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Abstract

This study aims to prepare phosphotungstic acid supported on hydrotalcite (PTA-HT) for one-pot hydrothermal cellulose
conversion into formic acid (FA). In this study, different percentages of PTA on HT (1, 5, 10, 15, 20, 25, and 33%) were
prepared and the catalytic activity was observed for two different parameters such as time (1 to 5 hours) and reaction temperature
(160 to 240 °C). The prepared catalysts were characterized using Fourier transform infrared (FTIR), X-ray powder diffraction
(XRD), Brunauer-Emmet-Teller (BET) and field emission scanning electron microscopy-energy dispersive X-ray spectrometry
(FESEM-EDX), while the production of FA was determined using ultra high-performance liquid chromatography (UHPLC). To
avoid bias, raw PTA and calcined HT were compared with varying percentages of supported PTA. PTA-HT was successfully
prepared through the impregnation method as confirmed by XRD, FTIR, BET and FESEM-EDX. According to the results, the
optimum condition for cellulose conversion into formic acid was when 25% PTA-HT was applied at 220 °C for 4 hours, with a
30% cellulose conversion and 18 % FA vyield. Due to the acidity and redox properties of PTA, it has been demonstrated that
PTA-HT increased the catalytic activity by two-fold when compared to calcined HT alone (8%). The significance of this finding
opens new suggestion of bifunctional catalyst in cellulose conversion into FA.
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Abstrak
Tujuan kajian ini adalah untuk menyediakan asid fosfotungstik yang disokong dengan oleh hidrotalsit (PTA-HT) bagi proses
hidroterma penukaran selulosa kepada asid formik. Di dalam kajian ini, perbezaan peratus PTA ke atas HT (1, 5, 10, 15, 20, 25
dan 33%) telah disediakan dan aktiviti pemangkinan telah dijalankan terhadap dua parameter iaitu masa (1 jam hingga 5 jam)
dan suhu (160 hingga 240 °C). Pemangkin yang telah disediakan diperincikan menggunakan inframerah transformasi Fourier
(FTIR), pembelauan sinar-X (XRD), Brunauer-Emmet-Teller (BET) and mikroskopi imbasan pancaran medan-spektrometri
tenaga serakan sinar-X (FESEM-EDX) manakala asid formik yang terhasil ditentukan menggunakan kromatografi cecair
berprestasi ultra tinggi (UHPLC). Bagi mengelakkan keputusan yang berat sebelah dalam kajian, PTA tulen dan HT yang
dikalsin telah dibandingkan dengan perbezaan peratus PTA yang disokong. PTA-HT yang telah disediakan melalui kaedah
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impregnasi dicirikan oleh XRD, FTIR, BET dan FESEM-EDX. Berdasarkan keputusan, keadaan yang paling optimum bagi
penukaran selulosa kepada asid formik adalah apabila 25% PTA-HT digunakan pada 220 °C selama 4 jam dengan menghasilkan
30% penukaran selulosa dan 18% penghasilan asid formik. Oleh kerana ciri-ciri asid dan redoks yang dimiliki oleh PTA,
keputusan kajian telah menunjukkan bahawa PTA yang disokong oleh HT meningkatkan aktiviti pemangkin sebanyak dua kali
ganda berbanding HT yang telah dikalsin yang hanya menghasilkan 8% asid formik. Kepentingan kajian ini akan membuka
cadangan baru terhadap penggunaan pemangkin dwifungsi dalam penukaran selulosa kepada asid formik.

Kata kunci: pemangkin, selulosa, asid formik, hidroterma, asid fosfotungstik

Introduction

Biomass is a great alternative for carbon sources in the
production of platform chemicals as biomass originated
from plants and animals [1]. Numbers of researches
focused on forestry and agricultural residues as it is
non-edible to address food competition issues such as
wood [2], corncob waste [3] and rice husk [4]. Plant
biomass is made up of three main constituents:
cellulose, hemicellulose and lignin. Among these
constituents, cellulose has the highest percentage and
play important structural function for plant cell walls
[5, 6]. Cellulose is a polymer that is highly crystalline
due to rigid intermolecular bonds of hydrogen to
hydroxyl group and oxygen with nearby glycosidic
rings [7, 8]. Glycosidic bonds of cellulose causes
difficulty in depolymerizing cellulose, which required
highly reactive catalyst and rigorous experimental
conditions. In converting cellulose, many techniques
have been studied such as pretreatment of cellulose
using ball-milling [9], addition of oxidant [10], Fenton
reaction [11-13], hydrolysis [14, 15], ozonation [2] and
oxidation [16]. A successful cellulose conversion
provides production of important chemicals such as
formic acid [17-19], lactic acid [20, 21], levulinic acid
[22] and acetic acid [23]. Industries have been eyeing
formic acid (FA) due to its nontoxicity, noncorrosive,
easy handling and readily biodegradable qualities [24].
Formic acid is the most basic form of carboxylic acid
and is commonly used as a byproduct in a variety of
applications such as agriculture [25], cosmetics [26],
textile [27] and pharmaceuticals [28].

Mineral acids such as hydrochloric acid, sulfuric acid
and phosphoric acid have previously been used as acid
catalysts for cellulose conversion due to their strong
acidity and low cost, but these catalysts are highly
corrosive [29-33]. Therefore, improvement had been

made to convert cellulose using solid acid catalyst such
as heteropoly acid [16], zirconia, zeolite and
montmorillite [34]. The advantageous of using solid
catalyst is that it is less corrosive, easier to handle, and
separates the catalyst from the reaction medium.
Among all catalysts, heteropoly acid (HPA) catalyst
appears to be the most promising due to its strong
Bronsted acidity and redox property [35] that able to
hydrolyze and oxidize cellulose into FA. Nevertheless,
drawbacks of homogenous HPA are low thermal
stability, low surface area and easily soluble in polar
solvent [35]. Supporting HPA on a suitable support is
one way to heterogenized HPA, which can improve
product yield, selectivity, and reduce HPA's drawbacks
by providing more active sites and making it more
porous [14, 22, 35, 36]. In addition, hydrotalcite (HT),
a potential support material with a high surface area
and basic properties that may aid in the catalytic
conversion of cellulose, is one such material that has
been widely used—in flame retardance, neutralizing
additives, a base catalyst for cellulose conversion and
adsorbent [37-40]. Therefore, in this work, cellulose
conversion into FA by different percentages of PTA
(H3PW120.) supported with HT (MgsAl.COs(16)-4H20)
were investigated to see the effects of temperature,
time and PTA amount towards the production of FA.

Materials and Methods

Materials

All reagents were analytical grade and used without
further purification such as hydrotalcite (Sigma-
Aldrich), microcrystalline cellulose and ethanol 99.5%
(Systerma) while formic acid 98-100% HPLC grade,
tungstophsphoric acid hydrate, orthophosphoric acid
and potassium dihydrogen phosphate were purchased
from Merck.
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Preparation of catalyst

The catalyst preparation starts with the reconstruction
pathway in which commercial HT was calcined at 450
°C for 4 hours under nitrogen gas to remove carbonate
ions. This step is to allow anions from raw PTA
solution to enter into the empty interlayer region later
[41]. The raw PTA was dissolved into deionized water
to the desired amount (1, 5, 10, 15, 20, 25 and 33% by
w/w%). Meanwhile, calcined HT was dissolved in
another beaker. Subsequently, dissolved PTA was
added dropwise into calcined HT solution. At this step,
calcined HT will reconstruct into its original shape
with new interlayer anions from PTA. This is because
calcined HT regains its original structure when exposed
to the aqueous solution [42]. Then, the mixture was
stirred for 4 hours to ensure that PTA and calcined HT
until both solutions were well-mixed. Lastly, the
mixture was dried overnight to remove the water from
the mixture forming a solid containing PTA and
calcined HT.

Catalytic experiment

Cellulose conversion was conducted in a 100 mL
hydrothermal reactor in which the contents of catalyst
and cellulose fed were 0.1 g and 0.05 g respectively.
Then, about 50 mL of deionized water was added. The
reactor was tightened and placed inside an oven. Once
reaction temperature and time were up, the cellulose
conversion started. As soon as the required temperature
and time were reached, the liquid product was filtered
using a syringe filter and the solid residue was filtered
using a vacuum pump. Cellulose conversion was
calculated according to Equation 1. The concentration
of FA was analyzed using the UHPLC system (1290
Infinity, Agilent Technologies) using Zorbax SB C18
column with an internal diameter of 21.2mm and Spm
particle size. The UHPLC system was connected with a
DAD detector measuring at 210 nm. 10 mM phosphate
buffer with pH adjusted to pH 2 was prepared, filtered
and degassed. The concentration of FA from the
sample was identified by comparing the retention times
with standards. Standards calibration was used for FA
quantification. The yield of FA was calculated using
Equation 2 [43].

Cellulose fed—(Solid residue—Catalyst
( Y ¥100% (1)

Cellulose conversion =
Cellulose fed

Liquid product

Formic acid yield =

(Stoichiometric coefficient FA from glucan)(:

Catalyst characterization

Nitrogen adsorption was done to differentiate specific
surface area, pore size distribution and pore volume of
PTA-HT, raw PTA, calcined HT and raw HT using
Brunner-Emmet-Teller = (BET) model 3  Flex
Micromeritics. BET analysis started with degassing the
sample to remove unwanted adsorbed molecules inside
the sample pore. The thermal condition of degassing is
prior to thermal gravimetric analysis to ensure that the
sample was not destroyed during degassing. After
degassing, the sample was placed inside the sample
tube and liquid nitrogen was filled inside the dewar and
placed below the sample tube for BET analysis. Then,
phase characterization was carried out by X-ray
diffraction (XRD) model Mini Flex 600, Rigaku with
Cu Ko 1.54 (40 kV, 40 mA) X-ray radiation source at

Cellulose fed x 100 (2)

Mass of glucan

angle range 3° to 90°. In order to identify the crystalline
phase compositions, the diffraction patterns were
matched with Crystallography Open Database (COD).
Chemical functional groups identification was carried
out using Fourier Transform Infrared (FTIR) model
Nicolet™ iS50 FTIR Spectrometer, Thermo Scientific.
FTIR sample was grind using pestle and mortar until it
become fine and thin. The sample analysis started after
placing the sample onto the detector and background
scanning was done. Then, surface morphology of
sample was confirmed by Field Emission Scanning
Electron Microscope (FESEM) model JSM-IT 800
FESEM, Joel with accelerating voltage 20 kV. Sample
was coated with platinum using JEOL Smart Coater.
The FESEM images were paired with Energy
Dispersive X-ray Analysis (EDX) model Ultimax 45
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Oxford to confirm the presence of elemental
composition of each sample.

Results and Discussion

Catalytic activity

Three parameters were investigated to find the best
conditions for FA production from cellulose using the
PTA-HT catalyst: reaction time, temperature, and
amount of PTA. The influence of reaction time towards
FA production is displayed in Figure 1. To determine
the best reaction time, the temperature and amount of
PTA were kept constant at 180 °C and 5%,
respectively. From the results, FA yield increased
gradually from 0.08% to 0.22% between 1 to 3 hours
of the reaction time. The value then increased slightly
to 0.24% at 4 hours and remained constant until 5
hours. In the case of cellulose degradation, a longer
reaction time allowed higher degradation rates ranging
from 15% to 42% and does not achieve a plateau.
From the result, it is observed that reaction condition
for both cellulose degradation and FA yield at 180 °C
is very mild although the reaction time varies from 1
hour to 5 hours. This can be seen when the reaction
time was prolonged to 5 hours the cellulose
degradation is slightly increased from 30 to 44% while
FA vyield remain constant as shown in Figure 1.
Degradation of cellulose can be done independently
without the presence of catalyst as reported in previous
journal [44]. However, high temperature of water was
required range 320 to 400 °C but cellulose was able to
degrade into cellobiose, glucose and fructose [44].
Another study of cellulose  degradation without
presence of catalyst also observed the same trend
where at 180°C. degradation products such as acids,
furans and sugar were not detectable with only 12%
cellulose converted [45]. Meanwhile, as shown in
Figure *1, our experiment shows that at 180 °C,
cellulose degradation increases as reaction time
prolonged and FA was detectable and reached a plateau
at 4 hours reaction time. The production of FA which
may cause by the presence of 5% PTA-HT that
enhance cellulose degradation. This is because PTA
contains tungsten ions and oxygen ions that does have
an effect on hydrolysis and oxidation. Although

hydrolysis mainly took place in a high temperature
water medium, the production of the targeted product
requires oxidation of cellulose where PTA provide
additional oxygen located at bridging and terminal
oxygen atom. However, the reaction time, water
temperature and acidic strength of PTA was only able
to hydrolyse cellulose but this condition is not enough
to produce more FA. Hence, to improve this, we
further with the next condition at 4 hours.reaction time
with the same amount of PTA to determine the suitable
temperature and amount of PTA.on HT catalyst.

Subsequently, the effect of reaction temperature on FA
production was examined by varying the reaction
temperature from 160 to 280 °C. As illustrated in
Figure 2, a noticeable increment can be seen towards
cellulose degradation from 9% to nearly 50% with
prolonged temperature. FA yield also showed better
improvement with a maximum yield of 13.36% at 240
°C. However, a very slight change in FA yield was
observed between 220 °C (13.05 %) and 240 °C
(13.36%). From the graph, the trend of FA yield started
to decrease at 250 to 280 °C although cellulose
degradation increases. The suggested mechanism
pathway started with cellulose undergoes hydrolysis
which form glucose [46]. The glucose further
dehydrated into hydroxymethylfurfural (HMF) where
later rehydrated into levulinic acid and decomposed
into FA [47]. It is reasonable to speculate that higher
temperature promotes degradation of cellulose as stated
in [48] where cellulose can be degraded without the
presence of acid at high temperature. However,
previous journal [45] only highlighted the production
of monosaccharides but our study proved that with the
presence of PTA it enhances cellulose degradation
route until FA was produced at suitable temperature.
This occurs due to Bronsted acidity of PTA that highly
protonate ions during reaction took place. Although,
production of FA was a success, FA is an unstable
compound which can easily decomposed into CO;
[43][9]. Hence, selecting 220°C as our reaction
temperature is reasonable to avoid decomposition of
FA.
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Figure 1. Effect of reaction time on cellulose conversion and FA vyield by PTA-HT catalyst. Reaction condition:
0.05 g cellulose, 0.1 g PTA-HT, the temperature at 180 °C and PTA loading on HT is 5%
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Figure 2. Effect of reaction temperature on cellulose conversion and FA yield by PTA-HT catalyst. Reaction
condition: 0.05 g cellulose, 0.1 g PTA-HT, 5% PTA-HT and 4 hours reaction time

The influence of PTA amount supported on calcined
HT was displayed in Figure 3. This investigation was
compared with blank experiment where catalyst was
not included during cellulose degradation. In Figure 3,
although cellulose was degraded in blank experiment,
FA yield was not obtained. However, other reactors
that contained PTA-HT yielded FA. This phenomenon
is possible to occur due to PTA criteria that is highly
protonic acid which speed up the cellulose degradation
[41]. Hence, FA can be obtained in 4 hours under
220 °C water temperature. A factor that allows

hydrolysis to happen in blank experiment is when
water medium is heated to high temperature but as
observed our solid acid catalyst improves the
hydrolysis rate and react further to form FA.
Furthermore, the degradation rate in blank experiment
was lesser as compared when PTA-HT was presence.
The formation of FA occurred due to cascade reaction
in which dehydration and rehydration took place before
FA was formed. So as Brénsted acid was placed in the
medium, hydrogen ions were highly dissociated which
speed up dehydration of glucose into HMF which later
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rehydrate into FA [44]. From our experiment, FA
production depends on the acidic strength of our
catalyst as FA yield increase with increasing amount of
PTA but the FA vyield was inconsistent. However, FA
yield drops drastically to 0.08% when 33% of PTA-HT
was placed in reaction medium while highest yield of
FA (18%) was observed with 25% amount of PTA. To
our surprise, calcined HT alone produce 8% FA which
initially function as catalyst support.

Based on previous literature, calcined HT contains
medium-strong Lewis basic O-Mn"™ pairs and
isolated O% as strong basic sites which promote
production of FA compared with uncalcined HT that
contain weak basic sites [49]. After cellulose was
hydrolyze, glucose was not dehydrated into HMF
instead isomerizes into fructose and retro-aldol forming
glycolic acid. Then, dehydrated into lactic acid which
later degraded into FA [50,51, 38]. From this, we
understand that two possible routes occurred during FA
production as illustrated in Scheme 1. PTA and HT

when combined together consist of both acid and base
sites. Having Bronsted acid feature increase
degradation rate of cellulose while the basic site of
calcined HT hindered decomposition of FA into carbon
dioxide. 25 % PTA-HT was chosen to further
investigate and characterize its properties in relation to
the catalytic reaction. 25% PTA-HT was compared
with calcined 25% PTA-HT to observe any difference
in FA production. Cellulose degradation-from calcined
25% PTA-HT was better than blank and calcined HT.
The FA vyield decreased drastically when PTA loading
are more than 25%. This might happen due to leaching
of PTA. Another similar study, compared uncalcined
tungsten-based zirconia and calcined tungsten-based
zirconia reported the same result [52]. From Figure 4,
the UHPLC result shows the formation of FA together
with other by-products that was obtained during FA
production. Although other by-products were obtained,
FA peak is one of the highest compared to the others.
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Figure 3. Effect of percentage PTA loading on HT on cellulose conversion and FA vyield by PTA-HT catalyst.
Reaction condition: 0.05 g cellulose, 0.1 g PTA-HT and temperature at 220 °C
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Nitrogen adsorption-desorption analysis

BET measurement has been carried out on raw HT,
raw PTA, calcined HT and 25% PTA-HT. The
objective of this test is to evaluate the significance of
impregnating PTA with calcined HT. One of the
drawbacks implementing PTA as homogenous catalyst
is because of its low surface area and difficulty to
reuse. Hence, having large surface area and porous
catalyst support can overcome this. Few journals have
reported supported PTA with zirconia, activated carbon
and carbon foam but as far as our knowledge there is
no PTA supported with calcined HT for cellulose
degradation study. As shown in Table 1, raw PTA have

the lowest specific surface area as compared to 25%
PTA-HT. The main reason to calcined HT is to provide
larger surface area and porous surface to support PTA
and open more active sites during cellulose
degradation. If raw HT was not calcined and
impregnated with PTA, we assumed that our catalyst
will not be well supported as the surface area for raw
HT is small compared to calcined HT.- The specific
surface area of 25% PTA-HT was significantly lesser
than calcined HT is because PTA was deposited inside
the pores of calcined HT. Hence, it is important to
calcined HT so that the surface area is still larger
despite being deposited with PTA.

Table 1. BET analysis of raw HT, calcined HT and 25% PTA-HT

Sample

Specific Surface Area

(m°/g)

Raw HT

Raw PTA
Calcined HT
25% PTA-HT

10.63
3.91
206.62
163.39

XRD analysis

XRD patterns of raw HT (26=11.58°, 23.31° 34.42°,
34.80° 35.30°, 39.32° 46.71°, 52.84", 56.32°,60.65"and
61.989 and raw PTA (26=6.89% 8.62° 9.33° 9.5°
10.97°,11.66°, 16.09°, 17.41°, 17.83°, 18.60°and 19.46°)
showed the typical crystalline structure of Mg-Al
layered double hydroxides ‘and phosphotungstic acid
respectively. Meanwhile, the XRD peak of calcined HT
showed significant difference as crystallinity of raw
HT was destructed-and formed amorphous mixed oxide

phase. This can be seen at 26=26.55° 29.54°, 39.52°

and 62.32° that showed an appearance of MgAI;O4
(spinel) (COD Card No. 5000120). Calcination of HT
also gave rise to weak and broad peaks that correlated
to MgO known as periclase (COD Card No. 9013246)
at 26=34.78°, 43.29° 60.70° and 79.03° As shown in
Figure 6, XRD peak of 25 % PTA-HT showed the
presence of MgO at 20= 38.39° MgAIl,O4 (26=43.01°,

62.95° and 79.77°) and (26=18.59° 28.66°, 34.79° and
47.24°). This phenomenon is related to calcination of
HT that will generate mixed oxide and surface defects.
Hence, after calcination of HT at 450 °C for 4 hours,
original structure of HT lost water and carbonate ions
[53]. Removing water and carbonate ions that located
at interlayer region will allow incorporation of PTA in
MgO framework. Therefore, it is observed that 25%
PTA-HT peak follows calcined HT peak. From
Figure 4, cellulose peak was observed in sample 25%
PTA-HT after reaction because this sample was only
separated from liquid product using vacuum filter.
Although most peaks appear in 25% PTA-HT after
reaction sample, there is missing peak of periclase
which might cause from leaching due to reaction
condition. However, most of the peaks are maintained
in 25% PTA-HT after reaction sample.
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Figure 6. XRD patterns of (a) Raw HT, (b) Calcined HT, (c) Raw PTA, (d) 25% PTA-HT and (e) 25% PTA-HT

after reaction

Infrared spectroscopy

IR spectroscopy was used to confirm the presence of
PTA after impregnated with calcined HT. As shown in
Figure 7, raw PTA was observed to have significant
peaks of Keggin HPA at 1071 cm® (P-O), 970 cm?
(W=0), 899 cm? (W-O-W) and 729 cm! (W-O-W)
that attributed to stretching vibrational peaks of Keggin
anions [54]. The peaks were not obvious because for
25% PTA-HT only 0.025g of PTA impregnated with
0.1g calcined HT. In the case of raw HT, peaks
observed at low peaks range between 900-500 cm*
corresponded. to metal hydroxides such as Mg(OH).
and AI(OH); [55]. Meanwhile, peaks near 937 cm

were caused by Mg-O and Al-O. The characteristic
peak of raw HT is at 1359 cm™ which is the carbonate
and 3403 cm for O-H group [56]. The disappearance
peaks of metal hydroxides and weak peak of O-H at
3442 cm in calcined HT is due to loss of water [57,
58]. IR spectra for 25% PTA-HT, showed the
appearances of P-O (1003 cm?), W=0 (801 cm™),
W-O-W (700 cm™) and Mg-O and Al-O (501 cm™ to
532 cm) peaks, which indicated the successful
impregnation between PTA and HT. This result can be
confirmed with XRD analysis and EDX analysis that
can show elements present in the sample.
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Figure 7. FTIR spectra of raw PTA, raw HT, calcined HT and 25% PTA-HT

FESEM-EDX analysis

FESEM was used to characterize the surface
morphology of calcined HT and 25% PTA-HT as
shown in Figure 8. Both calcined HT and 25% PTA-
HT displayed a similar pattern of particles with
irregular shapes. This is because small amount of PTA
was impregnated with calcined HT which does not
provide any distinguish pattern between calcined HT
and 25% PTA-HT. Hence, EDX analysis is important
for us to detect the presence of PTA incorporated with
calcined HT that can be observed in Figures 9 and 10.
As reported before, phosphorus-based HPAs are
slightly more acidic than silicon-based HPASs [58]. The
importance of tungsten (W) and oxygen (O) inside
PTA is their proton affinity which contribute to its

acidic site. As shown in Figure 7, the presence of
tungsten (W), phosphorus (P) and oxygen (O) indicated
the core elements of PTA. Calcination of HT remove
carbonate and water at the interlayer and formed mixed
oxide where only magnesium (Mg), aluminum (Al) and
oxygen were present in Figure 8. The empty interlayer
region will be filled with PTA elements and regains its
original structure. The unlabeled peaks were carbon
tape used for imaging. Both EDX results showed high
intensity of Mg, O and Al peaks which shows that
calcined HT is more dominant in 25% PTA-HT.
Hence, there is no significant difference between
FESEM images and FTIR results. Although, calcined
HT was dominant the amount of PTA far important
towards FA production.
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Figure 8. FESEM image of (a) calcined HT and (b) 25% HTA-PTA
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Figure 9. EDX analysis of 25% PTA-HT. Core elements belong to PTA were tungsten (W), phosphorus (P) and
oxygen (O). Meanwhile, magnesium (Mg) and aluminum (Al) belong to HT
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Figure 10. EDX analysis of calcined HT. Core elements belong to calcined HT were magnesium (Mg) and
aluminum (Al) belong to HT
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Conclusion

From our results, the FA production follows two
possible routes contributed by Bronsted acid of PTA
and basicity of calcined HT. The basicity of calcined
HT may also promote formation of FA while performs
well as catalyst support. Although calcined HT is
dominant in the catalyst, acidity of PTA plays major
role in degrading cellulose into FA. As reported, at
optimum condition, 18% FA was yielded together with
30% cellulose degradation which was two times higher
than calcined HT alone. To conclude this, the
temperature and acidity of catalyst influence the
cellulose degradation into FA. However, suitable
temperature acidity is required to avoid decomposition
of FA. Meanwhile, reaction time have minimal effect
towards FA vyield. The cellulose degradation can be
done independently in water medium but regards to
temperature and acid catalyst, the reaction was
enhanced. Through catalyst characterization, PTA was
successfully impregnated with calcined HT as proved
from our results. According to the finding, FA was
successfully produced in moderate amounts. Optimum
condition for FA yield was as follows: 220°C, 4 hours
with 25% catalyst loadings.
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