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Abstract 

Over the past decade, the corrosion inhibition of organic ligands has been extensively studied in numerous experiments in acid 

media. The number of published papers related to corrosion inhibition studies of organic ligands has been rising exponentially. 

The organic ligands have high inhibitive properties due to their capability to adsorb on the surface of metal by forming a protective 

layer. Having lone pair electrons (S, N, O) and multiple bonds (π bonds) allow them to adsorb on the surface of metals efficiently. 

However, there is very limited and less comprehensive information on the characterization of corrosion inhibition performance of 

organic ligands on the surface of metals. Therefore, this review paper provides a comprehensive review on the corrosion inhibition 

performance through various characterization methods, which are the electrochemical method [Electrochemical Impedance 

Spectroscopy (EIS), Polarization], Scanning Electron Microscope (SEM) with Energy Dispersive X-ray (EDX), and Langmuir 

Isotherm, which are thoroughly discussed herein. 

 

Keywords:  electrochemical impedance spectroscopy, polarization, scanning electron microscope with energy dispersive     X-

ray; Langmuir isotherm 

 

Abstrak 

Sepanjang dekad yang lalu, perencatan kakisan ligan organik di dalam media berasid telah diuji di dalam eksperimen secara meluas 

dalam banyak eksperimen dalam media asid. Bilangan makalah yang diterbitkan berkaitan dengan kajian perencatan kakisan ligan 

organik telah meningkat secara eksponen. Ligan organik mempunyai sifat perencat yang tinggi kerana keupayaannya untuk 

menjerap pada permukaan logam dengan membentuk lapisan pelindung. Mempunyai pasangan elektron tunggal (S, N, O) dan 

ikatan berganda (ikatan π) membolehkan ligan organik menjerap pada permukaan logam dengan berkesan. Walau bagaimanapun, 

terdapat maklumat yang sangat terhad dan kurang komprehensif mengenai pencirian prestasi perencatan kakisan ligan organik 
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pada permukaan logam. Oleh itu, kertas kajian ini menyediakan ulasan kajian secara menyeluruh tentang pencirian prestasi 

perencatan kakisan melalui pelbagai kaedah pencirian seperti kaedah elektrokimia [Spectroskopi Impedan Elektrokimia (EIS), 

Polarisasi], Mikroskop Elektron Pengimbas (SEM) dengan Sinar-X Serakan Tenaga (EDX), dan Isoterma Langmuir dan telah 

dibincangkan dengan teliti di sini. 

 

Kata kunci:  spektroskopi impedan elektrokimia, polarisasi, mikroskop elektron pengimbas dengan sinar-X serakan tenaga, 

isoterma Langmuir 

 

Introduction 

Corrosion is the term used for the natural oxidation of 

metal. Corrosion is also prescribed as the 

electrochemical corrosion or deterioration of metals and 

alloys in the presence of an environment [1-2]. When 

metals and alloys are unprotected in an acidic 

environment, they corrode rapidly. When metals come 

into contact with inorganic acids, pits and cracks 

formation on the surface causes machinery and 

equipment to fail [3-4]. Organic and inorganic 

compounds are the two major classes of corrosion 

inhibitors. Inorganic corrosion inhibitors are legislation 

restricted due to their potential for toxicity and pollution, 

while organic inhibitors are the most common means of 

preventing metal corrosion in harsh environments [5-6]. 

The organic inhibitor, when introduced in small 

amounts to the environment where a metal would 

corrode, results in lessened oxidization of the metal [7-

9]. By adsorbing on the metal surface and generating an 

obstacle that inhibits the metal active sites, the organic 

inhibitor improves mild steel’s resistance to corrosive 

media [10]. Organic ligands having π bonds, C=N, and 

lone electron pairs (S, O, N) would produce high 

inhibitive characteristics because they can enhance 

effective adsorption by covalent bonding with metal 

atoms' unoccupied d-orbitals [11-13]. Khaled et al. 

proclaimed that the S and N atoms have been shown to 

have the capability to form stable complexes that are 

closely arranged in the coordination sphere of metal ions 

[14]. Inhibitor molecules adsorb on metal surfaces, 

forming thin films that prevents corrosion by 

‘insulating’ the metal from the corrosive electrolyte and 

altering the processes as well as the kinetics of corrosion 

reactions [15]. The organic corrosion inhibitor can be 

adsorbed on the metallic substrate through physical or 

chemical adsorption [16]. Multiple electrochemical and 

physical characterization techniques were used to 

deduce the nature of adsorption and evaluate the 

inhibitor’s corrosion inhibition efficacy. 

 

This review presents the electrochemical techniques, 

Electrochemical Impedance Spectroscopy (EIS) and 

Polarization, which have been used to evaluate the 

efficacy of organic compounds as corrosion inhibits on 

the surface of metal. Besides, the adsorption behavior of 

the inhibitors was also thoroughly reviewed through 

EDX and isotherm characterization. 

 

Corrosion Inhibition Performance Studies 

Electrochemical impedance spectroscopy  

EIS is a common method for exploring organic-coated 

metals because it is a quick and easy approach to figure 

out the protective characteristics of organic inhibitors on 

metal surfaces [17]. Besides, Nikooa et al., proclaimed 

that EIS is a valuable tool for learning more about the 

corrosion inhibition characteristic of organic inhibitors 

and their mechanism of protection [18]. Corrosion 

inhibitors, 2-pyridinecarboxaldehyde 

thiosemicarbazone (2-PCT), 4-pyridinecarboxaldehyde 

thiosemicarbazone (4-PCT) [19], 4-(N,N-

dimethylamino)benzaldehyde thiosemicarbazone 

(DMABT) [28] and {[(Benzylsulfanyl)carbonothioyl] 

amino} acetic acid (BDTC), {[(Propylsulfanyl) 

carbonothioyl] amino} acetic acid (PDTC) [18] 

structures, as shown in Figure 1, are examples that are 

used for the discussion.  
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Figure 1.  The Bode and Phase Angle plots for mild steel in 1.0M HCl solutions absence and existence diverse 

concentrations of inhibitors at 30ºC: (a and c) 2-PCT [19] 

 

 

There was a single depressed semicircle as shown in 

Figure 2 in all of the impedance spectra acquired for 

DBMAT, which consisted of two loops, one capacitive 

loop at a higher frequency and an inductive loop at a 

lower frequency. It indicated that the electrochemical 

solid/liquid barrier has a non-ideal capacitive behavior 

[20-21]. The non-homogeneity or crack (roughness) of 

the metal surface results in a depressed semicircle, 

which is attributed to frequency dispersion [22-23]. In 

addition, the “dispersing effect” of the depressed 

semicircle is a phenomenon that is commonly linked to 

surface roughness, chemical inhomogeneity, inhibitor 

adsorption, and the degree of poly crystallinity [24-26]. 

The existence of roughness and non-homogeneity on the 

metal surface because of the formation of corrosive 

chemicals and metal oxides might alter the density of 

active sites on the surface. The semicircle-shaped 

Nyquist plots signify the development of a barrier on the 

surface and a charge transfer process that is principally 

responsible for metal corrosion [27]. Mourya et al. 

revealed that in an acid media, the DMABT [28] created 

a single semicircle with its center below the real axis (x-

axis), indicating the existence of a single charge-transfer 

process during the metal dissolution [28-29]. Overall, 

the impedances spectra showed that the diameters of 

imperfect semicircles steadily increase as the inhibitor 

concentration rises, implying that the inhibitor 

molecules can prevent metal dissolution in acidic 

conditions and so improve corrosion resistance [18, 30]. 

Increased surface coverage of inhibitive molecules on 

the surface of metal can be linked to increased capacitive 

loop diameters [19, 31]. 
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Figure 2.  Nyquist plots of the corrosion of mild steel in acidic media absence and existence diverse concentrations of 

DMABT at 298 K: (a) 1N HCl; (b) 1N H2SO4 [28] 

 

 

In general, the impedance curve contains three patterns, 

which are the high, medium, and low frequency 

capacitive loops. The impedance spectra possess a large 

capacitive loop at high frequencies, followed by a 

smaller inductive loop at low frequencies. The charge 

transfer of the corrosion process and double-layer 

behavior is frequently correlated with the high-

frequency capacitive loop. The relaxation process of the 

adsorbed intermediates regulating the anodic process 

could be the reason for the low inductive loop induced 

by the adsorption of inhibitors or Cl-
ads and H+

ads from 

HCl on the electrode surface [28, 32-33]. Additionally, 

the layer stabilization consequences of the corrosion 

action on the electrode surface, involving inhibitor 

molecules and their reactive products, are most likely 

responsible for the inductive behavior at low frequencies 

[32]. It could also be the outcome of passivated surface 

re-dissolution. The medium capacitive loop is linked to 

the adsorption of corrosion inhibitors on the metal 

surface, which increases as the inhibitor ‘s concentration 

increases [32]. Mourya et al. reported that in the absence 

and existence of an inhibitor, the form of the curve in the 

two electrolytes remained unchanged [28]. This 

signifies that the addition of an inhibitor has no effect on 

the corrosion mechanism [34].  

 

The intercept complements electrolyte resistance (Rs), 

solution resistance at the higher frequency end, and 

electrolyte resolution (Rs) + charge transfer resistance 

(Rct) at the lower frequency end. The charge transfer 

resistance is Rct, which is the contrast between these two 

quantities. Rct is a measure of electron transfer over a 

surface that is inversely proportional to the corrosion 

rate [35]. Corrosion reactions that are strongly charged 

transfer-controlled and have impedance characteristics 

could be demonstrated using a simple and frequently 

used equivalent circuit consisting of a double layer 

capacitance, Rct, and Rs. Instead of a pure double layer 

capacitance, a constant phase element, CPE, is used in 

the circuit compared to the capacitor, providing a more 

definite fit as shown in Figure 3 [36-37].  

 
Figure 3. Equivalent circuit used to suit the EIS data of 

mild steel in 1N HCl consisting of diverse 

concentrations of inhibitors [36] 
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The CPE incorporates the component Cdl and the 

coefficient of exponential value of CPE α, which 

explains physical processes such as surface roughness, 

inhibitor adsorption, and the development of porous 

layers [38-39]. A few studies reported that the Cdl values 

dropped when the concentration of various inhibitors 

increased and deduced that inhibitor molecules were 

deposited on the steel surface [36, 40-41]. In addition, 

lower Cdl values possibly be induced by a decrease in 

local dielectric constant and an increment in electrical 

double layer thickness [42-44]. The Helmholtz model 

can be used to explain the decreasing Cdl values [45]: 

 

                (1) 

 

Where, ε = the dielectric constant of the medium,  ε0 = 

the vacuum permittivity, S = the electrode area, and δ = 

the thickness of the protective layer. 

 

Most studies proclaimed that with the increase of 

inhibitor concentrations, the Rct values increased. The 

increase in charge transfer resistance could be ascribed 

to the creation of a protective layer on the metal/solution 

interface [46-48]. The CPE's impedance function is 

denoted by the expression [19, 49]: 

               (2) 

where, Y0 = a proportional factor, ω = the angular 

frequency, n = a deviation parameter (-1 ≤ n ≤ +1); n 

shows phase shift that is the degree of surface in-

homogeneity, and n = 0, the CPE represents a pure 

resistor, f or n = 1 an inductor and for n = +1, a pure 

capacitor. 

 

The values of the double layer capacitance (Qdl), and 

inhibition effectiveness (ղ) are computed as follows: 

               (3) 

where, ω” = the angular frequency at the maximum 

value of the imaginary part of the impedance spectrum, 

and a constant phase angle element (CPE) Qdl is used to 

define the Cdl. 

 

According to the Helmholtz model [50], the Qdl can be 

computed as follows: 

                (4) 

where, d = the thickness of the protective layer, ε° is the 

permittivity of the air, and ε = the local dielectric 

constant, and S is the electrode surface area. 

               (5) 

Rct = polarization resistance values observed in the 

presence of the inhibitor molecule, and Rct
° = 

polarization resistance values observed in the presence 

and absence of the inhibitor molecule [51]. 

 

Xu et al. reported that the values of Rct rose dramatically 

and values of Qdl decreased when the inhibitor 

concentration rose [19]. A reduction in Qdl denotes a 

lowering in the local dielectric constant or a buildup in 

the electrical double layer thickness. As a result, the 

addition of 2-PCT and 4-PCT to the electrode surface 

may adsorb on the electrode surface by exchanging 

water molecules. The Rct value in the blank solutions 

without the inhibitor is comparatively low due to the 

high conductivity of the HCl solution. 

 

According to the phase angle graphs shown in Figure 1, 

more negative phase angle readings were observed when 

the concentration of corrosion inhibitors was increased 

in 1.0M HCl, and showed better inhibitive activity due 

to more inhibitor molecules adsorbed on the metal 

surface at higher concentrations. Adsorption of 

inhibitors results in increased surface smoothness [33]. 

Furthermore, the broadening of the curves is observed, 

confirming the buildup of the inhibitor molecule on the 

mild steel surface [52]. Nikooa et al. reported the 

uninhibited HCl solution exhibits a phase angle of -54.6° 

at 63 Hz, which increases to a maximum of -72.6 at 398 

Hz for BDTC and -71.4 at 316 Hz for PDTC [18]. It can 

be supported by the presence of π electrons in the 

aromatic ring of BDTC. In comparison to the PDTC, the 

BDTC's more planar structure provides better 

interaction and coverage on the metal surface. 
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As a conclusion from the EIS study, corrosion inhibitors 

are effective on metal surfaces in an acid solution, as 

demonstrated by the results. The inclusion of 

electronegativity atoms such N and S, which are active 

centers of adsorption, could explain the greater 

inhibitory effectiveness. These groups increase electron 

density on the adsorption centers in inhibitor 

compounds, enabling smoother electron transfer 

between the functional group and the metal. The 

adsorption of inhibitors on the metal surface increases 

the Rct because of the formation of a protective layer. 

Indirectly, Qdl and local dielectric values decrease 

because of the increasing electrical double layer. An 

increment of surface coverage on the metal surface by 

corrosion inhibitors might be due to the lessening of 

water molecules and other ions. Besides, the impedance 

behavior of the metal surface was significantly altered 

when the inhibitor was added, and the diameter of the 

semicircle produced in the Nyquist plots was 

subsequently enlarged in the presence of inhibitors. 

  

 

Figure 4.  Structures of 2-PCT, 4-PCT, DMBAT, BDTC, and PDTC 

 

 

Polarisation plot 

The shift in potential induced by concentration changes 

the environment, surrounding the electrode surface is 

known as concentration polarization. The voltage 

difference between the anode and the cathode, as well as 

the resistance of the corrosion cell, affects the rate of 

corrosion (or current density). The current flow is 

present in all corrosive reactions, and it changes the 

potential of the metal surfaces involved. Tafel curves 

were used to compute corrosion potentials (Ecorr) and 

corrosion current densities (Icorr) [53]. The anodic 

reaction of corrosion occurs when metal ions from the 

metal surface flow into the solution or electrolyte, and 

the cathodic reaction occurs when hydrogen ions are 

discharged to form hydrogen gas or a reduction of 

dissolved oxygen in acidic solutions [54]. Cao stated 

that if the Ecorr of the inhibitor-containing solution is 

almost equivalent to the uninhibited solution, it can be 

deduced that the inhibition effect is mediated by 

 
2-pyridinecarboxaldehyde (2-PCT) 

 

 
4-pyridinecarboxaldehyde (4-PCT) 

  
 

DMBAT 

 
R = benzyl (BDTC) 

R = propyl (PDTC) 

{[(Benzylsulfanyl)carbonothioyl]amino} acetic acid 

(BDTC): 

{[(Propylsulfanyl)carbonothioyl]amino} acetic acid 

(PDTC): 
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adsorption inhibitive species obstructing the surface of 

the metal electrode geometrically [55]. 

 

The addition of the Thiophene derivative as a corrosion 

inhibitor reduces the corrosion rate dramatically, 

lowering current densities by modifying both the anodic 

and cathodic Tafel curves [56]. Both anodic and 

cathodic reactions are impeded by this pattern, with the 

suppression effect becoming stronger as the inhibitor 

concentration rises. It is plausible that this is due to the 

inhibitors' adsorption at the active sites on the surface. 

The mechanisms of anodic reaction in acid are shown 

below: 

 

The process of Fe dissolution pathways in HCl [57]: 

              (6) 

According to the mechanism depicted below, the iron 

electrodissolution in H2SO4 solvent is mostly dependent 

on the intermediate adsorption of FeOHads: 

             (7) 

As a conclusion, Okafor and Zheng described that the 

anodic dissolution of iron in an H2SO4 solution is mostly 

reliant on the adsorbed intermediate (FeOH)ads, whereas 

in an HCl solution, Shukla and Quraishi stated that it is 

mostly reliant on (FeCl)ads [58-59]. The corrosion 

inhibitors mechanism in the acid solution can be 

described as:  

 

Anodic oxidation in H2SO4 [60]: 

   (8) 

 

 

Anodic oxidation in HCl [60]: 

            (9) 

The adsorption of H+
Inh onto the adsorbed FeCl- present 

at the metal/electrolyte interface causes the Icorr values 

to drop at varied inhibitor concentrations. In the 

presence of corrosion inhibitor, the cathodic reaction 

process can be computed as follows: 

          (10) 

The corrosion inhibitory effectiveness (Tafel) of 

compounds is computed using the following formula 

[61-62]: 

           (11) 

where, icorr = corrosion current densities in the absence 

of inhibitors, and icorr(inh) = corrosion current densities in 

the absence and in the presence of inhibitors 

            (12) 

where, Rct = charge transfer resistance in the presence of 

the inhibitor, and R0
ct = charge transfer resistance in the 

absence of the inhibitor [63].  

 

Figure 5 shows that the Ecorr of the corrosion inhibitors 

are shifted to a more negative side and the Ecorr 

displacement is less than 85 mV. As a result of this 

finding, corrosion inhibitors were classified as mixed-

type inhibitors, with cathodic polarization being the 

most prevalent. A reduction in the rate of anodic metal 

dissolution as well as a delay in the cathodic hydrogen 

evolution reaction reflect the inhibitors' mixed 

inhibitory nature [54, 68-69]. If the difference in 

corrosion between the inhibitor and the blank exceeded 

85 mV, the inhibitor was categorized as cathodic or 

anodic [64-65]. As shown in Figure 6, when the 

inhibitors were added to the corrosive solutions, the Ecorr 

values changed in a more positive manner than when 

they were absent. The inhibitors' corrosion potentials 

have shifted to the positive side and the Ecorr 
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displacement was less than 85 mV, indicating that they 

behave as mixed-type inhibitors with an anodic reaction-

predominant effect. Besides, the corrosion inhibitor can 

be deduced by ßa and ßc values. Sahin et al. and Nazir et 

al. reported that ßc values are higher than ßa in different 

concentrations. It can be concluded that the inhibitor is 

predominantly cathodic in nature, as supported by the 

polarization curve and Ecorr values [66-67]. The parallel 

cathodic current–potential curves as shown in Figure 5 

implies that the addition of this inhibitor has no effect 

on hydrogen evolution and that hydrogen evolution is 

controlled by activation. Fathabadi et al., deduced that 

the charge-transfer mechanism is primarily responsible 

for the reduction of H+ ions on the metal surface [70]. 

The observation can be elucidated by the fact that the 

metal surface has been covered with adsorbed corrosion 

inhibitor molecules, which has suppressed the corrosion 

process. This indicates that the presence of the inhibitor 

has no effect on the reduction pathway, and so the 

hydrogen evolution is retarded by the inhibitor's surface 

blocking effect [71-72].  

 

The shape of polarization curves with and without the 

corrosion inhibitor is identical for most corrosion 

inhibition performance studies in the acid media. The 

occurrence explained that the addition of corrosion 

inhibitors had no impact on the corrosion mechanism of 

metal dissolving in acid solution, and the inhibitory 

impact of these inhibitors was due to the covering of 

inhibitor molecules at the active sites to limit their 

exposure to the acidic environment [73].  

 

The inhibitor molecule attaches to the mild steel surface 

and blocks the anodic reaction's available reaction sites 

[74-75]. With increasing inhibitor concentrations, the 

surface coverage increases. At varying inhibitor 

concentrations, the surface coverage, θ of the inhibitor 

was estimated using the equation: 

             (13) 

where; icorr = corrosion current densities in the absence 

of inhibitors, and icorr(inh) = corrosion current densities in 

the presence of inhibitors. 

 

Therefore, the inhibition effectiveness can be computed 

using: 

            (14) 

The rise in polarization resistance in the presence of the 

inhibitor supports the development of a non-conducting 

physical barrier of compound on the metal surface, 

leading to an increase in corrosion inhibiting 

effectiveness. Besides, the formation of a plateau at 

anodic polarization refers to a passivation process that 

arises after oxygen evolution [76]. Desorption potential 

is described as a sudden increase in current density with 

increasing potential, as evidenced by the flat region on 

the anodic curve. The simultaneous adsorption of 

inhibitor molecules on the metal surface and desorption 

of inhibitor molecules due to the metal's dissolution in 

corrosive media can explain these phenomena. The 

desorption rate of the inhibitor is greater than its 

adsorption rate in this circumstance, resulting in an 

increase in the corrosion current as the potential 

increment [77-78]. 

 

 

Figure 5. Potentiodynamic polarization curves for mild 

steel in the absence and presence of diverse 

concentrations of inhibitors in 1.0 M HCl: (a) 

2-PCT, (b) 4-PCTat30ºC [19]
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Figure 6.  Potentiodynamic polarization curves for CRS in the presence and absence of diverse concentrations of the 

inhibitor at room temperature in 0.5 M HCl: (a) BDTC [18] 

 

Scanning electron microscope-energy dispersive X-ray  

SEM is used to scrutinize the morphology of mild steel 

surfaces before and after their immersion in acid 

solution. While EDX is used to confirm the creation of 

the protective coating owing to inhibitor adsorption on 

the surface of mild steel [79-80]. EDX spectra displayed 

the presence of N, S, P (corrosion inhibitors) and 

decreased composition of Fe on the metal surface as a 

proof of protective layer formation [81-82]. This 

increased inhibitory efficacy was presumably due to a 

strong interaction between the (–NH2) and (=S) groups 

classified as electronegative atoms in the inhibitors' 

molecular structures and the metal surface, which blocks 

the active sites of adsorption. According to a few 

studies, the availability of free electron pairs, 

heteroatoms, and π orbitals permits the corrosion 

inhibitor to have a significant inhibitory performance, 

resulting in the blocking of active sites and, as a result, 

a reduction in corrosion rate [83]. Therefore, it improves 

the metal surface roughness (smoothness) and reduce 

the pits [84-85]. The development of iron oxide on the 

metal surface causes a peak of O to be extremely high in 

an uninhibited hydrochloride solution [86-87]. Whereas, 

due to the adsorption of the BDTC molecules, the 

oxidation of CRS on the surface is reduced, showing that 

there is less oxidation of CRS on the surface. The 

surface of uninhibited metal is severely eroded, and due 

to the Cl--induced attack, a surface deep hole can be seen 

at greater resolutions [88] Besides, the corroded metal 

showed an uneven, pit-shaped pattern and the formation 

of crystal gain corrosion products [89]. Al-Amiery et al. 

deduced that because the surface was dried before SEM 

scanning, the cracks in the film are attributable to 

surface dehydration [90]. The electrochemical analysis 

correlates well with these findings. 

 

Adsorption isotherm 

Adsorption isotherms are commonly used to indicate the 

efficacy of organic adsorbent type inhibitors and are 

crucial in understanding how organic electrochemical 

reactions occur. The adsorption behavior of inhibitors 

can be depicted using two different types of interactions: 

physisorption and chemisorption. The adsorption of 

organic inhibitor molecules from an aqueous solution 

onto a metal surface has the following equilibrium 

equation: 

 
               (15) 
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From the equation, it can be deduced that the adsorption 

of corrosion inhibitors (organic compounds) was 

complemented by the desorption of H2O molecules from 

the metal surface [91-92]. Langmuir, Temkin, and 

Frumkin isotherms, which characterizes the relationship 

between surface coverage, θ and concentration of 

corrosion inhibitor, are the most utilized adsorption 

isotherms using weight loss data. Ozkir et al. surmised 

that an adsorption isotherm can reveal a lot about how 

corrosion inhibitors interact with the metal surface [93]. 

  

The following attempts were made to suit θ values to 

Langmuir, Frumkin, Freundlich, and Temkin isotherms 

[94-96]: 

                                                (16) 
 

            (17) 

 

             (18) 

where; θ = surface coverage, K = the adsorption-

desorption equilibrium constant or adsorptive 

equilibrium constant (Lmol-1), C = inhibitor 

concentration (molL-1), and f = factor of energetic 

inhomogeneity. 

               (19) 

              (20) 

               (21) 

where, w0= weight loss of metal in the blank, wi = 

weight loss of metal in the inhibitor solution, icorr = 

current density of metal in the blank, iinh
corr = current 

density of metal in the inhibitor solution, Rct = charge 

transfer resistance in the blank, and Rct°= charge transfer 

resistance in the inhibitor solution [36, 97, 98]. 

 

The isotherm that significantly suited the experimental 

data was determined using the correlation coefficient 

(R2). Mostly, the corrosion inhibition studies of organic 

compounds’ weight losses values were fitted with 

Langmuir Isotherm. The Langmuir equation is based on 

the presumption that the adsorption is monolayer, that 

all active sites have a consistent distribution of energy 

levels, and that adsorbed molecules do not interact with 

each other [99-100] Its phenomenon is supported if the 

R2 value is close to 1 or unity [101] The intercepts of the 

straight lines were used to compute the values of kads 

from the graphs of C/θ versus C or log(θ/1-θ) versus log 

C. The high Kads value demonstrates the inhibitor's high 

adsorption capacity on metal surfaces. Additionally, 

increasing the temperature reduced the value of kads, 

indicating that increasing the solution temperature 

generates more agitation, and consequently, the 

desorption of some inhibitor molecules from the metal 

surface [102-103] The following equation can be 

applied to estimate the standard free energy of inhibitor 

adsorption using the value of kads [104]:  

            (22) 

where, 55.5 = molar concentration of water, R = 

universal gas constant (8.314 JK-1mol-1), T = 

temperature (K), and ΔG°ads = Gibbs free energy of 

adsorption. 

 

The negative value of G°ads suggests that the process is 

spontaneous, implying that the inhibitor molecules are 

efficiently adsorbed on the mild steel surface [105]. Yurt 

et al. stated that the presence of electrostatic interactions 

between charged molecules and metal surface charges 

are indicated by the magnitude of ΔG°ads smaller than 20 

kJmol-1 (physisorption) [106]. When ΔG°ads is more than 

40 kJmol-1, it suggests that electrons from the inhibitor 

molecules are shared or transferred to the metal surface, 

forming a coordinate type of bond (chemisorption) [107-

109]. The ΔG°ads values are in the range of -20 to -40 

kJmol-1, showing that both chemisorption and 

physisorption are involved in the adsorption process 

[110-111]. Adsorption initiates electrostatic interactions 

between water molecules and metal surfaces, followed 

by chemical interactions between the metal surface and 

the adsorbate (inhibitor). Zhang et al. reported that if the 

value of ΔG°ads is in between -20 to -40 kJmol-1,but near 

to -40 kJmol-1 ,then it can be concluded that the inhibitor 

is a combination of chemisorption and physisorption 

which is predominantly chemisorption [112]. Therefore, 
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if the ΔG°ads is near to -20 kJmol-1, it is predominantly 

physisorption. 

 

Conclusion 

In this review paper, different techniques were discussed 

that will help researchers explain the phenomenon and 

mechanism that have occurred on the metal surface after 

the adsorption of the inhibitor. The type of adsorption of 

inhibitors on the metal surface can be deduced using 

electrochemical techniques (EIS and polarization), 

SEM-EDX, and Langmuir isotherm.  
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