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Abstract

Pesticide detection for organic produce authentication requires laboratory work involving sample testing, which is generally
arduous and time-consuming. In this study, a simple and reliable technique to produce an instant result for the pesticide
screening of organic chili was developed, using attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy.
The resultant spectra observed in the region between 600-1800 cm™ were further analyzed using principal component analysis
(PCA) and orthogonal partial least square-discriminant analysis (OPLS-DA). Accordingly, the outcomes underline the potential
for distinguishing chili samples sprayed with pesticides, such as cypermethrin, fenobucarb, and malathion, versus their organic
counterparts. Furthermore, the models constructed by OPLS-DA were capable of classifying chili samples, yielding high-
classification rates ranging between 91.67-100%. Thus, ATR-FTIR combined with chemometrics may be utilized as a potentially
reliable screening tool for ‘front-line' organic produce screening, where only flagged samples need to undergo further
confirmation testing.
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Abstrak
Pengesanan racun perosak untuk tujuan pengesahan hasil organik memerlukan kerja makmal yang melibatkan ujian sampel, yang
biasanya sukar dan memakan banyak masa. Dalam kajian ini, satu teknik yang mudah dan berkesan dijalankan dengan
menggunakan kaedah spektroskopi inframerah transformasi Fourier-pantulan keseluruhan dikecilkan (ATR-FTIR) bagi tujuan
saringan racun perosak untuk sayuran cili organik. Spektrum yang dihasilkan dalam lingkungan antara 600-1800 cm* dianalisis
dengan lebih lanjut dengan analisis komponen prinsipal (PCA) dan analisis ortagonal kuasa dua terkecil separa-diskriminan
(OPLS-DA). Hasil kajian menunjukkan potensi yang baik dalam membezakan sampel cili yang disembur dengan racun perosak
seperti cypermethrin, fenobucarb, dan malathion daripada sampel organik. Model yang dibina oleh OPLS-DA dapat
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mengklasifikasikan sampel cili dengan kadar Klasifikasi yang tinggi dalam lingkungan antara 91.67-100%. Oleh itu,
penggabungan spektroskopi ATR-FTIR bersama aplikasi kimometrik dapat digunakan sebagai alat saringan yang berpotensi
tinggi untuk pengesahan hasil organik, di mana hanya sampel yang dikenal pasti sahaja perlu menjalani ujian pengesahan dengan

lebih lanjut.

Kata kunci: cili, hasil organik, saringan racun perosak, spektroskopi ATR-FTIR, analisis komponen prinsipal

Introduction
The demand for organic fruits and vegetables is
growing in domestic and global markets alike,
following consumers perceiving them as a healthier,
safer, and more environmentally friendly option than
non-organic types. Subsequently, there people have
become increasingly apprehensive about the safety of
the food that they consume on a daily basis.
Accordingly, pesticide-free production is one of the
most important  factors influencing  consumer
preference for organic food options. Contrary to
popular belief, however, some pesticides are permitted
in organic farming as long as they have natural
substances, such as hydrogen peroxide, lime sulfur, and
copper sulfate, as ingredients [1]. Besides this, certain
fairly low-risk synthetic pesticides are allowed in
limited circumstances to manage pests and weeds,
whereby their use markedly differs from the approach
employed in non-organic farming.

It should be noted that organic fruits and vegetables
may contain residues of synthetic pesticides, due to
drift from neighboring non-organic farms or to
irrigation contamination, originating at streams and
groundwater polluted by synthetic fertilizers and
pesticide runoff. According to the U.S. National
Organic Program, the U.S. Environmental Protection
Agency defines a level of tolerance in which organic
claims are allowed for products containing synthetic
pesticide residues as no more than 5% of said specified
tolerance level [1]. In general, major manufactured
pesticides are classified based on their chemical
composition; examples include carbamates and
dithiocarbamates, organophosphorus, and pyrethroids
[2]. Malathion, an organophosphate insecticide, is
especially prevalent as one of the oldest and widely-
used active ingredients for pest control in fruits and
vegetables [3]. Cypermethrin belongs to the class of
pyrethroid insecticides, which are more effective and

less toxic compared to organophosphates. Fenobucarb
is a carbamate insecticide extensively implemented in
controlling plant hopper, thrips, aphids, and whiteflies.

The increased utilization of pesticides has been
associated with various health and environmental
effects. Hence, maximum residue limits (MRLs) are
defined by respective countries to monitor the level of
pesticide chemical residues allowable in their food
crops. The MRL represents the highest level of
pesticide residue legally permitted in food crops [4]. In
particular, the Malaysia Food Regulation 1985 in the
16th Schedule (Regulation 41) provides the MRLs for
selected pesticides, as shown in Table 1. Standard
techniques used for pesticide detection in fruits and
vegetables, such as gas chromatography and high-
performance liquid chromatography (HPLC), are often
time-consuming and laborious. These methods
necessitate sample destruction, lengthy test duration,
controlled test conditions and expert lab skills,
rendering them unsuitable for on-site analysis [5].

Therefore, a robust and quick technique capable of
providing immediate results during organic produce
screening for pesticides is currently necessary in the
commercial world, particularly for the fast-moving
consumer goods (FMCG) industry. As an alternative
technique, attenuated total reflection-Fourier transform
infrared (ATR-FTIR) spectroscopy represents an
attractive option for pesticide detection in organic
produce authentication, due to its non-destructive
capability and portability, as well as its reliability in
producing accurate results in a matter of minutes when
combined with chemometrics [6]. Previous studies
have shown that ATR-FTIR could be used to confirm
the presence of organophosphate insecticides in
vegetables [7]. Furthermore, data from several works
also demonstrate the potential of ATR-FTIR, combined
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with  chemometrics, to solve adulteration and
authentication issues for various food products, such as
green tea, rice, and fruits [8, 9, 10].

Principal component analysis (PCA) is the most
widely-used statistical procedure for interpreting large
spectral data. As an unsupervised technique, it provides
an overview of any patterns and groupings observable
in studied samples, via a graphical representation in the
form of 2D or 3D scatter plots [10]. However, it is not
always possible to obtain differentiating features and
adequate information directly from PCA models. On
the other hand, supervised techniques such as
orthogonal partial least squares-discriminant analysis
(OPLS-DA) are often utilized to build classification
models for further exploration of the data generated
[11]. The combination of PCA and OPLS-DA may

offer remarkable information for the classification and
discrimination of the considered samples.

Chili (Capsicum annuum L. var Kulai) is one of the
most widely cultivated and consumed vegetables in
Malaysia [12]. The chili plant is highly susceptible to
many diseases caused by insects, such as mites and
thrips, resulting in the routine use of chemical
insecticides to combat the problem. Therefore, this
study aims to develop a screening method for the
detection of pesticide presence in chili samples by
using ATR-FTIR combined with chemometrics (PCA
and OPLS-DA). The developed procedure can, thus, be
utilized as a ‘front-line’ detection tool by food
regulators prior to advanced laboratory testing,
reserved only for flagged samples, resulting in cost and
time-saving opportunities.

Table 1. The maximum residue limit for selected pesticides used in chili plant

Pesticide Molecular Formula Classification Maximum Residue Limit (mg/kg)
Malathion C10H1906PS2 Organophosphate (OP) 2
Cypermethrin - Cz2H19CI;NO3 Synthetic Pyrethroid (SP) 2
Fenobucarb C12H17NO; Carbamate 0.5

Materials and Methods

Sample preparation

Three types of pesticides that were selected contained
different concentrations and were in liquid form. The
commercial pesticides, namely Wesco Malathion 57
(malathion, 57%  w/w), Wesco Cyperin 550
(cypermethrin, 5.5% w/w), and Hoppergone
(Fenobucarb, 50% w/w), were purchased from Volcano
Agribusiness Sdn. Bhd. These pesticides were selected
as they are frequently quantified in fruit and vegetable
samples, and can be easily obtained from pesticide
distributors [13]. The pesticides were diluted using
distilled water, according to commercial formulations
under Pesticides Act 1974, to replicate actual field
conditions (Table 2). The prepared solutions were kept
at room temperature and used within one week.

A total of 120 samples of organic chili (Capsicum
annuum L. var Kulai) were purchased directly from a

local certified farmer in Pulau Pinang. The farmer was
aware of the aim of this study; hence the chance of
including any fraudulent or inauthentic organic
products in the dataset is minimized. The chili samples
were left unwashed and randomly divided into four
groups. In the first group, the chili samples were not
treated and marked as group O (Organic). In the
second, third and fourth groups, the chili samples were
evenly sprayed with different pesticide solutions and
marked as group M (Malathion), C (Cypermethrin),
and F (Fenobucarb), respectively. All samples were left
to dry for 2 hours so that the pesticide solution was
evenly distributed over the surface of the chili prior to
analysis.

Infrared spectroscopy measurements

The chili samples were scanned using a Perkin-Elmer
Spectrum  ATR-FTIR  spectrophotometer.  The
equipment was connected to computer software
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(Spectrum for Windows, Perkin-Elmer), and mid-
infrared spectra were recorded in the wavenumber
range of 4000-600 cm™, with a spectral resolution of 4
cm? at 16 scans. To simulate the on-site pesticide
screening analysis, the whole chili was placed on the
sample stage for direct measurement with no sample
preparation. As a reference, the background spectrum
of air was collected. Prior to each analysis, the ATR
crystal surface was thoroughly cleaned with ethanol
and wiped with clean tissue paper. The spectra for each
of the three pesticide samples (cypermethrin,
fenobucarb, and malathion) were also measured in
ATR mode. Spectrum acquisition of each sample was
repeated in triplicate under the same conditions, and an
average spectrum was obtained.

Data pre-processing and chemometrics

Experimental data were subjected to chemometrics
using SIMCA software (version 14.1, Umetrics,
Sweden), wherein both unsupervised PCA and
supervised OPLS-DA were performed for sample
classification. The usual spectral region for mid-IR

(4000-600 cm™) was observed and taken into account
for the analysis; however, the fingerprint region
between 1800-600 cm™ was scrutinized further, due to
this being the primary region where biomolecules
absorb IR radiation [14]. Spectral pre-processing, such
as first derivative transformation with third-degree
polynomial, and standard normal variate (SNV) was
applied to the IR data matrices to increase the
predictive ability and accentuate any subtle features
[15]. All variables were scaled and normalized using
UV-scaling (unit variance) and log-10, respectively.
The assessment of PCA's ability to detect and
discriminate organic from pesticide-contaminated chili
samples was made based on score plots observations,
in which the principal component (PC) score plots
were constructed using the first two resultant principal
components. The OPLS-DA models were presented
with several components based on the predictive
performance from the internal sevenfold cross-
validation by default, as suggested by the SIMCA
software.

Table 2. Pesticide preparation according to commercial formulations

Amount Taken Total Volume

Pesticide

(mL) (solvent, mL)
Wesco Cyperin 550 (cypermethrin 5.5% w/w) 5 1000
Hoppergone (fenobucarb 50% w/w) 1.5 1000
Wesco Malathion 57 (malathion 57% w/w) 15 1000

Results and Discussion

ATR-FTIR spectral analysis of organic chili

The mid-FTIR spectrum of organic chili in the range of
4000-600 cm* is shown in Figure 1. As expected, the
spectrum showed absorption bands corresponding to
the vibrations of functional groups belonging to
carotenoids, phenolic compounds and ascorbic acid,
which corresponded to previously reported studies [16,
17]. A strong absorption band was observed at 3342.05
cm?, corresponding to characteristic stretching
vibrations of O-H from amino acids. The small sharp
cluster of peaks at 2900-2800 cm was assigned to the
C-H stretching band of methyl and methylene groups

from the carboxylic acid structure. The medium-
intensity peak at 1635 cm™ corresponded to the C=0
stretching, indicating the characteristic amide | band,
while a low-intensity band at 1454 cm™ was observed
for the characteristic bending vibrations of C-H. The
presence of polyphenols could be identified by the
intense bands in the region of 1260-1180 cm™, caused
by the stretching vibration of C-C-O and low-intensity
C-H bending [16]. The functional groups associated
with the absorption peaks identified from the spectra of
the organic chili samples are summarized in Table 3.
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ATR-FTIR spectral analysis of pesticides

The IR spectra of the three pesticides were also
recorded to identify functional groups with unique
absorption bands. As depicted in Figure 2, the green
spectrum represents cypermethrin, the blue spectrum
represents fenobucarb, and the red spectrum represents
malathion. Each peak was contributed by a particular
functional group present in the compound. In general,
the pesticides revealed similar spectral patterns with a
minimal shift of absorption band positions and
intensity across the samples.

The C-H stretching in the two benzene rings of
cypermethrin contributed to the stronger peaks within
the wavenumber range of 3080-2820 cm; thus,
distinguishing this from the other two pesticides. The

other, stronger peak which was more obvious for
cypermethrin is the peak at 806 cm, which is
contributed by the C-CI functional group, present in
cypermethrin but not in fenobucarb or malathion. The
peaks contributing to the fenobucarb cluster were
mainly the N-H stretching at 3346 cm?, C=0
stretching at 1718 cmt, C-O-C stretching at 1216 cm™,
and C-N stretching at 1183 cm™. Malathion has a
strong peak at 1013 cm*, mainly due to the presence of
two P-O-C stretches. The P-O-C stretching was only
observed in malathion as compared to cypermethrin
and fenobucarb. Another prominent strong peak
present only in malathion was observed at 654 cm™,
mainly due to S=P-S-C stretching.

Figure 1. The FTIR spectrum of chili at wavenumber 4000-600 cmorganic

Table 3. The functional groups associated with absorption peaks identified in organic chili

Absorption Peak (cm™)

Possible Functional Group

3342.05 O-H stretching from amino acids

2921.48 and 2852.56 C-H stretching (from CH3 and CH, groups)
1635.3 C=0 stretching of amide | band

1461.45 C-H bending

1164.46 C-C-O stretching

1104.74 C-H bending
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Figure 2. Full range FTIR spectra at wavenumber 4000-600 cm™ (top) and the FTIR spectra enlarged at
wavenumber 1900-600 cm (bottom) for the three pesticides

Principal component analysis

Prior to analysis, the IR spectra of the chili samples
were pre-processed to minimize data variation and
overcome the dominating effect of strong peak
absorbance over weaker absorbance intensity [18].
Selecting a proper spectral range may be beneficial in
reducing the computational burden of the software in
terms of variables. Hence, the spectral region 1800—
600 cm™ was selected for further analysis, due to the
high positive correlations between changes in the
composition and spectral response observed, which
may be due to biomolecules’ absorption of IR radiation
occurring primarily in this region [14, 17].

As an unsupervised method, PCA was adopted for the
initial exploratory data analysis, whereby the score plot
reflected separation among the samples. PCA was
applied to the dataset of 120 chili samples to detect
outliers, as well as to predict possible patterns and
trends of clustering. For a visual illustration and
understanding, different classes of organic and
pesticide samples were mapped and labeled with
representative symbols. Figure 3(a) shows the score
scatter plot for PCA overview using the first two
principal components, PC1 (as in t1) and PC2 (as in
t2). Most samples fell within Hotelling's T2 ellipse at
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95% confidence intervals, with a few outliers. The
combination of PC1 and PC2 explained 43.6% of the
variation in the dataset. However, the organic and
pesticide-contaminated samples could not be distinctly
classified into two clusters, as some samples
overlapped with each other. The presence of outliers
may indicate experimental error due to sample
preparation. Direct measurement of the samples
without additional preparation may cause possible
background noise, leading to inconsistencies.

PCA was performed further by plotting the individual
score plots of each pesticide and organic sample, to
allow better qualitative discrimination between sample
groups. Results showed that a distinct separation into
two clusters was observed in each of the scatter plots,
meaning that PCA adequately captured relevant
information within the dataset. As illustrated in
Figure 3(b), the organic samples were well-segregated
from cypermethrin-containing samples, with clearly

w
a " ¥ e
(@ 2]
v
- Yy vy ¥
v v
bRV E. R
*
i v o«
v?
e v
v -
| * "
() S

defined clusters along PC2. When both PC1 and PC2
were combined, they contributed about 56.7% of the
total variance, with some samples overlapping with
each other. As for the outcome of PCA on organic
samples and fenobucarb-containing samples (Figure
3(c), the result shows that the samples were well-
distinguished, also mostly based on PC2. When both
PC1 and PC2 were combined, these accounted for
57.5% of the total variance. Likewise, as shown in
Figure 3(d), partially overlapping samples were
observed in the score plot of organic and pesticide
malathion-sprayed samples, with a total variance of
56.7%. This may be due to a low concentration of
spiked malathion, making it difficult to differentiate
between the IR spectra of both organic and pesticide-
containing samples.

Figure 3. PCA score scatter plot based on PC1 and PC2 (a) organic and pesticide-contaminated samples, (b)
organic and cypermethrin-contaminated samples, (c) organic and fenobucarb-contaminated samples, and

(d) organic and malathion-contaminated samples
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PCA was also performed on the IR spectra of neat
cypermethrin, fenobucarb and malathion samples, to
investigate the main variance among the three
pesticides used in this study (Figure 4). The first two
principal components explained 90.6% of data
variation and showed observable clustering of the
samples, according to the main active compound for
the three pesticides.

Predictive models

As PCA had successfully distinguished the dataset into
the observable cluster, a supervised OPLS-DA method
was later performed using each dataset separately:
organic with cypermethrin, organic with fenobucarb,
and organic with malathion. The original dataset was
divided into a training set and testing set, using an
80:20 ratio. Initially, 80% of the samples from the
original dataset (24 samples from each class) were
randomly selected as a training dataset, to build the
predictive models aimed at differentiating organic and
pesticide-contaminated chili samples. Classification
rates were obtained from the internal sevenfold cross-
validation by default in the SIMCA software. The
remaining 20% of the samples (6 samples from each
class) were set aside as an external validation test set,
to evaluate the robustness of the predictive models. The
overall efficiency of the models was assessed by
observing the numbers of correctly and incorrectly
assigned members of different classes for training and
test datasets.

The score scatter plots displayed the samples by
specific color-coded classes are shown in Figure 5. The
four classes in the training set were organic chili
(denoted as Organic Training Set), and organic chili
that had been sprayed with pesticides: cypermethrin
(denoted as Cypermethrine Training Set), fenobucarb
(denoted as Fenobucarb Training Set), and malathion
(denoted as Malathion Training Set). The scatter plots
in OPLS-DA showed better separation between classes
compared to PCA. As depicted in Figure 5, the samples
in each cluster were more tightly grouped in OPLS-DA
than in PCA.

The predictive model for organic and cypermethrin has
a fitness of data (R?) of 64.6%. The predictive ability
(Q% was above moderate at 79.6%, with a total sum of
variation (R?(Y)) of 84.2%. The model for organic and
fenobucarb has an R? of 62%, high predictive ability
(Q? of 80.3%, and R?(Y) of 85.8%. For organic and
malathion-contaminated samples, the predictive model
has an R? of 78.1%, moderate Q? of 70.6%, and R%(Y)
of 88.9%. The cross-validated analysis of variation
(CV-ANOVA) for cypermethrin, fenobucarb, and
malathion models reported P-values of 1.10 x 102,
5.70 x 1053, and 3.15 x 107, respectively. The results
showed that the discrimination between organic and
pesticide-contaminated chili samples was significant
(p <0.05).

The classification of the samples has been accurately
performed (100% accuracy) for organic and
cypermethrin models (Table 4), as well as organic and
fenobucarb models (Table 5). In the case of organic
and malathion models (Table 6), a single sample was
misclassified into the organic class (91.67% accuracy),
while all six organic chili samples fell accurately into
their right cluster (100% accuracy). These results
demonstrate the reliability of the models as a primary
screening tool to detect the presence of pesticides in
organic produce. It may help food regulators to
ascertain whether the fruits or vegetables require
further testing using more sophisticated
instrumentation.

Figure 4. PCA score scatter plot according to the main
active compound for the three pesticides
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Figure 5. OPLS-DA scatter plots by the class of organic and pesticide-contaminated samples (a) training set for
organic and cypermethrin, (b) predicted plot for organic and cypermethrin, (c) training set for organic and
fenobucarb, (d) predicted plot for organic and fenobucarb, (e) training set for organic and malathion and
(f) predicted plot for organic and malathion
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Table 4. Misclassification table for organic and cypermethrin samples

Members  Correct Organic Cypermethrine
(%) Training Set Training Set
Organic Training Set 24 100 24 0
Cypermethrine Training Set 24 100 0 24
Test Set 12 100 6 6
Total 60 100 30 30

Table 5. Misclassification table for organic and fenobucarb samples

Members Correct Organic Fenobucarb

(%) Training Set Training Set
Organic Training Set 24 100 24 0
Fenobucarb Training Set 24 100 0 24
Test Set 12 100 6 6
Total 60 100 30 30

Table 6. Misclassification

table for organic and malathion samples

Members Correct Organic Malathion
(%) Training Set Training Set
Organic Training Set 24 100 24 0
Malathion Training Set 24 100 0 24
Test Set 12 91.67 7 5
Total 60 100 31 29

Conclusion
The combination of ATR-FTIR and chemometrics can
be utilized for preliminary screening of pesticides in
organic produce, yielding benefits such as high speed,
non-invasiveness, and simplicity of sample preparation.
In general, distinguishing each pesticide was possible
according to its functional groups, as analyzed by
ATR-FTIR. Cypermethrin, for example, revealed
stronger peaks contributed by C-H (from benzene
rings) and C-CI functional groups, whereas fenobucarb
was identifiable by N-H stretching, C-O-C stretching,
and C-N stretching. Malathion had strong peaks

contributed by two P-O-C stretches and S=P-S-C
stretching. The results also showed clear discrimination
and classification between organic and pesticide-
contaminated chili samples through PCA, and can be
considered as a successful attempt, despite a few
outliers observed in the process. With the use of OPLS-
DA, it is possible to classify samples according to
organic and pesticide-contaminated classes and predict
the residues of unknown pesticides. This study serves
as an approach for pesticide screening of organic
produce, thereby suggesting further investigation,
based on the detection limit of pesticide residues for
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various fruit and vegetables, in ensuring more robust
classification models.
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