contributed to higher

cytotoxicity activity than compound **29a** and standard drug 5-FU with IC $_{50}$ values of 86 µg/mL, 128 µg/mL and 213 µg/mL, respectively. The increased number of chlorine (EWG) would reduce the electron density and deactivate the ring but was stabilized by the presence of ally thiourea. Thus, the effect of the allyl group, as well as more EWG on thiourea structure, showed a substantial increase in antiproliferative activity as the conjugation makes the compounds more stable.

^{*} The agent with $IC_{50} > 100 \mu M$ is considered to be inactive

Scheme 8. Synthesis thiourea derivatives 29a-b

Next, potent anticancer drugs were synthesized featuring the novel 4-*tert*-butylbenzoyl-3-allylthiourea framework and screened against MCF-7 cells overexpressed by HER-2 (MCF-7/HER-2) [32]. From the results of the MTT assay, compound **30** showed the best antiproliferative activity in comparison with positive control HU (**31**) with IC₅₀ values of 0.15±6.48 mM and 2.01±1.05 mM, respectively (Figure 3). The

tert-butyl functional group is EDG which will activate the para position of the phenyl ring due to more electron donation from C-H subsequently increasing compound conjugation. Thus, this study confirmed that a compound with allyl group and EDG is significantly cytotoxic and has the potential to be developed as a breast anticancer agent with HER-2 overexpression.

Figure 3. Structure of 4-t-butylbenzoyl-3-allylthiourea (30) and hydroxyurea (31)

A new potent compound was discovered by reacting 4-hexylbenzoyl chloride (32) and *N*-methylthiourea (33) as shown in Scheme 9 [33]. The compound 1-(4-hexylbenzoyl)-3-methylthiourea (34) displayed significant anticancer activity against four cancer cell lines as compared to the control (hydroxyurea). This compound revealed low IC₅₀ values; HeLa = 412 μ M

 $(5632 \, \mu M)$, MCF-7 = 390 μM (2829 μM), WiDr = 433 μM (1803 μM), and T47D = 179 μM (1803 μM). The incorporation of *n*-heptane aliphatic substituent would enhance the activity due to the increased lipophilic as well as pharmacokinetic properties. However, replacing the aliphatic chain with a tricyclic aliphatic reduces anticancer activity.

Scheme 9. The reaction between 4-hexyl benzoyl chloride with *N*-methylthiourea

A new compound 4-piperazinylquinoline derived thioureas (Scheme 10) was developed and examined for their antiproliferative activity on three human breast tumour cell lines (MDA-MB231, MDA-MB468, and

MCF7) as well as two non-cancer breast epithelial cell lines (184B5 and MCF10A) [16]. Among the novel compounds synthesized, compound **38a** namely (4-(7-chloro-quinoline-4-yl)-piperazine-1-carbothioic acid

(2-morpholine-4-yl-ethyl)-amide) showed significantly improved antigrowth/antiproliferative activity against breast cancer cells; MDA-MB231, MDA-MB468 and MCF7 with IC₅₀ values ranging from 3.0 to 4.6 μM which is 7 to 11-fold selective to cancer cells and nontoxic to non-cancer cells. Attachment of quinoline, piperazine and morpholine on thiourea significantly

enhanced antiproliferative activity with the cytotoxicity value 7 to 11-fold higher in cancer than in noncancerous cells. This might be due to the heterocyclic compounds possessing hydrogen bond donor-acceptor capability which subsequently would enhance the lipophilic properties [34,35,36].

Scheme 10. Synthesis of 4-piperazinyl quinoline derived thiourea

Sirtuin 2 (SIRT 2) is an enzyme that is responsible for tumour suppressors in general, although knocking it down or inhibiting it has a broad anticancer effect in human breast cancer cell lines through boosting c-Myc degradation [37]. A novel lysine-derived thioureas as SIRT2 inhibitors were synthesized against MCF7 (breast cancer), MDA-MB-468 (breast cancer), MDA-MB-231(breast cancer), BxPC-3 (pancreatic cancer), NCI-H23 (lung cancer), A549 (lung cancer), SW948 (colorectal cancer), HCT116 (colorectal cancer), and

CCD841 CoN (colon cell) [38]. The chemical reaction to synthesize the compounds is shown in Scheme 11. In comparison to thioamide-type inhibitor (reference drug), compound **42a** was highly selective and demonstrated broad cytotoxicity amongst cancer cell lines, specifically, human colorectal cancer cell line HCT116 with half-maximal growth inhibitory (GI₅₀) values of \sim 7 μ M. None of the inhibitors was toxic to noncancerous HME1 epithelial cells.

Scheme 11. Synthesis of Thiourea derivatives with varying chain lengths

Other novel compounds that were discovered are namely *N*-adipoyl monoanilide thiourea (**45a**) and *N*-pimeloyl monoanilide thiourea (**45b**) as histone deacetylase (HDAC) inhibitors [39]. Generally, HDAC is important to regulate epigenetic or non-epigenetic, as well as in cancer cell death, apoptosis, and cell cycle arrest [40]. The compounds were synthesized as shown in Scheme 12. Both compounds showed better inhibition against human colon adenocarcinoma (HRT-18) and mouse hepatoblastoma (HC-04) cells with a low

cytotoxic effect on normal human breast cells (HBL-100) through MTT assay. It was also found that compound **45b** had higher antiproliferative activity than compound **45a** against the tested cancer cells with IC $_{50}$ values of 21.44 μM and 24.12 μM and 27.37 μM and 30.42 μM , respectively against HC-04 and HRT-18 cell lines. The increased chain of carbon would increase the lipophilicity of the compound and subsequently enhance the cytotoxicity [41].

Scheme 12. Synthesis of the target compounds (45a-b)

Two compounds of N-(phenylcarbamothyoil) benzamide derivatives (47) were synthesized by reacting N-phenylthiourea, triethylamine (46), and 4-nitro/4-methylbenzoyl chloride as presented in Scheme 13 [42]. This study investigated the effect of electronic and lipophilic substitution on anticancer activity. Compound 47b with a strong electronic effect of 4-NO₂ ($\sigma = 0.78$) is more potent with lower IC₅₀ values compared to compound 47a with a strong lipophilic

effect of 4-CH₃ (π =0.56) with IC₅₀ values of 0.12±0.014 and 1.08±0.013 mM, respectively. The effect of the EWG is stronger than the EDG. Overall, the tested compounds have better activity than HU (4.58 ±0.019 mM) and are non-toxic to healthy Vero cells. The study suggested that *N*-(phenylcarbamothyoil) benzamide derivatives compound has a stronger electronic effect than lipophilic effect.

Scheme 13. Synthesis of N-(phenylcarbamothyoil) benzamide derivatives

In response to the strong EWG effect in cytotoxicity, another two compounds of *N*-benzoyl-*N'*-phenylthiourea derivatives were designed, namely *N*-(3-chloro)benzoyl-*N'*-phenylthiourea (**50a**) and N-(3,4-dichloro) benzoyl-*N'*-phenylthiourea (**50b**) [43]. The test compounds were synthesized from *N*-phenylthiourea (**48**) with benzoyl chloride derivatives (**49**) via acyl nucleophilic substitution reactions as represented in Scheme 14. A cytotoxicity study

obtained from the MTT assay showed that **50a** has a higher cytotoxic effect than **50b** with IC_{50} values of 0.43 mM and 0.85 mM respectively. Overall, all compounds showed better anticancer activity compared with HU ($IC_{50} = 4.58$ mM). The activities of these two novel compounds were projected to be cell-targeted because they were harmful to cancer cells but not to Vero normal cells.

Scheme 14. Synthesis of N-benzoyl-N'-phenylthiourea or N-(phenylcarbamothioyl)-benzamide derivatives

The synthesis of a series of novel thiourea derivatives containing 3,5-bis(trifluoromethyl)phenyl moiety (R₁) at terminal thiourea and phenylamino (R₂) at the terminal acyl position is shown in Scheme 15 [44]. Compound (**55a**) showed the best cytotoxicity against seven cancer cell lines: NCI-H460, Colo-205, HCT116, MDA-MB-231, MCF-7, HEpG2 and PLC/PRF/5 with IC₅₀ values of 1.86, 9.92, 6.42, 8.21, 9.19, 6.21 and 7.82μM, respectively. Compound **55a** was found to be

most potent with higher antiproliferative activities than Sorafenib and has excellent activity against normal cell HUVEC (IC₅₀: 2.81µM). When 3,5-bis(trifluorophenyl) was replaced with a nitro group (**55b**), good antiproliferative activity was observed. Meanwhile, none and weak activities were reported for unsubstituted (**55c**) and EDG substituent ring (**55d**) on phenyl ring respectively.

SOCI₂, DMF, 70°C, 16h 51 52 53 0 4-aminophenol, DMF,
$$R_2$$
 53 0 R_2 53 0 R_2 54 R_2 55a: R_1 = 3,4-bis-CF₃-Ph, R_2 = NH-CH₃ 55d: R_1 = NO₂-Ph, R_2 = NH-CH₃ 55d: R_1 = NO₂-Ph, R_2 = NH-CH₃ 55d: R_1 = (CH₃)₃-Ph, R_2 = NH-CH₃

Scheme 15. Synthesis novel thiourea derivatives 55a-d

Another novel thiourea compounds that are potent anticancer chemotherapeutic are thiourea bearing dapsone-naphthoquinone derivatives [45]. The synthesis pathways of the desired compounds (**60a-j**) are illustrated in Scheme 16. The reaction between 1,4-naphthoquinone (**56**) and dapsone (**57**) produces 2-[4-(4-aminobenzenesulfonyl)-phenylamino]-

[1,4]naphthoquinone (58). The 2-[4-(4-isothiocyanato-

benzenesulfonyl)-phenylamino]-[1,4]naphthoquinone (59) was obtained by adding thiophosgene to the (58) suspension in acetone. Finally, the synthesis of thiourea derivatives (60a-j) was completed by adding primary or secondary amines to the isothiocyanato intermediate (59). The most effective compound was found to be a thiourea derivative containing N-methyl piperazine (60h) with an IC₅₀ of $5.8\pm0.55~\mu M$ against chronic

myelogenous leukaemia (CML) (K562 cell lines). The anticancer action of thiourea derivatives was diminished by increasing the inhibitory effect of nucleophile steric hindrance. The anticancer activity of compounds (**60d**–**f**) containing phenyl, benzyl, and dibenzyl amines, respectively is significantly reduced. The anticancer activity of compounds (**60g-j**) revealed that adding N-

CH₃ group to the thiourea skeleton considerably increased the anticancer activity of **60h**, with an IC₅₀ of 5.8 \pm 0.55 μ M. Furthermore, the anticancer activity of **60h** was 5.2 times more active than the carbon-substituted compound 60g (IC₅₀=30.37 \pm 2.21 μ M) and 5 times more active than the oxygen-substituted compound **60i** (IC₅₀=29.06 \pm 2 μ M).

Scheme 16. Preparation of the aimed compound (60a-j)

A new thiourea benzimidazole derivatives were synthesized, as outlined in Scheme 17 [47]. The cytotoxic activity of the compounds was assessed in human breast cancer cell lines viz MDA-MB-231 and MCF-7. The compound 1-(2-(1*H*-benzo[d]imidazol-2-yl-amino)ethyl)-3-*p*-tolylthiourea (63) was found with higher activity in MCF-7 with IC₅₀ values of 25.8

 μM , as compared with MDA- MB-231 cells (54.3 μM). It was revealed that benzimidazole is connected to thiourea moiety through ethylenediamine linker contributed to the anticancer activity due to its resonance structure. These findings could lead to the development of novel thiourea benzimidazole compounds with significant anticancer properties.

Scheme 17. Synthesis thiourea benzimidazole derivatives 63

Next, a potent compound was revealed namely *N*-(4-bromo)-benzoyl-*N'*-phenylthiourea **(66)** [47]. The compound was synthesized by reaction of N-phenylthiourea **(64)** and 4-bromobenzoyl chloride **(65)**

through acyl nucleophilic substitution as depicted in Scheme 18. In vitro cytotoxicity assay was carried out on HER2-positive primary breast cancer cells and produced IC₅₀ values of 0.54 mM, lower than standard

drug hydroxyurea with an IC₅₀ value of 11.61mM. This finding is correlated to the previous study [42] which confirmed that the inductive effect of EWG showed greater cytotoxicity than the lipophilic effect of EDG.

Thus, the substituent of EWG for benzoyl ring of thiourea is important and could be further developed as an anticancer candidate for HER2-positive breast cancer.

Scheme 18. Synthesis of *N*-(4- bromo)-benzoyl-*N*'-phenylthiourea **66**

Other than that, a novel series of compounds were developed with thiourea-azetidine hybrid (**71a-g**) and (**73a-g**) [48]. The synthesis pathway of these compounds is illustrated in Scheme 19. All compounds were evaluated for their in vitro anticancer activity against various human cancer cell lines viz; lung (A549), prostate (PC3), breast (MCF7), liver (HepG2), colon (HCT116), ovarian (SKOV3), skin (A431), brain (U251), and kidney (786-O). With medium effective dose (EC50) values of 0.25, 0.6, 0.03, and 0.03 μ M, the compound of 3-(4-methoxy-3-(2-methoxypyridin-4-yl)phenyl)-*N*-(4-

methoxyphenyl)azetidine-1-carbothioamide (**73c**) was shown to be the most potent member against PC3, U251, A431, and 786-O cancer cell lines, respectively, and demonstrated more potency than doxorubicin. In the A431 cell line, the median effective concentration (EC₅₀) values for compounds **73a-g** ranged from 0.03 to 12.55 μ M. For A431 and 786-O cell lines, compound 3-(4-methoxy-3-(pyridin4-yl)phenyl)-N-(4-methoxyphenyl)azetidine-1-carbothioamide (**73a**)

was shown to be highly effective, with EC₅₀ values of 0.77 and 0.73 µM, respectively. All of the substances have a good to moderate level of toxicity. The study revealed that thiourea derivatives containing EDG (-OCH₃) on the phenyl ring and pyridine (73a), substituted pyridine derivatives (73b-d) substituted pyrazole derivative (73g), respectively were found to be the most potent than compounds with substituted pyridine (71a-d) and pyrazole heterocycle derivatives (71g), which contained EWG (-CN, in place of -OCH₃). In their series, the compound with p-chloro substitution and EWG (-CN) on the phenyl ring (71e) was found to have significantly higher activity against HepG2 and HCT-116 cell lines than phenyl derivatives with EDG (p-OH) (71f). Out of nine cancer cell lines studied, the derivatives with EDG on both sides (-OH and -OCH₃) (73f) showed good to moderate activity on cell lines of A431, A549, HepG2, and HCT-116. Thus, this study confirmed that EDG substituent would enhance the cytotoxic activity.

Scheme 19. The synthesis of thiourea-azetidine derivatives (71a-g and 73a-g)

Another study is the synthesis and evaluation of several thioureas and benzylidine moieties as carbonic anhydrase-II (CA-II) inhibitors [49]. The CA-II enzyme is important to catalyse the reversible hydration of carbon dioxide, which results in the creation of bicarbonate and proton. The inhibition of this enzyme is used as a biomarker and therapeutic target in the treatment of leukaemia, cystic fibrosis, glaucoma, and epilepsy [50]. Within this study, several thiourea derivatives and compound **84** of the benzylidene series showed outstanding inhibitory activity against CA. The cytotoxic evaluation against 3T3 cell lines (Mouse Fibro-blast) using MTT assay exhibited prominent inhibition activity with IC₅₀ values ranging from 1.90 ± 1.30 to $25.90 \pm 2.05 \,\mu\text{M}$

compared to standard inhibitor acetazolamide (IC50 = 0.13 ± 0.05). Meanwhile, benzylidene derivatives showed weak inhibition potential with IC50 values in the range of 52.68 ± 0.47 to $348.57 \pm 3.32 \,\mu\text{M}$. Also, the study reported that N-(trifluoromethyl) benzoyl moiety in thiourea is important for CA II inhibition. The structures of thiourea derivatives are shown in Figure 4. It was revealed that compound (82), with ethoxy substituents (EDG) on the N-phenyl ring, significantly enhance the potency of the compound with an IC50 value of $1.90 \,\mu\text{M}$. The presence of EDG increased the electron density and activate the ring. Unsubstituted N-phenyl ring (80) showed a slight decrease in anticancer activity. However, the presence of EWG such as F, CN, NO2 and Br group on the N-

phenyl ring for compounds (**74-83**) suppresses the activity with IC₅₀ values ranging from $4.40 \pm 1.80 \,\mu\text{M}$ to $25.90 \pm 2.05 \,\mu\text{M}$. On the other hand, the presence of furylmethylene ring increased the potency of

compound **84**. Overall, it is indicated that EDG on the benzene ring of thiourea derivatives and benzylidene have significantly enhanced the anticancer activity.

Figure 4. Structure of thiourea derivatives 74-84

The potent *N*-(trifluoromethyl) benzoyl moiety linked to thiourea potential for anticancer activity led to the synthesis of 1,3-disubstituted thioureas (**87-98**) [12]. The synthesis pathway of these compounds involves a single-step reaction of 3-(trifluoromethyl)aniline (**85**) with various isothiocyanates (**86**), belonging to a group of dihalogenophenyl (**87-90**), halogenomethylphenyl (**91-92**), alkylphenyl (**96**), or monophenyl-substituted (**91-95**) derivatives (Scheme 20). Then, the cytotoxicity of the compounds was investigated against four human carcinoma cell lines, such as SW480 (primary colon cancer), SW620

(metastatic colon cancer), PC3 (metastatic prostate cancer), and K-562 (chronic myelogenous leukaemia), as well as against the normal cell line HaCaT (immortalized human keratinocytes), the IC₅₀ values are summarized in Table 2. This study summarized the increasing impact of cytotoxicity according to the terminal benzene moiety functionalities as follows: 4-bromo- (97) < 2-(trifluoromethyl)- (93) < 2-methyl-5-chloro- (92) < 4-cyano- (96) < 2-methyl-3-chloro- (91) < 2,3-dichloro- (90) << 2,4-dichloro- (89) < 4-chloro- (95) < 3-chloro-4- fluoro- (87) < 4-(trifluoromethyl)- (94) < 3,4-dichloro- (88). Dihalogenophenyl

derivatives (87-90), compounds 94- 95 were the most active among the series towards all tumour cell lines with $IC_{50} \leq 10$ µM. The most promising drug candidates (87-90, 94, 95) were weakly cytotoxic towards normal HaCaT cell lines. Meanwhile, the introduction of the unsubstituted alkylphenyl group (98) to the thiourea branch dramatically decreased the

compound's bioactivity. The structural modifications of the thiourea terminal moieties indicated the dihalogenophenyl derivative (88), followed by its isomer (89) and para-substituted analogue (94), as the most effective in cancer treatment. Therefore, this study highlighted the significance of EWG substituent in enhancing anticancer activity.

Scheme 20. Synthesis procedure for 3-(trifluoromethyl)phenylthiourea derivatives 87-98.

Table 2. Cytotoxic activity (IC₅₀, μ M) of the studied compounds estimated by the MTT assay

	R	Cancer Cells				Normal Cells
No.		SW480	SW620	PC-3	K-562	НаСаТ
87	3-Cl,4-F-Ph	12.7	9.4	53.6	6.8	43.6
88	3-Cl,4-Cl-Ph	9.0	1.5	31.7	6.3	24.7
89	2-Cl,4-Cl-Ph	30.1	5.8	13.7	54.3	52.1
90	2-Cl,3-Cl-Ph	22.5	14.0	10.5	35.9	13.9
91	2-CH ₃ , 3-Cl-Ph	7.3	23.2	51.8	52.5	55.6
92	2-CH ₃ , 5-Cl-Ph	15.6	22.1	65.9	40.3	14.5
93	2-CF ₃ -Ph	>100	30.1	17.1	76.5	65.7
94	4-CF ₃ -Ph	8.9	7.6	6.9	54.8	41.3
95	4-Cl-Ph	38.1	6.7	22.6	10.2	71.5
96	4-CN-Ph	20.6	18.7	66.2	12.9	50.1
97	4-Br-Ph	41.5	16.2	76.6	74.2	17.2
98	-CH ₃ CH ₃ -Ph	25.3	38.2	26.7	23.8	55.4
Cisplatin	-	10.4	6.7	13.2	8.2	6.3

Conclusion

This review summarizes the recently synthesized thiourea compounds and their anticancer activities. It shows that thiourea moiety is important in discovering potent, effective and safer drugs to treat cancer. As described above, there were numerous synthesis pathways to prepare the thiourea derivatives. Based on the evaluation of thiourea derivatives as an anticancer agent, modification of thiourea moiety with suitable substituents at N1 and N2 improved the cytotoxicity properties of the compounds. The study also indicates that the substituent containing electron donating and electron withdrawing groups play an excellent role in improving anticancer activities. Even though most of these reported compounds are in clinical trials, the urgent need for further derivation and cytotoxicity studies will provide an opportunity for managing therapeutic values more efficiently and with greater efficacy. In short, the thiourea derivatives scaffold is a valuable candidate in the design and development of novel compounds that warrants further investigation with a clinical trial.

Acknowledgement

We thank Universiti Malaysia Pahang (UMP) for funding the project under UMP-IIUM-UiTM Sustainable Research Collaboration 2020 (project vot: SRCG20-007-0007). Also, International Islamic University Malaysia (IIUM) for providing the facilities to conduct the research.

References

- Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A. and Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Aountries. CA: A cancer Journal for Clinicians, 71(3): 209-249.
- Mansoori, B., Mohammadi, A., Davudian, S., Shirjang, S. and Baradaran, B. (2017). The different mechanisms of cancer drug resistance: A brief review. Advanced Pharmaceutical Bulletin, 7(3): 339.
- 3. Levitzki, A. and Klein, S. (2019). My journey from tyrosine phosphorylation inhibitors to targeted

- immune therapy as strategies to combat cancer. *Proceedings of the National Academy of Sciences*, 116(24): 11579-11586.
- Kirishnamaline, G., Magdaline, J. D., Chithambarathanu, T., Aruldhas, D. and Anuf, A. R. (2021). Theoretical investigation of structure, anticancer activity and molecular docking of thiourea derivatives. *Journal of Molecular* Structure, 1225: 129118.
- 5. Eshkil, F., Eshghi, H., Saljooghi, A., Bakavoli, M. and Rahimizadeh, M. (2017). Benzothiazole thiourea derivatives as anticancer agents: design, synthesis, and biological screening. *Russian Journal of Bioorganic Chemistry*, 43(5): 576-582.
- 6. Ghorab, M., SA El-Gaby, M., S Alsaid, M., AMM Elshaier, Y., M Soliman, A., F El-Senduny, F., ... and YA Sherif, A. (2017). Novel thiourea derivatives bearing sulfonamide moiety as anticancer agents through COX-2 inhibition. *Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents)*, 17(10): 1411-1425.
- Guria, T., Roy, P. and Maity, T. K. (2018). Synthesis, pharmacological evaluation and ligand-protein interaction study of hybrid urea and thiourea derivatives as antihyperglycemic agents. *International Research Journal of Pharmacy*, 9(5): 36-44.
- 8. Türk, S., Tok, F., Erdoğan, Ö., Çevik, Ö., Tok, T. T., Koçyiğit-Kaymakçıoğlu, B. and Karakuş, S. (2020). Synthesis, anticancer evaluation and in silico ADMET studies on urea/thiourea derivatives from gabapentin. *Phosphorus, Sulfur, and Silicon and the Related Elements*, 196(4): 382-388.
- 9. Ghorab, M. M., Alsaid, M. S., Al-Dosary, M. S., Nissan, Y. M. and Attia, S. M. (2016). Design, synthesis and anticancer activity of some novel thioureido-benzenesulfonamides incorporated biologically active moieties. *Chemistry Central Journal*, 10(1): 1-13.
- Kumar, V. and Chimni, S. S. (2015). Recent developments on thiourea based anticancer chemotherapeutics. *Anticancer Agents in Medicinal Chemistry*, 15(2): 163-175.

- 11. Sethy, C. and Kundu, C. N. (2021). 5-Fluorouracil (5-FU) resistance and the new strategy to enhance the sensitivity against cancer: Implication of DNA repair inhibition. *Biomedicine & Pharmacotherapy*, 137: 111285.
- 12. Strzyga-Łach, P., Chrzanowska, A., Podsadni, K. and Bielenica, A. (2021). Investigation of the Mechanisms of cytotoxic activity of 1, 3-disubstituted thiourea derivatives. *Pharmaceuticals*, 14(11): 1097.
- 13. Lee, B. B., Kim, Y., Kim, D., Cho, E. Y., Han, J., Kim, H. K., ... and Kim, D. H. (2019). Metformin and Tenovin-6 synergistically induce apoptosis through LKB1-independent SIRT1 downregulation in non-small cell lung cancer andcells. Journal of Cellular Molecular Medicine, 23(4): 2872-2889.
- 14. Shakeel, A., Altaf, A. A., Qureshi, A. M. and Badshah, A. (2016). Thiourea derivatives in drug design and medicinal chemistry: a short review. *Journal Drug Design Medicine Chemistry*, 2(1): 10.
- 15. Widiandani, T. and Hardjono, S. (2017). Docking and cytotoxicity test on human breast cancer cell line (T47d) of *n*-(allylcarbamothioyl)-3-chlorobenzamide and *n*-(allylcarbamothioyl)-3, 4-dichlorobenzamide. *Research Journal of Pharmaceutical, Biological and Chemical Sciences*, 8(2): 1909-1914.
- 16. Viswas, R. S., Pundir, S. and Lee, H. (2019). Design and synthesis of 4-piperazinyl quinoline derived urea/thioureas for anti-breast cancer activity by a hybrid pharmacophore approach. *Journal of Enzyme Inhibition and Medicinal Chemistry*, 34(1): 620-630.
- Liu, J., Liao, P., Hu, J., Zhu, H., Wang, Y., Li, Y.,
 ... and He, B. (2017). Synthesis and antitumor
 activities of chiral dipeptide thioureas containing an
 alpha-aminophosphonate
 moiety. *Molecules*, 22(2): 238.
- 18. Mistry, B. M., Shin, H. S., Pandurangan, M. and Patel, R. V. (2017). Synthesis of acyl thiourea derivatives of 7-trifluoromethyl-2-pyridylquinazolin-4-(3*h*)-one as anticancer

- agents. *Journal of Chemical Research*, 41(10): 598-602.
- Kulabaş, N., Özakpınar, Ö. B., Özsavcı, D., Leyssen, P., Neyts, J. and Küçükgüzel, İ. (2017). Synthesis, characterization and biological evaluation of thioureas, acylthioureas and 4thiazolidinones as anticancer and antiviral agents. *Marmara Pharmaceutical Journal*, 21(2): 371-384.
- Ghorab, M. M., Alsaid, M. S., El-Gaby, M. S., Elaasser, M. M. and Nissan, Y. M. (2017). Antimicrobial and anticancer activity of some novel fluorinated thiourea derivatives carrying sulfonamide moieties: synthesis, biological evaluation and molecular docking. *Chemistry Central Journal*, 11(1): 1-14.
- 21. Ronchetti, R., Moroni, G., Carotti, A., Gioiello, A. and Camaioni, E. (2021). Recent advances in urea-and thiourea-containing compounds: Focus on innovative approaches in medicinal chemistry and organic synthesis. *RSC Medicinal Chemistry*, 12(7): 1046-1064.
- 22. Francioso, A., Baseggio Conrado, A., Mosca, L. and Fontana, M. (2020). Chemistry and biochemistry of sulfur natural compounds: Key intermediates of metabolism and redox biology. Oxidative Medicine and Cellular Longevity, 2020: 8294158
- 23. Olson, K. R. (2020). Are reactive sulfur species the new reactive oxygen species? *Antioxidants & Redox Signaling*, 33(16): 1125-1142.
- 24. Ghosh, A. K. and Brindisi, M. (2019). Urea derivatives in modern drug discovery and medicinal chemistry. *Journal of Medicinal Chemistry*, 63(6): 2751-2788.
- Vologzhanina, A. V., Ushakov, I. E. and Korlyukov, A. A. (2020). Intermolecular interactions in crystal structures of imatinibcontaining compounds. *International Journal of Molecular Sciences*, 21(23): 8970.
- 26. Abd Halim, A. N. and Ngaini, Z. (2016). Synthesis and bacteriostatic activities of bis(thiourea) derivatives with variable chain length. *Journal of Chemistry*, 2016: 2739832

- 27. Shankaraiah, N., Kumar, N. P., Amula, S. B., Nekkanti, S., Jeengar, M. K., Naidu, V. G. M., ... and Kamal, A. (2015). One-pot synthesis of podophyllotoxin-thiourea congeners by employing NH₂SO₃H/NaI: activity, DNA Anticancer topoisomerase-II inhibition, and **Apoptosis** inducing agents. Bioorganic & Medicinal Chemistry Letters, 25(19): 4239-4244.
- Cheng, W. H., Shang, H., Niu, C., Zhang, Z. H., Zhang, L. M., Chen, H. and Zou, Z. M. (2015).
 Synthesis and evaluation of new podophyllotoxin derivatives with *in-vitro* anticancer activity. *Molecules*, 20(7): 12266-12279.
- 29. Miftah, A. M. and Tjahjono, D. H. (2015). Synthesis and *in-vitro* cytotoxicity of 1-benzoyl-3-methyl thiourea derivatives. *Procedia Chemistry*, 17: 157-161.
- 30. Nasyanka, A. L. (2017). Docking, synthesis, and cytotoxic activity of *n*-4-methoxybenzoyl-*n*'-(4-fluorophenyl)thiourea on HeLa cell line. *Thai Journal of Pharmaceutical Sciences*, 41(3): 99-102.
- 31. Casa, S. and Henary, M. (2021). Synthesis and applications of selected fluorine-containing fluorophores. *Molecules*, 26(4): 1160.
- 32. Widiandani, T. and Meiyanto, E. (2018). Docking and antiproliferative effect of 4-tert-butylbenzoyl-3-allylthiourea on MCF-7 breast cancer cells with/without HER-2 overexpression. In *Proceedings of International Conference on Applied Pharmaceutical Sciences*, 2018: 3461444.
- 33. Ruswanto, R., Mardianingrum, R., Lestari, T., Nofianti, T. and Siswandono, S. (2018). 1-(4-Hexylbenzoyl)-3-methylthiourea. *Molbank*, (3): 2-6.
- Jain, S., Chandra, V., Jain, P. K., Pathak, K., Pathak,
 D. and Vaidya, A. (2019). Comprehensive review
 on current developments of quinoline-based
 anticancer agents. Arabian Journal of
 Chemistry, 12(8): 4920-4946.
- 35. Martins, P., Jesus, J., Santos, S., Raposo, L. R., Roma-Rodrigues, C., Baptista, P. V. and Fernandes, A. R. (2015). Heterocyclic Anticancer Compounds: Recent Advances and the Paradigm Shift Towards the Use of Nanomedicine's Tool

- Box. Molecules, 20(9): 16852-16891.
- Shekarkhand, M., Zare, K., Monajjemi, M., Tazikeh-Lemeski, E. and Sayadian, M. (2022). Computational study of heterocyclic anticancer compounds through NBO method. *Nexo Revista Científica*, 35(01): 367-381.
- 37. Nielsen, A. L., Rajabi, N., Kudo, N., Lundø, K., Moreno-Yruela, C., Bæk, M., ... and Olsen, C. A. (2021). Mechanism-based Inhibitors of SIRT2: Structure–activity relationship, X-ray structures, target engagement, regulation of α-tubulin acetylation and inhibition of breast cancer cell migration. *RSC Chemical Biology*, 2(2): 612-626.
- 38. Farooqi, A. S., Hong, J. Y., Cao, J., Lu, X., Price, I. R., Zhao, Q., ... and Lin, H. (2019). Novel Lysine-based thioureas as mechanism-based inhibitors of Sirtuin 2 (SIRT2) With anticancer activity in a colorectal cancer murine model. *Journal of Medicinal Chemistry*, 62(8): 4131-4141.
- 39. Al-Amily, D. H. and Hassan Mohammed, M. (2019). Design, Synthesis, and docking study of acyl thiourea derivatives as possible histone deacetylase inhibitors with a novel zinc binding group. *Scientia Pharmaceutica*, 87(4): 28.
- 40. Ho, T. C., Chan, A. H., and Ganesan, A. (2020). Thirty Years of HDAC Inhibitors: 2020 Insight and Hindsight. *Journal of Medicinal Chemistry*, 63(21): 12460-12484.
- 41. Fatima, T., Haque, R. A., Razali, M. R., Ahmad, A., Asif, M., Khadeer Ahamed, M. B. and Abdul Majid, A. M. S. (2017). Effect of lipophilicity of wingtip groups on the anticancer potential of mono *n*-heterocyclic carbene silver (I) complexes: Synthesis, crystal structures and *in-vitro* anticancer study. *Applied Organometallic Chemistry*, 31(10): e3735
- 42. Kesuma, D., Nasyanka, A. L., Rudyanto, M., Purwanto, B. T. and Sumartha, I. G. A. (2020). A prospective modification structure: The effect of lipophilic and electronic properties of *n*-(phenylcarbamothyoil) benzamide derivatives on cytotoxic activity by in silico and in vitro assay with T47d cells. *Rasayan Journal of Chemistry*, 13(3): 1914-1918.

- 43. Kesuma, D., Purwanto, B. T. and Rudyanto, M. (2019). Synthesis and anticancer evaluation of *n*-benzoyl-*n*'-phenyltiourea derivatives againts human breast cancer cells (T47D). *Journal of Chinese Pharmaceutical Sciences*, 29(2): 123-129.
- 44. Bai, W., Ji, J., Huang, Q. and Wei, W. (2020). Synthesis and evaluation of new thiourea derivatives as antitumor and antiangiogenic agents. *Tetrahedron Letters*, 61(40): 152366.
- 45. Alimohammadi, A., Mostafavi, H. and Mahdavi, M. (2020). Thiourea derivatives based on the dapsone-naphthoquinone hybrid as anticancer and antimicrobial agents: *In-vitro* screening and molecular docking studies. *ChemistrySelect*, 5(2): 847-852.
- 46. Siddig, L. A., Khasawneh, M. A., Samadi, A., Saadeh, H., Abutaha, N. and Wadaan, M. A. (2021). Synthesis of novel thiourea-/urea-benzimidazole derivatives as anticancer agents. *Open Chemistry*, 19(1): 1062-1073.
- 47. Kirtishanti, A., Siswandono, S. and Sudiana, I. K. (2021). Synthesis and cytotoxic activity of *n*-(4-bromo)-benzoyl-*n*'-phenylthiourea and 4-(*tert*-

- butyl)-*n*-benzoylurea on primary cells of HER2-positive breast cancer. *Research Journal of Pharmacy and Technology*, 14(3): 1195-1200.
- 48. Parmar, D. R., Soni, J. Y., Guduru, R., Rayani, R. H., Kusurkar, R. V., Vala, A. G., ... and Battula, S. (2021). Discovery of new anticancer thiourea-azetidine hybrids: Design, synthesis, *in-vitro* antiproliferative, SAR, *In-silico* molecular docking against VEGFR-2, ADMET, Toxicity, and DFT studies. *Bioorganic Chemistry*, 115: 105206.
- 49. Qaiser, S., Mubarak, M. S., Ashraf, S., Saleem, M., Ul-Haq, Z., Safdar, M., ... and Maalik, A. (2021). Benzilydene and thiourea derivatives as new classes of carbonic anhydrase inhibitors: An *In-vitro* and molecular docking study. *Medicinal Chemistry Research*, 30(3): 552-563.
- Khan, A., Khan, M., Halim, S. A., Khan, Z. A., Shafiq, Z. and Al-Harrasi, A. (2020). Quinazolinones as competitive inhibitors of carbonic anhydrase-ii (human and bovine): Synthesis, in-vitro, in-silico, selectivity, and kinetics studies. Frontiers in Chemistry, 2020: 1113.