Malaysian Journal of Analytical Sciences (MJAS) Published by Malaysian Analytical Sciences Society

OPTIMIZATION OF EXTRACTION TEMPERATURE AND TIME ON PHENOLIC COMPOUNDS AND ANTIOXIDANT ACTIVITY OF MALAYSIAN PROPOLIS *Trigona Spp.* AQUEOUS EXTRACT USING RESPONSE SURFACE METHODOLOGY

(Pengoptimuman Suhu dan Masa Pengekstrakan pada Sebatian Fenolik dan Aktivikiti Antioksidan daripada Ekstrak Akues Propolis Kelulut (*Trigona Spp.*) Malaysia menggunakan Kaedah Gerak Balas Permukaan)

Abdullah Hagar¹, Nurlisa Fatihah Abd Rani¹, Muhammad Ibrahim¹*, Norazsida Ramli², Idris Adewale Ahmed³, Abbe Maleyki Mhd Jalil⁴, Mohd Nur Nashriq Anuar¹

¹Department of Nutrition Sciences, Kulliyyah of Allied Health Sciences

²Department of Biomedical Science, Kulliyyah of Allied Health Sciences

International Islamic University Malaysia, Jalan Istana, Bandar Indera Mahkota, 25200 Kuantan, Pahang,

Malaysia

³Centre for Natural Products Research and Drug Discovery (CENAR), Level 3, Research Management & Innovation Complex,

University of Malaya, 50603 Kuala Lumpur, Malaysia

⁴School of Nutrition and Dietetics,
Universiti Sultan Zainal Abidin, 21030 Kuala Terengganu, Terengganu, Malaysia

*Corresponding author. abumaisarah@iium.edu.my

Received: 8 July 2021; Accepted: 8 August 2021; Published: 29 August 2021

Abstract

Propolis is a natural product with rich bioactive constituents for medicinal, pharmaceutical, food, and cosmetic uses. It is considered a diet supplement to enhance health and prevent disease. The optimum extraction conditions used to obtain the highest yield of total phenolic content (TPC), total flavonoid content (TFC), and antioxidant capacities for Trigona propolis aqueous extract was analyzed using response surface methodology and the central composite design. The effects of extraction temperature (X1: 30 - 60 °C) and extraction time (X2: 24 - 72 hours) on TPC (Y1), TFC (Y2), and antioxidant activities (DPPH (Y3), ABTS*+ radical scavenging assay (Y4), and ferric reducing antioxidant power (Y5) were investigated. The experimental data were satisfactorily fitted into a second-order polynomial model with regard to TPC (R2 = 0.9461, p = 0.0003), TFC (R2 = 0.9110, p = 0.0015), DPPH (R2 = 0.9482, p <0.0001), ABTS (R2 = 0.9663, p <0.0001), and FRAP (R2 = 0.9058, p = 0.0018). The optimum extraction temperature and time were 43.75 °C and 52.85 hours. The predicted response values for TPC, TFC, DPPH, ABTS, and FRAP were 104.30 mg GAE/100g, 6.95 mg QE/g, 3.24 mMTE/g, 2.59 mMTE/g, and 4.34 mMTE/g, respectively. The experimental values were close to the predicted values 100.41 ± 2.74 mg GAE/100g, 6.74 ± 0.08 mg QE/g, 3.17 ± 0.08 mMTE/g, 2.76 ± 0.14 mMTE/g, and 2.76 ± 0.14 mMTE/g. As a result, the models generated are suitable, and RSM was successful in