Malaysian
Journal of Analytical Sciences Vol 25 No 4
(2021): 605 - 621
(Rawatan Air Bawah Tanah Menggunakan Pasir, Zeolit dan Karbon
Reaktifdari Sekam Padi bagi Penyingkiran Keliatan Air)
Nor Izzah Abdul Aziz1,
Norzila Othman1*, Wahid Ali Hamood Altowayti1, Zalilah Murni Yunus2, Nurina Fitriani3, Mohd Fadhil Md Din4,
Firhat Muhammad Fikri5
1Faculty of Civil Engineering and Built
Environment
2Faculty of Science Technology &
Human Development
Universiti Tun Hussein Onn Malaysia,
86400, Batu Pahat Johor, Malaysia
3Faculty of Science and Technology,
Universitas Airlangga, Surabaya, Jawa
Timur 60115, Indonesia
4Faculty of Engineering,
Universiti Teknologi Malaysia, 81310
Skudai, Johor, Malaysia
5Bendang Afwa Enterprise Sdn Bhd
Bukit Tembaga, Kuala Nerang, Kedah, Malaysia
*Corresponding authors:
norzila@uthm.edu.my
Received: 10 June 2021; Accepted: 16 July 2021;
Published: 29 August 2021
Abstract
Recently
the treatment for hard water was by using a technique that will give an impact
on the environment and consumer. Sand, zeolite and rice husk-activated carbon
can be used as a media for water hardness treatment by adsorption process.
Performance of sand, zeolite and rice husk activated carbon (RHAC) for removal
of Ca2+ and Mg2+ in hard water was investigated by
employing a batch experimental set-up. The study considered X-ray fluorescence
(XRF) spectroscopy analysis for the evaluation of the chemical composition of
the media and Fourier transform infrared (FTIR) spectroscopy for the surface functional
group. Experimental adsorption data were modelled by Langmuir, Freundlich and
BET. The adsorption process followed the Langmuir isotherm model with high
coefficients of correlation R2 (0.9888) for Ca2+ and R2
(0.9662) for Mg2+. The RL value in this study was less
than one for both Ca2+ and Mg2+, indicating that the
absorption of the metal ion onto all the media is favourable. The
pseudo-second-order fitted well in correlation to the experiment results. The
results indicate that sand, zeolite, and RHAC have chemisorption mechanisms and
can be alternative media for hard water treatment using the adsorption
process. Furthermore, there will be an
advantage in terms of economic and environment-friendly media.
Keywords: adsorption, kinetic study, filter media,
groundwater treatment, hard water, isotherm study
Abstrak
Rawatan keliatan air yang sedia ada memberi kesan
kepada pengguna dan alam sekitar.
Pasir, zeolit dan karbon teraktif dari sekam padi boleh digunakan
sebagai media bagi rawatan air liat.
Semua media ini akan bertindak sebagai penyerap. Eksperimen kaedah
kelompok digunakan bagi menyiasat keberkesanan pasir, zeolit dan karbon
teraktif dari sekam padi dalam menyerap dan merendahkan nilai bagi ion Ca2+
dan Mg2+ di dalam air bawah tanah. Analisis spektroskopi
pendaflour sinar-X (XRF) ke atas komposisi bahan kimia dan spektroskopi infra
merah transformasi Fourier (FTIR) pada setiap media turut dijalankan. Hasil
dapatan daripada ekperimen kaedah kelompok, keputusannya disuaipadan dengan kaedah
permodelan Langmuir, Freundlich and BET bagi mengenalpasti sifat kebolehserapan
semua media. Proses penjerapan adalah
memenuhi kriteria permodelan Langmuir dengan nilai pekali R2
(0.9888) untuk Ca2+, dan R2 (0.9662) untuk Mg2+.
Nilai bagi RL bagi kajian ini adalah adalah kurang dari nilai satu,
maka menunjukkan semua media berfungsi
sebagai agen penjerap bagi ion Ca2+ dan Mg2+. Kajian kinetik mekanisme penjerapan
dikategorikan sebagai tertib pseudo-kedua, ini membuktikan media pasir, zeolit
dan karbon teraktif dari sekam padi mempunyai mekanisme penjerapan secara
tindakbalas kimia. Maka dengan itu kaedah penjerapan dengan menggunakan media
ini dapat digunakan sebagai rawatan kepada keliatan air. Media pasir, zeolit
dan karbon teraktif dari sekam padi mudah didapati adalah
merupakan kelebihan untuk dipilih sebagai media rawatan bagi keliatan air.
Kata kunci: penjerapan, kajian kinetik, media penapis, rawatan air
bawah tanah, keliatan air, kajian isoterm
References
1.
Ahmed,
F., Siwar, C. and Begum, R. A. (2014). Water resources in Malaysia: Issues and
challenges. Journal of Food Agriculture Environment, 12(2): 1100-1104.
2.
Ab
Razak, N. H., Praveena, S. M., Aris, A. Z. and Hashim, Z. (2015). Drinking water
studies: A review on heavy metal, application of biomarker and health risk
assessment (a special focus in Malaysia). Journal of Epidemiology and Global
Health, 5(4): 297-310.
3.
Aziz, N.
I. A. and Othman, N. (2017). Groundwater quality and soil characterization: A
case study at Bukit Tembaga, Kuala Nerang, Kedah. In MATEC Web of
Conferences, 103, p. 05011.
4.
Mahasti,
N. N., Shih, Y. J., Vu, X. T. and Huang, Y. H. (2017). Removal of calcium
hardness from solution by fluidized-bed homogeneous crystallization (FBHC)
process. Journal of the Taiwan Institute of Chemical Engineers, 78:
378-385.
5.
Ojo, O.
I., Otieno, F. A. and Ochieng, G. M. (2012). Groundwater: Characteristics,
qualities, pollutions and treatments: An overview. International Journal of
Water Resources and Environmental Engineering, 4(6): 162-170.
6.
Abdolahnejad,
A., Ebrahimi, A. and Jafari, N. (2014). Application of Iranian natural zeolite
and blast furnace slag as slow sand filters media for water softening. International
Journal of Environmental Health Engineering, 3(1): 26.
7.
Gomelya,
M., et al., Research into ion exchange
softening of highly mineralized waters. 2016. Gomelya, M., Hrabitchenko,
V., Trokhymenko, А., & Shabliy, T. (2016). Research into ion exchange
softening of highly mineralized waters. European of Enterprise Technologies,
4(10): 4-9.
8.
Othman,
N., Mohd-Asharuddin, S. and Azizul-Rahman, M. F. H. (2013). An overview of
fruit waste as sustainable adsorbent for heavy metal removal. Applied
Mechanics and Materials, 389: 29-35).
9.
Gando-Ferreira,
L. M., Gaspar, C. S. S., Monteiro, M. and Moreira, M. J. A. (2017). Studies on
integration of ion exchange and nanofiltration for water desalination. Separation
Science and Technology, 52(16): 2600-2610.
10.
Abdullahi,
M. E., Folorunsho, A. D., Agaie, B. G. and Jibril, M. (2012). Predictive model
for lime dosage in water treatment plant. International Journal of
Scientific and Research Publications, 2(12): 1-5.
11.
Ayob,
S., Othman, N., Altowayti, W. A. H., Khalid, F. S., Bakar, N. A., Tahir, M. and
Soedjono, E. S. (2021). A review on adsorption of heavy metals from
wood-industrial wastewater by oil palm waste. Journal of Ecological
Engineering, 22(3): 249-265.
12.
Hess, A.
F., Rachwa, A. and Chipps, M. J. (2002). Filter maintenance and operations
guidance manual. American Water Works Association.
13.
Yongabi,
K. A. (2013). A sustainable low-cost phytodisinfectant-sand filter alternative
for water purification. Doctoral dissertation, University of Adelaide.
14.
Chowdhury,
S., Chakraborty, S. and Saha, P. (2011). Biosorption of basic green 4 from
aqueous solution by Ananas comosus (pineapple) leaf powder. Colloids
and surfaces B: Biointerfaces, 84(2): 520-527.
15.
Rahman,
M. M., Awang, M. B. and Yusof, A. M. (2012). Preparation, characterization and
application of zeolite-Y (Na-Y) for water filtration. Australian Journal of
Basic and Applied Sciences, 6(1): 50-54.
16.
Allwar,
A., Hartati, R. and Fatimah, I. (2017). Effect of nitric acid treatment on
activated carbon derived from oil palm shell. In AIP Conference Proceedings,
1823(1): 020129.
17.
Nahil,
M. A. and Williams, P. T. (2012). Pore characteristics of activated carbons
from the phosphoric acid chemical activation of cotton stalks. Biomass and
Bioenergy, 37: 142-149.
18.
Yunus,
Z. M., Al-Gheethi, A., Othman, N., Hamdan, R. and Ruslan, N. N. (2020). Removal
of heavy metals from mining effluents in tile and electroplating industries
using honeydew peel activated carbon: A microstructure and techno-economic
analysis. Journal of Cleaner Production, 251: 119738.
19.
Xin-Hui,
D., Srinivasakannan, C., Jin-Hui, P. E. N. G., Li-Bo, Z. and Zheng-Yong, Z.
(2011). Preparation of activated carbon from Jatropha hull with microwave
heating: optimization using response surface methodology. Fuel Processing
Technology, 92(3): 394-400.
20.
Ayawei, N., Ebelegi, A. N. and Wankasi, D. (2017). Modelling
and interpretation of adsorption isotherms. Journal of Chemistry, 201:
3039817.
21.
Altowayti,
W. A. H., Allozy, H. G. A., Shahir, S., Goh, P. S. and Yunus, M. A. M. (2019).
A novel nanocomposite of aminated silica nanotube (MWCNT/Si/NH2) and
its potential on adsorption of nitrite. Environmental Science and Pollution
Research, 26(28): 28737-28748.
22.
Altowayti,
W. A. H., Othman, N., Goh, P. S., Alshalif, A. F., Al-Gheethi, A. A. and
Algaifi, H. A. (2021). Application of a novel nanocomposites carbon nanotubes
functionalized with mesoporous silica-nitrenium ions (CNT-MS-N) in nitrate
removal: Optimizations and nonlinear and linear regression analysis. Environmental
Technology & Innovation, 22: 101428.
23.
Altowayti,
W. A. H., Algaifi, H. A., Bakar, S. A. and Shahir, S. (2019). The adsorptive
removal of As (III) using biomass of arsenic resistant Bacillus
thuringiensis strain WS3: Characteristics and modelling studies. Ecotoxicology
and Environmental Safety, 172: 176-185.
24.
Allozy,
H. G. A. and Abd Karim, K. J. (2020). Removal of copper ions from aqueous
solutions using poly (vinylbenzyl chloride). Malaysian Journal of Analytical
Sciences, 24(6): 978-991.
25.
Altowayti,
W. A. H., Haris, S. A., Almoalemi, H., Shahir, S., Zakaria, Z. and Ibrahim, S.
(2020). The removal of arsenic species from aqueous solution by indigenous
microbes: Batch bioadsorption and artificial neural network model. Environmental
Technology & Innovation, 19: 100830.
26.
Haris,
S. A., Altowayti, W. A. H., Ibrahim, Z. and Shahir, S. (2018). Arsenic
biosorption using pretreated biomass of psychrotolerant Yersinia sp. strain
SOM-12D3 isolated from Svalbard, Arctic. Environmental Science and Pollution
Research, 25(28): 27959-27970.
27.
Liu, Q.
S., Zheng, T., Wang, P., Jiang, J. P. and Li, N. (2010). Adsorption isotherm,
kinetic and mechanism studies of some substituted phenols on activated carbon
fibers. Chemical Engineering Journal, 157(2-3): 348-356.
28.
Aljeboree,
A. M., Alshirifi, A. N. and Alkaim, A. F. (2017). Kinetics and equilibrium
study for the adsorption of textile dyes on coconut shell activated carbon. Arabian
Journal of Chemistry, 10: S3381-S3393.
29.
Bahari,
Z. M., Altowayti, W. A. H., Ibrahim, Z., Jaafar, J. and Shahir, S. (2013).
Biosorption of As (III) by non-living biomass of an arsenic-hypertolerant
Bacillus cereus strain SZ2 isolated from a gold mining environment: Equilibrium
and kinetic study. Applied Biochemistry and Biotechnology, 171(8):
2247-2261.
30.
Jiang,
C., Jia, L., Zhang, B., He, Y. and Kirumba, G. (2014). Comparison of quartz
sand, anthracite, shale and biological ceramsite for adsorptive removal of
phosphorus from aqueous solution. Journal of Environmental Sciences,
26(2): 466-477.
31.
Ab
Kadir, N. N., Shahadat, M. and Ismail, S. (2017). Formulation study for
softening of hard water using surfactant modified bentonite adsorbent coating. Applied
Clay Science, 137: 168-175.
32.
Sepehr,
M. N., Zarrabi, M., Kazemian, H., Amrane, A., Yaghmaian, K. and Ghaffari, H. R.
(2013). Removal of hardness agents, calcium and magnesium, by natural and
alkaline modified pumice stones in single and binary systems. Applied
Surface Science, 274: 295-305.
33.
Ghosh,
R. and Bhattacherjee, S. (2013). A review study on precipitated silica and
activated carbon from rice husk. Journal of Chemical Engineering Process
Technology, 4(4): 1-7.
34.
Vargas,
A. M., Cazetta, A. L., Garcia, C. A., Moraes, J. C., Nogami, E. M., Lenzi, E.
and Almeida, V. C. (2011). Preparation and characterization of activated carbon
from a new raw lignocellulosic material: Flamboyant (Delonix regia)
pods. Journal of Environmental Management, 92(1): 178-184.
35.
Prahas,
D., Kartika, Y., Indraswati, N. and Ismadji, S. J. C. E. J. (2008). Activated
carbon from jackfruit peel waste by H3PO4 chemical
activation: Pore structure and surface chemistry characterization. Chemical
Engineering Journal, 140(1-3): 32-42.
36. Gopalakrishnan, Y.,
Al-Gheethi, A., Abdul Malek, M., Marisa Azlan, M., Al-Sahari, M., Radin
Mohamed, R. M. S. and Noman, E. (2020). Removal of basic brown 16 from aqueous
solution using durian shell adsorbent, optimisation and techno-economic
analysis. Sustainability, 12(21): 8928.
37. Yang, X., Wan, Y.,
Zheng, Y., He, F., Yu, Z., Huang, J. and Gao, B. (2019). Surface functional
groups of carbon-based adsorbents and their roles in the removal of heavy
metals from aqueous solutions: A critical review. Chemical Engineering
Journal, 366: 608-621.
38. Elhefnawy, O. A.
and Elabd, A. A. (2017). Natural silica sand modified by calcium oxide as a new
adsorbent for uranyl ions removal from aqueous solutions. Radiochimica Acta,
105(10): 821-830.
39. Guchi, E. (2015).
Review on slow sand filtration in removing microbial contamination and
particles from drinking water. American Journal of Food and Nutrition,
3(2): 47-55.
40. Selim, M. M.,
EL-Mekkawi, D. M., Aboelenin, R. M., Sayed Ahmed, S. A. and Mohamed, G. M.
(2017). Preparation and characterization of Na-A zeolite from aluminum scrub
and commercial sodium silicate for the removal of Cd2+ from water. Journal
of the Association of Arab Universities for Basic and Applied Sciences, 24(1),
19-25.
41. Lestari, A. Y. D.,
Malik, A., Ilmi, M. I. and Sidiq, M. (2018). Removal of calcium and magnesium
ions from hard water using modified Amorphophallus campanulatus skin as a low
cost adsorbent. In MATEC Web of Conferences, 154: 01020.
42. Xue, Z., Li, Z.,
Ma, J., Bai, X., Kang, Y., Hao, W. and Li, R. (2014). Effective removal of Mg2+
and Ca2+ ions by mesoporous LTA zeolite. Desalination, 341:
10-18.
43. Yao, S., Zhang, J.,
Shen, D., Xiao, R., Gu, S., Zhao, M. and Liang, J. (2016). Removal of Pb(II)
from water by the activated carbon modified by nitric acid under microwave
heating. Journal of Colloid and Interface Science, 463: 118-127.