Malaysian Journal of Analytical Sciences Vol 26 No 2 (2022): 347 - 359

 

 

 

 

THERMAL DECOMPOSITION OF CALCIUM CARBONATE IN CHICKEN EGGSHELLS: STUDY ON TEMPERATURE AND CONTACT TIME

 

(Penguraian Kalsium Karbonat dalam Kulit Telur Ayam: Kajian Mengenai Suhu dan Masa)

 

Nadia Razali1, Nurriswin Jumadi1,2*, Adlin Yasmin Jalani1, Nurhanim Zulaikha Kamarulzaman1, Khairul Faizal Pa'ee3

 

1Section of Environmental Engineering Technology

2Section of Process Engineering Technology

3Section of Food Engineering Technology

Universiti Kuala Lumpur   MICET, 78000 Alor Gajah, Melaka, Malaysia

4Kolej Komuniti Jelebu,

71600 Kuala Klawang, Negeri Sembilan, Malaysia

 

*Corresponding author:  nurriswin@s.unikl.edu.my

 

 

Received: 13 September 2021; Accepted:  3 February 2022; Published:  28 April 2022

 

 

Abstract

Within the context of a circular economy, the recycling or valorisation of eggshells, which are typically discarded in landfills, represents an opportunity. The primary compound in eggshells is calcium carbonate (CaCO3), which can be decomposed into calcium oxide (CaO) by calcination. This study examined the calcination conditions (temperature and contact time) for the optimum CaCO3 decomposition rate. The eggshell samples were pre-treated to eliminate dirt and unnecessary biological substance, ground into powder and sieved. The primary physical and chemical characteristics of eggshell powder were studied, including colour changes, mass loss, bulk density, moisture content, pH, thermal properties, and identification of chemical bonds and compounds in a molecule. This study evaluated the physical and chemical properties of the synthesised CaCO3 from eggshells, moisture content, bulk density, pH, FTIR, and XRD. The results showed significant differences in the samples' colour transition at various temperatures and contact times based on the physical observation. The TGA analysis showed that eggshell powder decomposed at a temperature range of 600 - 900 oC. The FTIR results reported that for the calcine samples, the grey powder consists of CaCO3, while the solid white powder consists of metal oxide content. Similar seven diffraction peaks were observed in the XRD analysis for calcination at 900 oC and industrial CaO (32.25, 37.41, 53.92, 64.18, 67.41, 79.70, and 88.58). The eggshell powder calcined at the temperature of 900 oC and contact time of 3 h was identified as an ideal condition for the decomposition of raw eggshell powder based on FTIR and XRD analyses. Both results showed that CaO corresponded to the wavelength spectrum and diffraction analysis of the sample.

 

Keywords:  calcium carbonate, calcium oxide, eggshell, calcination

 

Abstrak

Dalam konteks ekonomi kitaran, terdapat peluang untuk mengitar semula kulit telur yang biasanya dibuang di tempat pembuangan sampah. Sebatian utama dalam kulit telur ialah kalsium karbonat dan ia boleh diuraikan kepada kalsium oksida melalui proses pengkalsinan. Kajian ini dilakukan untuk mengkaji keadaan kalsinasi (suhu dan masa pembakaran) yang sesuai bagi kadar penguraian kalsium karbonat yang optimum. Sampel kulit telur diproses terlebih dahulu untuk membuang kotoran dan sisa biologi yang tidak diperlukan dan seterusnya dikisar menjadi serbuk serta diayak. Ciri-ciri fizikal dan kimia utama serbuk kulit telur seperti perubahan warna, kehilangan jisim, ketumpatan, kandungan lembapan, pH, sifat terma, dan mengenal pasti ikatan kimia dan sebatian dalam molekul telah dikaji. Untuk mengkaji ciri-ciri fizikal dan kimia sintesis kalsium karbonat daripada kulit telur, ujian kandungan lembapan, ketumpatan pukal, pH, FTIR, and XRD dilaksanakan. Daripada pemerhatian fizikal, hasil menunjukkan terdapat perbezaan dalam perubahan warna sampel pada pelbagai suhu dan masa pembakaran. Analisis TGA menunjukkan serbuk kulit telur terurai pada julat suhu 600 oC hingga 900 oC. Hasil FTIR melaporkan bahawa warna kelabu sampel terkalsin terdiri daripada kalsium karbonat sementara serbuk putih terdiri daripada kandungan oksida logam. Terdapat tujuh puncak difraksi yang serupa yang dilaporkan dalam analisis XRD untuk kalsinasi pada suhu 900 oC dan kalsium oksida (32.25, 37.41, 53.92, 64.18, 67.41, 79.70, dan 88.58). Pengkalsinan serbuk kulit telur pada suhu 900 oC selama 3 jam dikenal pasti sebagai keadaan yang sesuai untuk penguraian serbuk kulit telur mentah berdasarkan analisis FTIR dan XRD. Kedua-dua hasil menunjukkan terdapat kalsium oksida berdasarkan spektrum gelombang dan analisis difraksi sampel.

 

Kata kunci:  kalsium karbonat, kalsium oksida, kulit telur, kalsinasi

 

 

 


Graphical Abstract

 

References

1.      Miranda, J.M., Anton, X., Redondo-Valbuena, C., Roca-Saavedra, P., Rodriguez, J.A. and Lamas, A. (2015). Egg and egg-derived foods: Effects on human health and use as functional foods. Nutrients, 7: 706-729.

2.      Godbert, S.R., Guyot, N. and Nys, Y. (2019). The golden egg: Nutritional value, bioactivities, and emerging benefits for human health. Nutrients, 11(684): 1-26.

3.      Laca, A., Paredes, B., Rendueles, M. and D az, M. (2014). Egg yolk granules: Separation, Characteristics, and Applications in The Food Industry. LWT - Food Science and Technology, 59(1): 1-5.

4.      Rivera, E.M., Araiza, M., Brostow, W., Castano, V.M., Diaz-Estrada, J.R., Hernandez, R. and Rodriguez, J.R. (1999). Synthesis of hydroxyapatite from eggshells. Materials Letter, 41: 128-134.

5.      Park, S., Choi, K.S., Lee, D., Kim, D., Lim, K.T., Lee, K.H., Seonwoo, H. and Kim. J. (2016). Eggshell membrane: Review and impact on engineering. Biosystem Engineering, 151: 446-463.

6.      De Angelis, G., Medeghini, L., Conte, A.M. and Mignardi, S. (2017). Recycling of eggshell waste into low-cost adsorbents for Ni removal from wastewater. Journal of Cleaner Production, 164: 1497-1506.

7.      Carvalho, J., Araujo, J. and Castro, F. (2011). Alternative low-cost adsorbent for water and wastewater decontamination derived from eggshell waste: an overview. Waste Biomass Valor, 2: 157-167.

8.      Laca, A., Laca, A. and D az, M. (2017). Eggshell waste as catalyst: A review. Journal of Environmental Management, 197: 351-359.

9.      Quina, M., Soares, M.A. and Quinta, F.R. (2017). Applications of industrial eggshells as a valuable anthropogenic resource. Resources Conservation and Recycling, 123: 176-186.

10.   Ummartyotin S. and Manuspiya, H. (2018). A critical review of eggshell waste: An effective source of hydroxyapatite as photocatalyst. Journal of Metals, Materials, and Minerals, 28(1): 124-135.

11.   Sonenklar, C. (1999). Famous for Egg Waste. The PennState news. The Pennsylvania State University. https://news.psu.edu/story/140891/1999/09/01/research/famous-egg-waste. [Access online 1 September 1999]

12.   Arabhosseini, A. and Faridi, H. (2018).  Application of eggshell wastes as valuable and utilizable products: A review. Resource Agriculture Engineering, 64: 104-114.

13.   Tangboriboon, N., Kunanuruksapong, R. and Sirivat, A. (2012). Preparation and properties of calcium oxide from eggshells via calcination. Materials Science-Poland, 30(4): 313-322.

14.   Ok, Y.S., Lee, S.S., Jeon, WT., Oh, S.E., Usman, A.R.A. and Moon, D.H. (2011). Application of eggshell waste for the immobilization of cadmium and lead in contaminated soil. Environ Geochem Health 33: 31-39.

15.   Yasar, F. (2019). Biodiesel production via waste eggshell as a low-cost heterogeneous catalyst: Its effects on some critical fuel properties and comparison with CaO. Fuel, 255(1): 115828 .

16.   Bashir, A.S.M. and Manusamy, Y. (2015). Characterization of raw eggshell powder (ESP) as a good bio filler. Journal of Engineering Research and Technology, 2(1): 56-60.

17.   Ahmad, R., Rohim, R. and Ibrahim, N. (2015). Properties of waste eggshell as calcium oxide catalyst Applied Mechanics and Materials, 754: 171-175.

18.   Karthick, J., Jeyanthi, R. and Petchiyammal, M. (2014). Experimental study on usage of egg shell as partial replacement for sand in concrete. International Journal of Advanced Research in Education Technology, 1(1): 7-10.

19.   Gabol, N.A., Memon, F.A., Jawaduddin, M. and Zardari, Z.H. (2019). Analysis of eggshell powder as a partial replacing material in concrete. International Journal of Modern Research in Engineering & Management, 2(9): 22-31.

20.   Razali, N., Azizan, M.A., Pa'ee, K.F., Razali, N. and Jumadi, N. (2020). Preliminary studies on calcinated chicken eggshells as fine aggregates replacement in conventional concrete. Materials Today: Proceedings, 31(1): 354-359.

21.   Abdulrahman, I., Tijani, H.I., Mohammed, B.A., Saidu, H., Yusuf, H., Jibrin, M.N. and Mohammed, S. (2014). From garbage to biomaterials: An overview on eggshell-based hydroxyapatite. Journal of Materials, 2014: 1-6.

22.   Bartter, J., Diffey, H., Yeung, Y.H., O'Leary, F., H sler, B., Maulaga, W. and Alders, R. (2018). Use of chicken eggshell to improve dietary calcium intake in rural sub-saharan Africa. Maternal & Child Nutrition, 14(3): 1-10.

23.   Hitchcock, R.K. (2012). Ostrich eggshell jewelry manufacturing and use of ostrich products among San and Bakgalagadi in the Kalahari. Botswana Notes and Records, 44: 93-105.

24.   Zoran. A. (2018). The ostrich eggshell beads craft of the Ju/ hoansi: A reflection on modern craft theories. Craft Research, 9(2): 229-253.

25.   Abdullah, M., Soo, K. Y., Raofuddin, D.N.A, Sukor, M.Z., Roslan, A., Ilyas, S.M.M. and Yasin, M.H. (2018). An evaluation of eggshell waste/waste paper mechanical properties as composite paper. International Journal of Engineering & Technology, 7: 239-241.

26.   Sulaiman S., and Talha N.S. (2018) Technique to produce catalyst from egg shell and coconut waste for biodiesel production. In: Amid A., Sulaiman S., Jimat D., Azmin N. (eds) Multifaceted Protocol in Biotechnology.

27.   Mosaddegh, E. and Hassankhani, A. (2014). Preparation and characterization of nano-cao based on eggshell waste: Novel and green catalytic approach to a highly efficient synthesis of pyrano[4,3-b] pyrans. Chinese Journal Catalyst, 35: 351-356.

28.   Sacia, E.R., Ramkumar, S., Phalak, N. and Fan, L.S. (2013). Synthesis and regeneration of sustainable CaO sorbents from chicken eggshells for enhanced carbon dioxide capture. ACS Sustainable Chemical Engineering, 1: 903-909.

29.   Beck, K., Brunetaud, X., Mertz, J.D. and Al-Mukhtar, M. (2010). The use of eggshell lime and tuffeau powder to formulate an appropriate mortar for restoration purposes. Geological Society London Special Publications, 331(1): 137-145.

30.   Jirimali, H.D., Chaudhari, B.C., Khanderay, J.C., Joshi, S.A., Singh, V., Patil, A.M. and Gite, V.V. (2018). Waste eggshell-derived calcium oxide and nanohydroxyapatite biomaterials for the preparation of LLDPE polymer nanocomposite and their thermomechanical study. Polym-Plast Technology Engineering, 57: 804-811.

31.   Tan, Y.H., Abdullah, M.O., Nolasco-Hipolito, C. and Zauzi, N.S.A. (2017). Application of RSM and Taguchi methods for optimizing the transesterification of waste cooking oil catalyzed by a solid ostrich and chicken-eggshell derived CaO. Renew Energy, 114(Part B): 437-447.

32.   Nagabhushana, K.R., Lokesha, H.S., Reddy, S.S., Prakash, D., Veerabhadraswamy, M., Bhagyalakshmi, H. and Jayaramaiah, J.R. (2017). Thermoluminescence properties of CaO powder obtained from chicken eggshells. Radiation Physics Chemistry, 138: 54-59.

33.   Britannica, T. Editors of Encyclopedia. Calcination. Encyclopedia Britannica. Retrieved Oct 04, 2016, from https://www.britannica.com/technology/calcination. [Access online 4 October 2016].

34.   Lin. S., Kiga. T., Wang. Y. and Nakayama. K. (2011). Energy analysis of CaCO3 calcination with CO2 capture. Energy Procedia, 4: 356-361.

35.   Al-Fatesh, A.S.A. and Fakeeha, A.H. (2012). Effects of calcination and activation temperature on dry reforming catalysts. Journal of Saudi Chemical Society, 16: 55-61.

36.   Nordin, N., Hamzah, Z., Hashim, O., Kasim, F.H., and Abdullah, R. (2015). Effect of temperature in calcination process of seashells. Malaysian Journal of Analytical Sciences, 19(1): 65-70.

37.   Dampang, S., Purwanti, E., Destyorini, F., Kurniawan, S. B. K., Abdullah, S. R. S. and Imron, M. (2021). Analysis of optimum temperature and calcination time in the production of CaO using seashells waste as CaCO3 source. Journal of Ecological Engineering, 22(5): 221 228.

38.   Aina, S., Plessis, B. D., Mjimba, V. and Brink, H. (2021). Eggshell valorization: Membrane removal, calcium oxide synthesis, and biochemical compound recovery towards cleaner productions. Biointerface Research in Applied Chemistry, 12(5): 5870-5883.

39.   Razali, N., Musa, F. A. M., Jumadi, N. and Jalani, A. Y. (2021). Production of calcium oxide from eggshell: Study on calcination temperature, raw weight and contact time. RSU International Research Conference, 2021: 624-637.

40.   Hussein, A. I., Ab-Ghani, Z., Mat, A. N. C., Ab-Ghani, N. A., Husein, A. and Rahman, I. A. (2021). Synthesis and characterization of spherical calcium carbonate nanoparticles derived from cockle shells. Applied Science, 10: 7170.

41.   Mohamad, S.F.S, Mohamad, S. and Jemaat, Z. (2016). Study of calcination condition on decomposition of calcium carbonate in waste cockle shell to calcium oxide using thermal gravimetric analysis. ARPN Journal of Engineering and Applied Sciences, 11(16): 9917-9921.

42.   Islam, K.N., Bakar, M.Z.B.A., Ali, M.E., Hussein, M.Z.B., Noordin, M.M., Loqman, M.Y., Miah, G., Wahid, H. and Hashim, U. (2013). A novel method for the synthesis of calcium carbonate (aragonite) nanoparticles from cockle shells. Powder Technology, 235: 70-75.

43.   Ali, M. and Badawy W. Z. (2017). Utilization of eggshells by-product as a mineral source for fortification of bread strips. Journal of Food and Dairy Sciences, 8(11): 455-459.

44.   Oulego, P., Laca, A., Calvo, S. and Diaz, M. (2019). Eggshell-supported catalysts for the advanced oxidation treatment of humic acid polluted wastewaters. Water, 12(100): 1-18.

45.   Yahya, N., Tahir, S.M. and Rosli, N.H.M. (2019). Green eggshell/polypropylene biocomposite. International Journal of Recent Technology and Engineering, 8: 2277-3878.

46.   Castro, L.D.S., Baranano, A.G., Pinheiro, C.J.G.L, Menini, L. and Pinheiro, P.F. (2019). Biodiesel production from cotton oil using heterogeneous CaO catalysts from eggshells prepared at different calcination temperatures. Green Process Synthesis, 8: 235-244.

47.   Gatea, A.A., Kouzani, A.Z., Kaynak, A., Khoo, S.Y., Norton, M. and Gates, W. (2018). Soil bulk density estimation methods: A review. Pedosphere, 28(4): 581-596.

48.   Jewiarz, M., Wrobel, M., Mudryk, K. and Szufa, S. (2020). Impact of the drying temperature and grinding technique on biomass grindability. Energies, 13(3392): 1-22.

49.   Queiros, M.V.A., Bezerra, M.N. and Feitosa, J.P.A. (2017). Composite superabsorbent hydrogel of acrylic copolymer and eggshell: Effect of biofiller addition. Journal Brazillian Chemical Society, 2017: 1-9.

50.   Loy, C.W., Matori, K.A., Way F.L., Schmid, S., Zainuddin, N., Wahab, Z.A., Alassan, Z.N. and Zaid, M.H.M. (2016). Effects of calcination on the crystallography and nonbiogenic aragonite formation of ark clamshells under ambient conditions. Advances in Materials Science and Engineering. 2016: 1-8.

51.   Mohadi, R., Anggraini, K., Riyanti F. and Lesbani, A. (2016). Preparation of calcium oxide (CaO) from    chicken eggshells. Sriwijaya Journal of Environment, 1(2): 32-35.

52.   Krahenbuhl, M., Etter, B. and Udert, K.M. (2015). Pre-treated magnesite as a source of low-cost magnesium for producing. Science of The Total Environment, 542: 1155-1161.

53.   Zhang, S. (2015). Relationship between particle size distribution and porosity in dump leaching. Thesis of Doctor of Philosophy. The University of British Columbia.

54.   Shao, W.C., and Dong, Y.W.  (2020). A study on physicochemical properties and formaldehyde adsorption and degradation of purifying air quality by modified biocalcium. International Journal of Environmental Science and Development, 7(11): 327-335.

55.   Rujitanapanich, S., Kumpapan, P. and Wanjanoi, P. (2014). Synthesis of hydroxyapatite from oyster shell via precipitation. Energy Procedia, 56: 112-117.

56.   Yao, C., Xie, A., Shen, Y., Zhu, J. and Li, T. (2013). Green synthesis of calcium carbonate with unusual morphologies in the presence of fruit extracts. Journal Chilean Chemical Society, 58(4): 2235-2238.

57.   Daskalakis, M.I., Magoulas, A., Kotoulas, G., Catsikis, I., Bakolas, A., Karageorgis, A.P., Mavridou, A., Doulia, D., Rigas, F. (2013). Pseudomonas, pantoea and cupriavidus isolates induce calcium carbonate precipitation for biorestoration of ornamental stone. Journal of Applied Microbiology, 115: 409-423.

58.   Veerasingam, S. and Venkatachalapathy, R. (2014). Estimation of carbonate concentration and characterization of marine sediment by fourier transmission infrared spectroscopy. Infrared Physics and Technology, 66: 136-140.

59.   Reyes, J., Gutierrez, R., Centeno, G., Trevino, D., Bartolo, P., Quintana, P., Azamar, J.A., and Perez, T. (2008). Chemical characterization of Crusts Formed in Mortars of Historical Buildings in San Francisco de Campeche City, Mexico. Historical Mortars Conference, 2008: pp. 1-11.

60.   Pardo, F.N., Barrera, G.M., Hernandez, A.L.M., Castano, V.M., Armenta, J.L.R., Rodriguez, F.M. and Santos C.V. (2013). Effects on the thermo-mechanical and crystallinity properties of nylon 6,6 electrospun fibres reinforced with one dimensional (1d) and two-dimensional (2d) carbon. Materials, 8: 3494-3513.

61.   Tsai, T.Y., Coumar, M.S., Hsu, T., Hsieh, H.P., Chien, C.H., Chen, C.T., Chang, C.N., Lo, Y.K., Wu, S.H., Huang, C.Y., Huang, Y.W., Wang, M.H., Wu, H.Y., Lee, H.J., Chen, X., Chao, Y.S., and Jiaang, W.   (2006). Substituted pyrrolidine-2,4-dicarboxylic acid amides as potent dipeptidyl peptidase IV inhibitors. Bioorganic & Medicinal Chemistry Letters. 16(12): 3268-3272.

62.   Nandiyanto, A.B.D., Oktiani, R. and Ragadhita, R. (2019).  How to read and Interpret FTIR spectroscope of organic material. Indonesian Journal of Science & Technology, 4(1): 97-118.

63.   Zaman, T., Mostari, M. S., Mahmood, M. A. and Rahman, M. S. (2018). Evolution and characterization of eggshell as a potential candidate of raw material. Cer Mica, 64(370): 236-241.

64.   Habte, L., Khan, M.D., Shiferaw, N., Farooq, A., Lee, M.H., Jung, S.H. and Ahn, J.W. (2020). Synthesis, characterization, and mechanism study of green aragonite crystals from waste biomaterials as a calcium    supplement. Sustainability, 12(5062): 1-10.