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Abstract

Over the past decade, the corrosion inhibition of organic ligands has been extensively studied in numerous experiments in acid
media. The number of published papers related to corrosion inhibition studies of organic ligands has been rising exponentially.
The organic ligands have high inhibitive properties due to their capability to adsorb on the surface of metal by forming a protective
layer. Having lone pair electrons (S, N, O) and multiple bonds ( bonds) allow them to adsorb on the surface of metals efficiently.
However, there is very limited and less comprehensive information on the characterization of corrosion inhibition performance of
organic ligands on the surface of metals. Therefore, this review paper provides a comprehensive review on the corrosion inhibition
performance through various characterization methods, which are the electrochemical method [Electrochemical Impedance
Spectroscopy (EIS), Polarization], Scanning Electron Microscope (SEM) with Energy Dispersive X-ray (EDX), and Langmuir
Isotherm, which are thoroughly discussed herein.

Keywords: electrochemical impedance spectroscopy, polarization, scanning electron microscope with energy dispersive ~ X-
ray; Langmuir isotherm

Abstrak
Sepanjang dekad yang lalu, perencatan kakisan ligan organik di dalam media berasid telah diuji di dalam eksperimen secara meluas
dalam banyak eksperimen dalam media asid. Bilangan makalah yang diterbitkan berkaitan dengan kajian perencatan kakisan ligan
organik telah meningkat secara eksponen. Ligan organik mempunyai sifat perencat yang tinggi kerana keupayaannya untuk
menjerap pada permukaan logam dengan membentuk lapisan pelindung. Mempunyai pasangan elektron tunggal (S, N, O) dan
ikatan berganda (ikatan ) membolehkan ligan organik menjerap pada permukaan logam dengan berkesan. Walau bagaimanapun,
terdapat maklumat yang sangat terhad dan kurang komprehensif mengenai pencirian prestasi perencatan kakisan ligan organik



Nur et al: A BRIEF REVIEW ON CORROSION INHIBITION STUDY OF ORGANIC LIGAND:
ELECTROCHEMICAL, MORPHOLOGY, AND ISOTHERM STUDIES

pada permukaan logam. Oleh itu, kertas kajian ini menyediakan ulasan kajian secara menyeluruh tentang pencirian prestasi
perencatan kakisan melalui pelbagai kaedah pencirian seperti kaedah elektrokimia [Spectroskopi Impedan Elektrokimia (EIS),
Polarisasi], Mikroskop Elektron Pengimbas (SEM) dengan Sinar-X Serakan Tenaga (EDX), dan Isoterma Langmuir dan telah

dibincangkan dengan teliti di sini.

Kata kunci: spektroskopi impedan elektrokimia, polarisasi, mikroskop elektron pengimbas dengan sinar-X serakan tenaga,

isoterma Langmuir

Introduction
Corrosion is the term used for the natural oxidation of
metal. Corrosion is also prescribed as the
electrochemical corrosion or deterioration of metals and
alloys in the presence of an environment [1-2]. When
metals and alloys are unprotected in an acidic
environment, they corrode rapidly. When metals come
into contact with inorganic acids, pits and cracks
formation on the surface causes machinery and
equipment to fail [3-4]. Organic and inorganic
compounds are the two major classes of corrosion
inhibitors. Inorganic corrosion inhibitors are legislation
restricted due to their potential for toxicity and pollution,
while organic inhibitors are the most common means of
preventing metal corrosion in harsh environments [5-6].
The organic inhibitor, when introduced in small
amounts to the environment where a metal would
corrode, results in lessened oxidization of the metal [7-
9]. By adsorbing on the metal surface and generating an
obstacle that inhibits the metal active sites, the organic
inhibitor improves mild steel’s resistance to corrosive
media [10]. Organic ligands having © bonds, C=N, and
lone electron pairs (S, O, N) would produce high
inhibitive characteristics because they can enhance
effective adsorption by covalent bonding with metal
atoms' unoccupied d-orbitals [11-13]. Khaled et al.
proclaimed that the S and N atoms have been shown to
have the capability to form stable complexes that are
closely arranged in the coordination sphere of metal ions
[14]. Inhibitor molecules adsorb on metal surfaces,
forming thin films that prevents corrosion by
‘insulating’ the metal from the corrosive electrolyte and
altering the processes as well as the kinetics of corrosion
reactions [15]. The organic corrosion inhibitor can be

adsorbed on the metallic substrate through physical or
chemical adsorption [16]. Multiple electrochemical and
physical characterization techniques were used to
deduce the nature of adsorption and evaluate the
inhibitor’s corrosion inhibition efficacy.

This review presents the electrochemical techniques,
Electrochemical Impedance Spectroscopy (EIS) and
Polarization, which have been used to evaluate the
efficacy of organic compounds as corrosion inhibits on
the surface of metal. Besides, the adsorption behavior of
the inhibitors was also thoroughly reviewed through
EDX and isotherm characterization.

Corrosion Inhibition Performance Studies
Electrochemical impedance spectroscopy

EIS is a common method for exploring organic-coated
metals because it is a quick and easy approach to figure
out the protective characteristics of organic inhibitors on
metal surfaces [17]. Besides, Nikooa et al., proclaimed
that EIS is a valuable tool for learning more about the
corrosion inhibition characteristic of organic inhibitors
and their mechanism of protection [18]. Corrosion
inhibitors, 2-pyridinecarboxaldehyde
thiosemicarbazone (2-PCT), 4-pyridinecarboxaldehyde
thiosemicarbazone (4-PCT) [19], 4-(N,N-
dimethylamino)benzaldehyde thiosemicarbazone
(DMABT) [28] and {[(Benzylsulfanyl)carbonothioyl]
amino} acetic acid (BDTC), {[(Propylsulfanyl)
carbonothioyl] amino} acetic acid (PDTC) [18]
structures, as shown in Figure 1, are examples that are
used for the discussion.
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Figure 1. The Bode and Phase Angle plots for mild steel in 1.0M HCI solutions absence and existence diverse
concentrations of inhibitors at 30°C: (a and ¢) 2-PCT [19]

There was a single depressed semicircle as shown in
Figure 2 in all of the impedance spectra acquired for
DBMAT, which consisted of two loops, one capacitive
loop at a higher frequency and an inductive loop at a
lower frequency. It indicated that the electrochemical
solid/liquid barrier has a non-ideal capacitive behavior
[20-21]. The non-homogeneity or crack (roughness) of
the metal surface results in a depressed semicircle,
which is attributed to frequency dispersion [22-23]. In
addition, the “dispersing effect” of the ‘depressed
semicircle is a phenomenon that is commonly linked to
surface roughness, chemical inhomogeneity, inhibitor
adsorption, and the degree of poly crystallinity [24-26].
The existence of roughness and non-homogeneity on the
metal surface because of the formation of corrosive
chemicals and metal oxides might alter the density of
active sites on the surface. The semicircle-shaped

Nyquist plots signify the development of a barrier on the
surface and a charge transfer process that is principally
responsible for metal corrosion [27]. Mourya et al.
revealed that in an acid media, the DMABT [28] created
a single semicircle with its center below the real axis (x-
axis), indicating the existence of a single charge-transfer
process during the metal dissolution [28-29]. Overall,
the impedances spectra showed that the diameters of
imperfect semicircles steadily increase as the inhibitor
concentration rises, implying that the inhibitor
molecules can prevent metal dissolution in acidic
conditions and so improve corrosion resistance [18, 30].
Increased surface coverage of inhibitive molecules on
the surface of metal can be linked to increased capacitive
loop diameters [19, 31].
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Figure 2.> Nyquist plots of the corrosion of mild steel in acidic media absence and existence diverse concentrations of
DMABT at 298 K: (a) 1N HCI; (b) 1N H2SO, [28]

In general, the impedance curve contains three patterns,
which are the high, medium, and low frequency
capacitive loops. The impedance spectra possess a large
capacitive loop at high frequencies, followed by a
smaller inductive loop at low frequencies. The charge
transfer of the corrosion process and double-layer
behavior is frequently correlated with the high-
frequency capacitive loop. The relaxation process of the
adsorbed intermediates regulating the anodic process
could be the reason for the low inductive loop induced
by the adsorption of inhibitors or Clags and H*ags from
HCI on the electrode surface [28, 32-33]. Additionally,
the layer stabilization consequences of the corrosion
action on the electrode surface, involving inhibitor
molecules and their reactive products, are most likely
responsible for the inductive behavior at low frequencies
[32]. It could also be the outcome of passivated surface
re-dissolution. The medium capacitive loop is linked to
the adsorption of corrosion inhibitors on the metal
surface, which increases as the inhibitor ‘s concentration
increases [32]. Mourya et al. reported that in the absence
and existence of an inhibitor, the form of the curve in the
two electrolytes remained unchanged [28]. This
signifies that the addition of an inhibitor has no effect on
the corrosion mechanism [34].

The intercept complements electrolyte resistance (Rs),
solution resistance at the higher frequency end, and
electrolyte resolution (Rs) + charge transfer resistance
(Rey) at the lower frequency end. The charge transfer
resistance is R, which is the contrast between these two

quantities. Re is a measure of electron transfer over a
surface that is inversely proportional to the corrosion
rate [35]. Corrosion reactions that are strongly charged
transfer-controlled and have impedance characteristics
could be demonstrated using a simple and frequently
used equivalent circuit consisting of a double layer
capacitance, Re, and Rs. Instead of a pure double layer
capacitance, a constant phase element, CPE, is used in
the circuit compared to the capacitor, providing a more
definite fit as shown in Figure 3 [36-37].

RL"'I'.
R, L
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Figure 3. Equivalent circuit used to suit the EIS data of
mild steel in AN HCI consisting of diverse
concentrations of inhibitors [36]
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The CPE incorporates the component Cq and the
coefficient of exponential value of CPE a, which
explains physical processes such as surface roughness,
inhibitor adsorption, and the development of porous
layers [38-39]. A few studies reported that the Cg values
dropped when the concentration of various inhibitors
increased and deduced that inhibitor molecules were
deposited on the steel surface [36, 40-41]. In addition,
lower Cgq values possibly be induced by a decrease in
local dielectric constant and an increment in electrical
double layer thickness [42-44]. The Helmholtz model
can be used to explain the decreasing Cq values [45]:

EEO
ba =% )

Where, ¢ = the dielectric constant of the medium, g =
the vacuum permittivity, S = the electrode area, and 6 =
the thickness of the protective layer.

Most studies proclaimed that with the increase of
inhibitor concentrations, the Re values increased. The
increase in charge transfer resistance could be ascribed
to the creation of a protective layer on the metal/solution
interface [46-48]. The CPE's impedance function is
denoted by the expression [19, 49]:

Zepg = Y5 '(jw) ™" )

where, Yo = a proportional factor, ® = the angular
frequency, n = a deviation parameter (-1 <n < +1); n
shows phase shift that is the degree of surface in-
homogeneity, and n = 0, the CPE represents a pure
resistor, f or n = 1 an inductor and for n = +1, a pure
capacitor.

The values of the double layer capacitance (Qq), and
inhibition effectiveness (n) are computed as follows:

Qar = Yolwm)" * 3)

Where, ®” = the angular frequency at the maximum
value of the imaginary part of the impedance spectrum,
and a constant phase angle element (CPE) Qg is used to
define the Ca.

According to the Helmholtz model [50], the Qai can be
computed as follows:

808

Gar=—95

d (4)
where, d = the thickness of the protective layer, €° is the
permittivity of the air, and &€ = the local dielectric
constant, and S is the electrode surface area.
Re — RS
Zet e 100%

Tll =
R ct (5)

Re = polarization resistance values observed in the
presence of the inhibitor molecule, and Rs =
polarization resistance values observed in the presence
and absence of the inhibitor molecule [51].

Xu et al. reported that the values of R rose dramatically
and values of Qa decreased when the inhibitor
concentration rose [19]. A reduction in Qa denotes a
lowering in the local dielectric constant or a buildup in
the electrical double layer thickness. As a result, the
addition of 2-PCT and 4-PCT to the electrode surface
may adsorb on the electrode surface by exchanging
water molecules. The R value in the blank solutions
without the inhibitor is comparatively low due to the
high conductivity of the HCI solution.

According to the phase angle graphs shown in Figure 1,
more negative phase angle readings were observed when
the concentration of corrosion inhibitors was increased
in 1.0M HCI, and showed better inhibitive activity due
to more inhibitor molecules adsorbed on the metal
surface at higher concentrations. Adsorption of
inhibitors results in increased surface smoothness [33].
Furthermore, the broadening of the curves is observed,
confirming the buildup of the inhibitor molecule on the
mild steel surface [52]. Nikooa et al. reported the
uninhibited HCI solution exhibits a phase angle of -54.6°
at 63 Hz, which increases to a maximum of -72.6 at 398
Hz for BDTC and -71.4 at 316 Hz for PDTC [18]. It can
be supported by the presence of m electrons in the
aromatic ring of BDTC. In comparison to the PDTC, the
BDTC's more planar structure provides better
interaction and coverage on the metal surface.
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As a conclusion from the EIS study, corrosion inhibitors
are effective on metal surfaces in an acid solution, as
demonstrated by the results. The inclusion of
electronegativity atoms such N and S, which are active
centers of adsorption, could explain the greater
inhibitory effectiveness. These groups increase electron
density on the adsorption centers in inhibitor
compounds, enabling smoother electron transfer
between the functional group and the metal. The
adsorption of inhibitors on the metal surface increases

X s
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b 2
2-pyridinecarboxaldehyde (2-PCT)
S
NH,

N-——NH
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the R¢ because of the formation of a protective layer.
Indirectly, Qaq and local dielectric values decrease
because of the increasing electrical double layer. An
increment of surface coverage on the metal surface by
corrosion inhibitors might be due to the lessening of
water molecules and other ions. Besides, the impedance
behavior of the metal surface was significantly altered
when the inhibitor was added, and the diameter of the
semicircle produced in the Nyquist plots was
subsequently enlarged in the presence of inhibitors.
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Figure 4. Structures of 2-PCT, 4-PCT, DMBAT, BDTC, and PDTC

Polarisation plot

The shift in potential induced by concentration changes
the environment, surrounding the electrode surface is
known as concentration polarization. The voltage
difference between the anode and the cathode, as well as
the resistance of the corrosion cell, affects the rate of
corrosion (or current density). The current flow is
present in all corrosive reactions, and it changes the
potential of the metal surfaces involved. Tafel curves
were used to compute corrosion potentials (Ecor) and

corrosion current densities (lcorr) [53]. The anodic
reaction of corrosion occurs when metal ions from the
metal surface flow into the solution or electrolyte, and
the cathodic reaction occurs when hydrogen ions are
discharged to form hydrogen gas or a reduction of
dissolved oxygen in acidic solutions [54]. Cao stated
that if the Ecor Of the inhibitor-containing solution is
almost equivalent to the uninhibited solution, it can be
deduced that the inhibition effect is mediated by
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adsorption inhibitive species obstructing the surface of
the metal electrode geometrically [55].

The addition of the Thiophene derivative as a corrosion
inhibitor reduces the corrosion rate dramatically,
lowering current densities by modifying both the anodic
and cathodic Tafel curves [56]. Both anodic and
cathodic reactions are impeded by this pattern, with the
suppression effect becoming stronger as the inhibitor
concentration rises. It is plausible that this is due to the
inhibitors' adsorption at the active sites on the surface.
The mechanisms of anodic reaction in acid are shown
below:

The process of Fe dissolution pathways in HCI [57]:
Fe — ClI7 — (FeCl 4,

(a1,
Pl g —= Felll +¢

Fel’l” + e—=Fe** + (21 ©)

rpm——— L T

According to the mechanism depicted below, the iron
electrodissolution in H.SO4 solvent is mostly dependent
on the intermediate adsorption of FeOHags:

Fe + HyO— Fo H,0,,

Fell, 0,4, —* FeOll,,, 11" + e
FeOll ; —= TeOH' + e

FeQIlt — II"— Tt + 2e ©)

As a conclusion, Okafor and Zheng described that the
anodic dissolution of iron in an H.SO4 solution is mostly
reliant on the adsorbed intermediate (FeOH)ads, Wwhereas
in an HCI solution, Shukla and Quraishi stated that it is
mostly reliant on (FeCl)as [58-59]. The corrosion
inhibitors mechanism in the acid solution can be
described as:

Anodic oxidation in H.SO4 [60]:

Fe H,O, 4, + Inh—FeOH, 4"+ H" +Inh

Fe HyO, 4, + Inh=——w=Fe Inh, 4 + H,O

FeOH,y, —— FeOH,,, + e (rate-determimning step)
Felnhgy, — Felnh " +e¢

FeOH,y, + Fe Inh, 3. "—==FeOH" + Fe Inh,,,

FeOH' + H' — Fe*' + H,0 ®)

Anodic oxidation in HCI [60]:

(FeCl)yq, + InhH *———a(FeCl'InhH™), 4,
(FeCl g, + InhH=—— (Fe.InhH™) 4, + CI’

9)
The adsorption of H*,, onto the adsorbed FeCl- present
at the metal/electrolyte interface causes the lcor values
to drop at varied inhibitor concentrations. In the
presence of corrosion inhibitor, the cathodic reaction
process can be computed as follows:

N A p—
Fe+ (InhH") + c—= (F.InhH) 4
(Tell)u — (Fell) ,—=Te + T, (10)

The corrosion inhibitory effectiveness (Tafel) of
compounds is computed using the following formula
[61-62]:

'rv:crrr - "ch-n'(:l'j

* 100

nTafel (56) —
-irn:lr'r (11)

where, icorr = corrosion current densities in the absence
of inhibitors, and icorrinh) = COrrosion current densities in
the absence and in the presence of inhibitors
K RE

= “] % 100

nl%) = (
), Rcr £ (12)

“here, R = charge transfer resistance in the presence of
the inhibitor, and R%; = charge transfer resistance in the
absence of the inhibitor [63].

Figure 5 shows that the Ecor Of the corrosion inhibitors
are shifted to a more negative side and the Ecor
displacement is less than 85 mV. As a result of this
finding, corrosion inhibitors were classified as mixed-
type inhibitors, with cathodic polarization being the
most prevalent. A reduction in the rate of anodic metal
dissolution as well as a delay in the cathodic hydrogen
evolution reaction reflect the inhibitors' mixed
inhibitory nature [54, 68-69]. If the difference in
corrosion between the inhibitor and the blank exceeded
85 mV, the inhibitor was categorized as cathodic or
anodic [64-65]. As shown in Figure 6, when the
inhibitors were added to the corrosive solutions, the Ecorr
values changed in a more positive manner than when
they were absent. The inhibitors' corrosion potentials
have shifted to the positive side and the Ecor
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displacement was less than 85 mV, indicating that they
behave as mixed-type inhibitors with an anodic reaction-
predominant effect. Besides, the corrosion inhibitor can
be deduced by 3, and 3 values. Sahin et al. and Nazir et
al. reported that B values are higher than 3, in different
concentrations. It can be concluded that the inhibitor is
predominantly cathodic in nature, as supported by the
polarization curve and Ecor values [66-67]. The parallel
cathodic current—potential curves as shown in Figure 5
implies that the addition of this inhibitor has no effect
on hydrogen evolution and that hydrogen evolution is
controlled by activation. Fathabadi et al., deduced that
the charge-transfer mechanism is primarily responsible
for the reduction of H* ions on the metal surface [70].
The observation can be elucidated by the fact that the
metal surface has been covered with adsorbed corrosion
inhibitor molecules, which has suppressed the corrosion
process. This indicates that the presence of the inhibitor
has no effect on the reduction pathway, and so the
hydrogen evolution is retarded by the inhibitor's surface
blocking effect [71-72].

The shape of polarization curves with and without the
corrosion inhibitor is identical for most corrosion
inhibition performance studies in the acid media. The
occurrence explained that the addition of corrosion
inhibitors had no impact on the corrosion mechanism of
metal dissolving in acid solution, and the inhibitory
impact of these inhibitors was due to the covering of
inhibitor molecules at the active sites to limit their
exposure to the acidic environment [73].

The inhibitor molecule attaches to the mild steel surface
and blocks the anodic reaction's available reaction sites
[74-75]. With increasing inhibitor concentrations, the
surface coverage increases. At varying inhibitor
concentrations, the surface coverage, 6 of the inhibitor
was estimated using the equation:

icorr — icorr( inh)

I:COI'I' (13)

0=

where; icorr = corrosion current densities in the absence
of inhibitors, and icorrinn) = COrrosion current densities in
the presence of inhibitors.

Therefore, the inhibition effectiveness can be computed
using:

The rise in polarization resistance in the presence of the
inhibitor supports the development of a non-conducting
physical barrier of compound on the metal surface,
leading to an increase in corrosion inhibiting
effectiveness. Besides, the formation of a plateau at
anodic polarization refers to a passivation process that
arises after oxygen evolution [76]. Desorption potential
is described as a sudden increase in current density with
increasing potential, as evidenced by the flat region on
the anodic curve. The simultaneous adsorption of
inhibitor molecules on the metal surface and desorption
of inhibitor molecules due to the metal's dissolution in
corrosive media can explain these phenomena. The
desorption rate of the inhibitor is greater than its
adsorption rate in this circumstance, resulting in an
increase in the corrosion current as the potential
increment [77-78].
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Figure 5. Potentiodynamic polarization curves for mild
steel in the absence and presence of diverse
concentrations of inhibitors in 1.0 M HCI: (a)
2-PCT, (b) 4-PCTat30°C [19]
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Figure 6. Potentiodynamic polarization curves for CRS in the presence and absence of diverse concentrations of the
inhibitor at room temperature in 0.5 M HCI: (a) BDTC [18]

Scanning electron microscope-energy dispersive X-ray

SEM is used to scrutinize the morphology of mild steel
surfaces before and after their immersion in acid
solution. While EDX is used to confirm the creation of
the protective coating owing to inhibitor adsorption on
the surface of mild steel [79-80]. EDX spectra displayed
the presence of N, S, P (corrosion inhibitors) and
decreased composition of Fe on the metal surface as a
proof of protective layer formation [81-82]. This
increased inhibitory efficacy was presumably due to a
strong interaction between the (—NH,) and (=S) groups
classified as electronegative atoms in the inhibitors'
molecular structures and the metal surface, which blocks
the active sites  of adsorption. According to a few
studies, the availability of free electron pairs,
heteroatoms, and - @ orbitals permits the corrosion
inhibitor to have a significant inhibitory performance,
resulting in the blocking of active sites and, as a result,
a reduction in corrosion rate [83]. Therefore, it improves
the metal surface roughness (smoothness) and reduce
the pits [84-85]. The development of iron oxide on the
metal surface causes a peak of O to be extremely high in
an uninhibited hydrochloride solution [86-87]. Whereas,
due to the adsorption of the BDTC molecules, the
oxidation of CRS on the surface is reduced, showing that
there is less oxidation of CRS on the surface. The

surface of uninhibited metal is severely eroded, and due
to the Cl-induced attack, a surface deep hole can be seen
at greater resolutions [88] Besides, the corroded metal
showed an uneven, pit-shaped pattern and the formation
of crystal gain corrosion products [89]. Al-Amiery et al.
deduced that because the surface was dried before SEM
scanning, the cracks in the film are attributable to
surface dehydration [90]. The electrochemical analysis
correlates well with these findings.

Adsorption isotherm

Adsorption isotherms are commonly used to indicate the
efficacy of organic adsorbent type inhibitors and are
crucial in understanding how organic electrochemical
reactions occur. The adsorption behavior of inhibitors
can be depicted using two different types of interactions:
physisorption and chemisorption. The adsorption of
organic inhibitor molecules from an aqueous solution
onto a metal surface has the following equilibrium

equation:
Orgsoly + XHaOagesi ™™ Orads) + XH2 O

(15)
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From the equation, it can be deduced that the adsorption
of corrosion inhibitors (organic compounds) was
complemented by the desorption of H,O molecules from
the metal surface [91-92]. Langmuir, Temkin, and
Frumkin isotherms, which characterizes the relationship
between surface coverage, 6 and concentration of
corrosion inhibitor, are the most utilized adsorption
isotherms using weight loss data. Ozkir et al. surmised
that an adsorption isotherm can reveal a lot about how
corrosion inhibitors interact with the metal surface [93].

The following attempts were made to suit 0 values to
Langmuir, Frumkin, Freundlich, and Temkin isotherms

[94-96]:

Langmuiri —=—+{
B g

K (16)

[ . .
Frumlin: ——wepi—2§) = KT

1-¢ 7
Temlin: explf@) = KE (18)
where; 0 = surface coverage, K = the adsorption-
desorption  equilibrium  constant or adsorptive
equilibrium  constant (Lmol?), C = inhibitor

concentration (molL?), and f = factor of energetic
inhomogeneity.

9 — Wo—Wi
o (19)
0 — Lcorr — igg;l"r
E.corr (20)
g = Ret—REt
Ret (21)

where, wo= weight loss of metal in the blank, w;
weight loss of metal in the inhibitor solution, icor =
current density of metal in the blank, i™r = current
density of metal in the inhibitor solution, R¢ = charge
transfer resistance in the blank, and Re°= charge transfer
resistance in the inhibitor solution [36, 97, 98].

The isotherm that significantly suited the experimental
data was determined using the correlation coefficient
(R?). Mostly, the corrosion inhibition studies of organic
compounds’ weight losses values were fitted with
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Langmuir Isotherm. The Langmuir equation is based on
the presumption that the adsorption is monolayer, that
all active sites have a consistent distribution of energy
levels, and that adsorbed molecules do not interact with
each other [99-100] Its phenomenon is supported if the
R? value is close to 1 or unity [101] The intercepts of the
straight lines were used to compute the values of Kags
from the graphs of C/8 versus C or log(6/1-60) versus log
C. The high Kags value demonstrates the inhibitor's high
adsorption capacity on metal surfaces. Additionally,
increasing the temperature reduced the value of Kags,
indicating that increasing the solution temperature
generates more agitation, and consequently, the
desorption of some inhibitor molecules from the metal
surface [102-103] The following equation can be
applied to estimate the standard free energy of inhibitor
adsorption using the value of kags [104]:

AGL,. = —RTIn55.5k g (22)

where, 55.5 = molar concentration of water, R =
universal gas constant (8.314 JK'mol?), T =
temperature (K), and AG®xs = Gibbs free energy of
adsorption.

The negative value of G°4s suggests that the process is
spontaneous, implying that the inhibitor molecules are
efficiently adsorbed on the mild steel surface [105]. Yurt
et al. stated that the presence of electrostatic interactions
between charged molecules and metal surface charges
are indicated by the magnitude of AG®°as Smaller than 20
kJmol! (physisorption) [106]. When AG®,gs is more than
40 kdmol, it suggests that electrons from the inhibitor
molecules are shared or transferred to the metal surface,
forming a coordinate type of bond (chemisorption) [107-
109]. The AG°®4s values are in the range of -20 to -40
kJmol?, showing that both chemisorption and
physisorption are involved in the adsorption process
[110-111]. Adsorption initiates electrostatic interactions
between water molecules and metal surfaces, followed
by chemical interactions between the metal surface and
the adsorbate (inhibitor). Zhang et al. reported that if the
value of AG®s is in between -20 to -40 kJmol™,but near
to -40 kdmol* then it can be concluded that the inhibitor
is a combination of chemisorption and physisorption
which is predominantly chemisorption [112]. Therefore,
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if the AG®uqs is near to -20 kJmol?, it is predominantly
physisorption.

Conclusion

In this review paper, different techniques were discussed
that will help researchers explain the phenomenon and
mechanism that have occurred on the metal surface after
the adsorption of the inhibitor. The type of adsorption of
inhibitors on the metal surface can be deduced using
electrochemical techniques (EIS and polarization),
SEM-EDX, and Langmuir isotherm.
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