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Abstract

Mobil Composition of Matter No. 41 (MCM-41) and Santa Barbara Amorphous (SBA-15), a type of mesoporous adsorbents,
were successfully prepared via mixed cationic-neutral templating route and sol-gel method, respectively. Analytically, the
prepared materials were compared to remove anionic azo (methyl orange) and cationic dyes (methylene blue) from highly
colored solutions. Both adsorbents were characterized using Fourier transform infrared (FTIR), field emission scanning electron
microscopy (FESEM), and nitrogen adsorption/desorption to enhance the understanding of structure and surface properties. To
assess the efficiency of the prepared adsorbents, the pH of the sample, the initial concentration of the dyes, and contact time were
studied. At optimum conditions, maximum adsorption capacities for methyl orange (MO) and methylene blue (MB) using MCM-
41 were 4.757 mg/g and 16.00 mg/g and for SBA-15 the maximum adsorption capacities were 20.212 mg/g and 10.45 mg/g,
respectively. Furthermore, Langmuir and Freundlich isotherm models were selected to describe the adsorption process while
pseudo-first-order and pseudo-second-order kinetics equations were applied to determine the adsorption kinetics. The obtained
results showed that SBA-15 can remove both dyes 38.53% better than MCM-41 due to higher surface area, which was 507 m?/g
compared to 436 m?/g for MCM-41.

Keywords: cationic dyes, anionic dyes, adsorption, mesoporous silica

Abstrak
Komposisi Mobil Perkara 41 (MCM-41) dan Santa Barbara Amorfous (SBA-15) jenis penjerap mesopori berjaya disediakan
melalui kaedah templat neutral kationik-neutral dan kaedah sol-gel. Bahan yang disediakan dibandingkan secara analitikal untuk
mengeluarkan pewarna azo anionik (oren metil) dan pewarna kationik (biru metilena) dari larutan yang sangat berwarna. Kedua-
dua penjerap dicirikan menggunakan inframerah jelmaan Fourier (FTIR), mikroskopi elektron pengimbasan pelepasan medan
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(FESEM) dan penjerapan/penyahjerapan nitrogen untuk meningkatkan pemahaman mengenai sifat struktur dan permukaan.
Untuk menilai kecekapan penjerap yang telah disediakan, tiga parameter telah dikaji iaitu pH sampel, kepekatan awal pewarna
dan masa penyentuhan. Pada keadaan optimum, kapasiti penjerapan maksimum untuk metil oren (MO) dan metilena biru (MB)
menggunakan MCM-41 ialah 4.757 mg/g dan 16.00 mg/g dan untuk SBA-15 kapasiti penjerapan maksimum ialah 20.212 mg/g
dan 10.45 mg/g masing-masing. Selanjutnya, model isoterm Langmuir dan Freundlich dipilih untuk menggambarkan proses
penjerapan sementara persamaan Kinetik turutan-pseudo-pertama dan turutan-pseudo-kedua digunakan untuk menentukan kinetik
penjerapan. Hasil perolehan menunjukkan bahawa SBA-15 dapat menyerap kedua-dua pewarna 38.53% lebih baik daripada
MCM-41 kerana luas permukaannya yang lebih tinggi iaitu 507 m?/g berbanding dengan 436 m?/g untuk MCM-41.

Kata kunci: pewarna kation, pewarna anion, penjerapan, silika mesopori

Introduction

Dye molecules contain chromophore and auxochrome
structures. Chromophore group contains a double bond
that oscillates to absorb light and causes a dye to have a
visible colour [1]. Natural dyes gave dull colors and
were commonly used in the European textile industry
before synthetic dyes were produced in 1856 [2]. Dyes
are widely used in foods, medicines, and clothes
resulting in an increase in dye production [3]. Acid
dyes, basic dyes, direct dyes, disperse dyes, reactive
dyes and vat dyes are commonly used in textile
industrial products [4]. MO is an example of acid or
anionic dye that belongs to azo dye which consists of
one or more azo groups (-N=N-) between the carbons
[5, 6]. Azo dyes are also commonly used in food and
could cause bladder cancer when consumed, due to the
presence of benzidine, a known carcinogenic agent [7,
8] MB is a basic or cationic dye with a structure of
heterocyclic aromatic chemical compound [9]. MB can
cause a burning sensation leading to permament injury
when in contact with the eyes [10]. In addition to the
health effect, the environment could also be affected by
the pollution of dyes as this water-soluble compound
cannot be easily removed through a filtration method.
As a result, it can affect the symbiotic process due to
the prevention of light penetration, which leads to low
photosynthetic activity in the water [11]. Besides that,
a large number of synthetic dyes are released into
wastewater during coloration process due to illegal and
improper waste management [3].

Various techniques have been developed to remove dye
from  water  including  nanofiltration [12],
electrochemical coagulation [13], reverse osmosis [14],
photochemical degradation [15], ion exchange [16] and

adsorption. However, adsorption is more beneficial
compared to other techniques due to the simplicity of
design, case of operation, initial cost, and insensitivity
to toxic substances [17]. The efficiency of the
adsorption technique is based on the adsorbent
properties, which are high adsorption capacity and
selectivity, good mechanical stability, resource
abundance, and environmental friendly [18]. Therefore,
scientists have developed various kinds of adsorbent
from coffee wastes [5], banana plant-derived sorbents
[19], calcined and uncalcined Mg/Al layered double
hydroxide [20], cellulose-based porous adsorbents [21],
activated carbons [22, 23], magnetic lignin-based
adsorbent [24], anionic clay-layered double hydroxide
[25], amino-cross linked hypromellose [26], and
layered double hydroxide/polyacrylamide
nanocomposite hydrogels [27] to increase the
efficiency of removing a dye. Nonetheless, these types
of adsorbents may have their drawbacks such as,
expensive to synthesize, difficult to dispose, low
adsorption efficiency or difficult, and costly to
regenerate [28, 29]. The discovery of mesoporous silica
has garnered a lot of attention from researchers since it
has high surface areas and well-defined pore structures
[30]. The first mesoporous material was created
through hydrothermal reaction using aluminisilicate gel
with the presence of surfactants [31].

Mobil Composition of Matter No. 41 (MCM-41) and
Santa Barbara Amorphous (SBA-15) are a member of
the mesoporous family and are suitable for dye
removal due to their high specific surface area ranging
from 500 to 1000 m?/g [32]. The pore sizes of SBA-15
and MCM-41 are in the range of 60 to 110 A and 15 to
100 A, respectively [33, 34]. Furthermore, the hydroxyl
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group (-OH) on their surface area offer ease
functionalization to enhance their selectivity [33, 35,
36]. These two adsorbents are preferable compared to
other adsorbents because the surface and pores of these
materials can be altered to target specific analytes,
regenerated, and reused with high capacity at low cost
[29]. The objectives of this study are to prepare and
characterize mesoporous silica MCM-41 via mixed
cationic-neutral templating route using cationic cetyl
trimethylammonium bromide and SBA-15 via sol-gel
method. This is performed; to assess the performance
of prepared adsorbent for removal of anionic MO and
cationic MB dyes using ultraviolet -visible
spectroscopy.

Materials and methods

Chemicals and reagents

The chemicals that were used in this study are
cetyltrimethylammonium bromide (CTABr, 99%,
Sigma-Aldrich), 1.0 M aqueous hydroxide (NaOH,
Sigma-Aldrich) and Ludox colloidal silica (SiO2, 30%,
Sigma-Aldrich),  ammonium hydroxide (NHsOH,
25%), MB (C16H18C1NsS, 90%, Sigma-Aldrich), MO
(C14H14N3NaOsS, 90%, Sigma-Aldrich), and distilled
water.

Preparation of MCM-41 and SBA-15

The method used to synthesize MCM-41 was adapted
with slight modification from a previous study [37].
Sodium silicate (solution A) was firstly prepared by
mixing 33.80 mL of Ludox (30%) with 3.03 g of
sodium hydroxide (NaOH) in 37.5 mL double distilled
water at 80 °C with 2 hours stirring at a medium speed
using magnetic stirrer. Then, another solution (solution
B) was separately prepared by mixing 9.60 g of
cetyltrimethylammonium bromide (CTABr) and 0.50 g
of ammonium hydroxide (NHiOH) in 75.0 mL of
distilled water with stirring at 80 °C until a clear
solution was obtained. Both A and B solutions were
mixed in a polypropylene bottle to give a gel with a
composition of 6 SiO,: CTABr: 1.5 NaO: 0.15
(NH4)20: 250H,0 followed with vigorous stirring. The
resulting gel was then kept in an oven for
crystallization at 100 °C for 24 hours. The following
day, the gel was then cooled to room temperature for 3
hours, and the pH was adjusted to 10.2 by adding 25

wt.% of acetic acid. The heating and pH adjustments
were repeated twice in order to complete the
polymerization process of silica monomers. The white
conducts were filtered, washed, neutralized, and dried
overnight at 100 °C in an electrical oven. Finally, the
solid product went through a calcination process at 550
°C in a furnace for 10 hours to remove the organic
template.

The preparation of SBA-15 was referred to previous
study with minor modifications [38]. Firstly, distillate
water (30 mL), 2.0 M HCI (120 mL), and Pluronic
P123 (4.0 g) were dissolved by stirring at 35 °C for 20
hours. Then, 8.5 g of tetraethyl-orthosilicate (TEOS)
was added dropwise under constant vigorous stirring
for 15 minutes. The mixture was kept under static
conditions at 35 °C for 20 hours. The milky mixture
was then placed in an oven at 90 °C for 24 hours. The
solid product was filtered, washed, and dried at 45 °C
for 72 hours. Lastly, the product was calcined for 6
hours at 500 °C and stored in a proper container.

Characterization of MCM-41 and SBA-15

The functional groups that are present in both
adsorbents were determined using FTIR (Perkin Elmer
8300, Massachusetts, USA). Each adsorbent was
ground with KBr powder to turn it into a pellet before
obtaining the FTIR spectrum. The surface morphology
of both adsorbents was identified using FESEM (JEOL
JEM-2300, Tokyo, Japan) after it was coated with gold
film at 20kV voltage. In addition, the specific surface
area and averaged pore size were analyzed using
Brunauer-Emmett-Teller (BET) surface analyser
(Belsorp-mini 1, Japan). The samples were displaced
at 300 °C with nitrogen flow for 6 hours. The surface
area of each adsorbent was discovered from the linear
BET method with rapid nitrogen uptake, P/Po = (0.4-
1.0).

Batch studies on MO and MB removal

The batch studies were carried out to investigate the
adsorption reaction of MO and MB onto MCM-41 and
SBA-15 by varying the pH values of the sample, the
initial concentration of both dyes, and contact time.
Each parameter gave an effect on the adsorption
capacity of the dyes using MCM-41 and SBA-15 as the
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adsorbent. The adsorbent dosage was kept constant at
0.05 g. The removal process was obtained by placing a
conical flask containing dye solution (10 mL) and 0.05
g adsorbent onto a shaker with a constant speed at 160
rpm. The adsorbent was separated from the dye
solution through centrifugation. The residual MO and
MB concentrations were then determined by collecting
aliquots from the supernatant and measuring them with
a UV-Vis spectrophotometer (Lambda 35-Perkin
Elmer) at a wavelength of 463 nm for MO and 660 nm
for MB [39].

Adsorption isotherm

Adsorption equilibrium provides the fundamental
physicochemical data to evaluate the applicability of
the adsorption process [40]. The adsorption data of the
experiment were fitted according to the two isotherm
models, which were Langmuir and Freundlich models.
Langmuir model predicts that each adsorbate molecule
is located at a single site of identical energy onto the
surface of the adsorbent that leads to a formation of a
monolayer [41]. The equation for this model is
presented in Equation (1).

Ce _ 1 , Ce
q_e " Qmb Qm (1)
where Ce is equilibrium concentration of adsorbate, e
is amount of dye adsorbed (mg/g), Qm = adsorption
capacity (mg/g), and b is Langmuir constant (L/mg)

which were determined through intercept value from ;—e
e
against C. graph.
Freundlich model is an empirical equation utilized to
define equilibrium on heterogenous surfaces and hence
does not assume monolayer capacity [42]. The
equation used to represent this model is stated in
Equation (2).

log g, = logKy + %logCe 2

where ki is adsorption capacity, n is Freundlich
constant, Ce is equilibrium concentration of adsorbate,
ge is capacity of equilibrium adsorption and n were
determined from the intercept and slope of graph In(qe)
against In(Ce).

Adsorption Kkinetics

The experimental data were fitted by implementing
pseudo-first-order and pseudo-second-order Kinetic
models [41]. The equation for pseudo-first-order and
pseudo-second-order is stated in Equation (3) and (4),
respectively.

k
log,o(q, —q,) = log,4(q,) = 5o ©)

where ¢; is amount of dye adsorbs at certain time
equilibrium, ki is equilibrium rate constant of pseudo-
first constant and t = time (min).

t 1 t

t=goed @

q,  kzq? ' q,

where K; is pseudo-second-order rate constant, ge is
capacity of equilibrium adsorption, q: is adsorption
amount of dye at certain time equilibrium, t is contact

time (min), ge and Kz were calculated using qi against t
t

graph.

Results and Discussion
Characterization of MCM-41 and SBA-15
FTIR-ATR spectra of MCM-41 and SBA-15 are shown
in Figure 1. The broad peak around 3500 and 1639 cm-
! in both spectra are mainly due to the bending
vibration of the adsorbed water. The bands present
around 1030 — 1080 and 450 - 464 cm™ indicate
siloxane bond (Si-O-Si) and Si-O bond in both
samples, respectively. The peaks representing silanol
group (Si-OH) in MCM-41 and SBA-15 are present
around 800 - 970 cm™ [43, 44, 45, 47, 48]. These four
bonds confirm the silica framework of MCM-41 and
SBA-15 [45]. However, SBA-15 contains two extra
bonds, which are stretching vibration of C=0 (the peak
is present at 1701 cm™) and C-H bending (the peak is
present at 1370 cm™) [45, 46]. Both adsorbents have
similar bonds but there are slight differences in their
wavenumbers.

FESEM micrographs of both adsorbents are shown in
Figure 2. The morphology of each adsorbent is
different. On the surface of MCM-41, the presence of
pores could be observed after the removal of the
CTABr template and the shape appeared as small
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agglomerated spheres and small rods [49]. SBA-15
shows a perfect sphere due to the removal of triblock
copolymer surfactant [50].

The specific surface area, pore volume and pore
diameter parameters of the synthesized materials were
calculated using the BET method based on the N
adsorption and desorption isotherms. \P)
adsorption/desorption isotherms of MCM-41 and SBA-
15 are shown in Figure 3. According to the
International Union of Pure and Applied Chemistry
(IUPAC), the isotherms of both MCM-41 and SBA-15

exhibit typical type IV physisorption curves thus,
confirming that both adsorbents are mesoporous and
the adsorption process can either be monolayer or
multilayer [51]. As for the type of hysteresis loop, both
adsorbents show type H1 that often relate to porous
materials with well-defined cylindrical-like pore
channels or agglomerates of approximately uniform
spheres [34]. The specific surface area, pore volume,
and pore diameter for MCM-41 are 436 m?/g, 0.533
cm®g and 11.27 nm while for SBA-15 are 507 m?/g,
0.688 cm®/g and 7.2 nm, respectively.

MOM-4)

SBA-IS

Figure 1. FTIR spectra of (a) MCM-41 and (b) SBA-15

T T T w0
RRA M s Sode b ¢ Poal by e

— MOM-41 | -

Figure 2. FESEM micrographs of (a) MCM-41 and (b) SBA-15
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Figure 3. N2 Adsorption-Desorption Isotherms of MCM-41 and SBA-15

Batch adsorption studies of MO and MB using
calcined MCM-41 and SBA-15

Effect of sample pH

The pH of the sample affects every adsorption process
especially for dyes since pH controls the magnitude of
electrostatic charges on the surface of the adsorbent.
When optimized pH is obtained, the adsorbent can
adsorb more dye molecules since the surface of the
adsorbent have the suitable electrostatic charge to
interact with the anionic and cationic dye molecules
that have negative and positive charge once the dyes
dissolved and partially ionized in water [52]. To study
the effect of pH (3, 5, 7, 9, and 11), the pH of the dye
solution was adjusted in a beaker before being
transferred to a conical flask. In this experiment, 0.01
M NaOH, 0.1 M NaOH, 0.01 M HCI, and 0.1 M HCI
was used to adjust the pH systematically. The other
variables were set at constant values including sample
volume (10 mL), the mass of adsorbent (0.05 g), shaker
speed (160 rpm), dye concentration (80 ppm), and
contact time (30 mins).

Figure 4, shows that the optimum pH for removal of
MO using MCM-41 is pH 3 while SBA-15 is pH 5
with a percentage removal of 58% (MCM-41) and
55.17% (SBA-15). Under an acidic condition, there is a
high concentration of H* that will change the surface of
the adsorbents to be slightly positively charged and

increase its ability to adsorb MO that has a negative
charge once it dissolves in water [53]. For removal of
MB, the optimum pH using MCM-41 and SBA-15 are
pH 7 and pH 11, respectively with a percentage
removal of 100.24% (MCM-41) and 99.95% (SBA-
15). Cationic dyes such as MB gives positively charged
ions when dissolved in water and due to this acidic
medium (pH<7), the surface of the adsorbent becomes
positively charged and tends to oppose the adsorption
of the MB molecules. At higher pH (pH > 7), the
electrostatic repulsion between the positively charged
MB and the surface of the adsorbent was lowered since
there were less H* ions to compete with cation groups
on dye for adsorption sites hence, increasing the
removal efficiency of the dye molecules [54-56].
Another study, stated that increasing the pH of the
sample will increase the number of hydroxyl (OH")
ions thus, increasing the number of negatively charged
sites on the surface of the adsorbent and enlarges the
attraction between MB and adsorbent surface [57]
Based on the percentage removal, both MCM-41 and
SBA-15 adsorbed more MB compared to MO. This
might be due to the presence of silanol groups that
have acidic character and are able to form hydrogen
bonds with MB molecules compared to MO molecules
[30]. It was also found that there is a slight difference
in percentage removal of MB between these two
adsorbents. However, both adsorbents are still
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considered efficient adsorbents [39]. Figure 5 shows
the adsorption mechanism under basic and acidic
conditions. Based on Figure 5, it shows that the silanol
group on the surface of the adsorbents interacts with
the dye molecules. In an acidic condition, the silanol
groups become slightly positive when it reacts with H*

ions and become Si-OH," that enable the adsorbents to
adsorb the MO molecules and in basic condition, the
silanol groups become slightly negative when OH" ions
react with the group and become Si-O" and enable the
adsorbents to adsorb MB molecules [53].

Removal efficiency (%)

= MCM-41 (MO)

100
$0 = —
60 B - % - - - -
40 -
20 1
0
3 5 7 9 i

pH
SBA-15(MO) sMCM-41 (MB)

SBA-15 (MB)

Figure 4. Percentage removal of MO and MB using MCM-41 and SBA-15 at a different range of pH

BASIC CONDITION

N
f\f >
=]
N4 W a == e
I Mathy? .—-muc /
l

Adsochent surface "

ONDITION

MCM-41/SBA-15

Figure 5. Adsorption mechanism under basic and acidic conditions
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Effect of initial concentration

The study on the initial concentration of MO and MB
was carried out to determine the adsorption capacity of
each adsorbent. The initial concentration used was 60
ppm, 80 ppm, 100 ppm, 120 ppm, and 140 ppm with an
adsorbent dosage of 0.05 g. For MCM-41, the pH value
of MO solution was set to 3 with a contact time of 30
minutes while for MB, the pH was set to pH 9 with the
same contact time. As for SBA-15, the pH value of the
MO solution was set to pH 5 with a contact time of 30
minutes while for MB, the pH was set to pH 7 with the
same contact time. The initial concentration of the dye
will affect the amount of adsorption for dye removal.
The amount of dye adsorbed onto the adsorbent is
highly dependant on the available sites of the adsorbent
surface. As seen in Figure 6, the optimum initial
concentration for removal of MO using MCM-41 and
SBA-15 is 60 ppm and 140 ppm respectively with a
percentage removal of 100% (MCM-41) and 72.54%
(SBA-15). As for the removal of MB, the optimum
initial concentration using MCM-41 and SBA-15 are
80 ppm (99.98%) and 100 ppm (99.77%), respectively.

As the concentration increases, the percentage removal
of dye will decrease because the adsorption site is
already concentrated with the dye [58]. This is because,
at low concentrations, the ratio of the initial amount of
dye molecules to the unoccupied adsorption sites was
low and this causes more adsorption sites to be
available hence, increasing the percentage removal. At
higher concentrations, the ratio of the initial amount of
dye to the unoccupied adsorption sites is high,
therefore, there are less adsorption sites available
hence, decreasing the percentage removal [59].
However, the removal percentage for SBA-15
increases with an increase of initial MO concentration.
The adsorption capacity may increase due to the high
driving force for mass transfer at a high initial dye
concentration [58].

Effect of contact time

An optimum contact time can predict the mechanism of
the removal process and the efficiency of the adsorbent
to remove the dyes [60]. In the early stage, it is more
towards the displacement of dye molecules from the

bulk solution to the outer surface of the adsorbent.
Consequently, at a longer contact time, the adsorption
process occurs due to the interaction between the dye
molecules and the adsorption sites in the inner surface
of the adsorbent. Finally, the diffusion and
interpenetration of the dye molecules will take place in
the pores of the adsorbent [61]. In this batch of study,
0.05 g of adsorbent was used and the controlled
parameters are pH and initial concentration. For MCM-
41(MO), the pH and initial concentration that was
chosen are pH 3 and 60 ppm. As for MCM-41 (MB),
pH 7 and 80 ppm was chosen as the optimum value and
for SBA-15 (MO), pH 5 was chosen with an initial
concentration of 140 ppm. Lastly, for SBA-15 (MB),
pH 9 and 100 ppm was chosen as the optimum values.

Adsorption isotherm

Adsorption isotherm determines whether the adsorption
reaction occurs in monolayer or multilayer. It
determines how the dye molecules cover the surface
and internal surface of the adsorbent after the
adsorption process reach equilibrium [63]. Graphs for
each isotherm model are plotted to obtain linear
regression correlation coefficient (R?) value that is used
to define which model is suitable to explain the
behavior of the adsorption occuring throughout the
adsorption process. R? value that is close to 1 is
chosen. Figures 8 and 9 show the graph on the
Langmuir and Freundlich isotherm model on the
removal of MO and MB using MCM-41 and SBA-15,
respectively. Based on the graph, the adsorption
process for removal of MO (R?= 0.9742) and MB (R?=
0.9933) for MCM-41 is described as monolayer
adsorption whereby the Langmuir model is best fitted
for both studies [64, 65]. As for SBA-15, adsorption of
MO (R?= 0.7214) is best described as the Freundlich
model. Based on the previous study [66], the Langmuir
model better fitting on adsorption of acidic dye,
however, the result in this study does not come to an
agreement. This is because the adsorbent surface
during the adsorption process was heterogenous and
the adsorption sites have different adsorption energy
hence, causes multilayer adsorption [41]. The
adsorption data on removal of MB (R?= 0.9787) using
SBA-15 fits the Langmuir model [67]. Figures 8 and 9
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show the graphs on the Langmuir and Freundlich
isotherm model on the removal of MO and MB using
MCM-41 and SBA-15, respectively.

Adsorption Kinetic

There are two common Kinetic models used in the
kinetic study, which are pseudo-first-order or pseudo-
second-order. These two kinetic models were used to
investigate the mechanism of adsorption and the rate of
adsorption that occurred during the adsorption process.
The determination of types of kinetic model is based on
the linear regression correlation coefficient, R? value

that is obtained from graphs. The R? value close to 1
determines the kinetic model of the adsorption process.
The adsorption studies in removing MO and MB using
MCM-41 and SBA-15 fit better with pseudo-second-
order. This shows that the preferable mechanism of the
reaction is chemisorption instead of physisorption [65,
66, 67, 68]. The graphs for t/g: against contact time for
MCM-41 and SBA-15 are shown in Figure 10 and 11,
respectively.
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Figure 6. Percentage removal of MO and MB using MCM-41 and SBA-15 at a different range of initial
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Figure 11. Pseudo-second-order for SBA-15 on removal of (a) MO and (b) MB

Comparison of dye removal efficiency

The removal efficiencies of MCM-41 and SBA-15
were compared with other types of adsorbents for
removal of the MO and MB from an aqueous solution.
The maximum adsorption capacity of MO and MB

dyes on different types of adsorbent are listed in Table
1. According to the table, this study showed the highest
adsorption capacity for both dyes.

Table 1. Maximum adsorption capacity of MO and MB using other types of adsorbents

Mesoporous Silica Dyes pH Maximum Adsorption References
Adsorbent Capacities, (mg/g)
Mesopore silica composite MO 2 0.470 [69]
from rice husk with
activated carbon from
coconut shell
Non-porous silica MB - 9.5 [70]
Green iron oxides/MCM- MO 4.5 1.9 [71]
41
Calcined magnesite MB - 0.39 [72]

MO - 0.64
Zinc metal organic MB - 0.75 [73]
frameworks
Brazil nut shells MB 7.0-10.0 7.81 [74]
MCM-41 MO 3.0 4.757 This study
SBA-15 MO 5.0 20.212 This study
MCM-41 MB 7.0 16.00 This study
SBA-15 MB 11 10.45 This study

10
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Conclusion

Mesoporous silica MCM-41 and SBA-15 with a
specific surface area of 436 m?/g and 507 m?%g were
applied for removal of anionic and cationic dye from
an aqueous solution. At optimum conditions, the
maximum adsorption capacities of MO using MCM-41
(pH = 3, initial concentration = 60 ppm, contact time =
30 minutes) and SBA-15 (pH = 5, initial concentration
= 140 ppm, contact time = 40 minutes) are 4.757 mg/g
and 20.212 mg/g respectively. As for the removal of
MB, the maximum adsorption capacities obtained by
MCM-41 (pH = 7, initial concentration = 80 ppm,
contact time = 10 minutes) and SBA-15 (pH = 11,
initial concentration = 100 ppm, contact time = 30
minutes) are 16.00 mg/g and 10.45 mg/g respectively.
This study showed that the proposed mesoporous
silicates removed a considerable amount of MB
cationic dye compared to the MO anionic dye. Since
cationic dyes contain positive sites, they can interact
with the silanol groups and form strong hydrogen
bonds for longer retention on the surface of the
adsorbents. Besides that, SBA-15 removes MO better
compared to MCM-41, which is due to the higher
surface area and pore size. The adsorption data for the
removal of MO using MCM-41 and SBA-15 fits
Langmuir and Freundlich models respectively, while
for the removal of MB, both adsorbents fit the
Langmuir model. The adsorption kinetics of MO and
MB onto MCM-41 and SBA-15 is best described as
pseudo-second-order showing that the adsorption
mechanism of MO and MB is chemisorption. It is
concluded that MCM-41 and SBA-15 can also be used
as adsorbents to efficiently remove the anionic MO and
cationic MB from water.
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