Malaysian Journal of Analytical Sciences
Vol 25 No 4 (2021): 605 - 621

 

 

 

 

 

HARDNESS REMOVAL OF GROUNDWATER THROUGH SAND, ZEOLITE AND RICE HUSK ACTIVATED CARBON

 

(Rawatan Air Bawah Tanah Menggunakan Pasir, Zeolit dan Karbon Reaktifdari Sekam Padi bagi Penyingkiran Keliatan Air)

 

Nor Izzah Abdul Aziz1, Norzila Othman1*, Wahid Ali Hamood Altowayti1,  Zalilah Murni Yunus2, Nurina Fitriani3, Mohd Fadhil Md Din4, Firhat Muhammad Fikri5

 

1Faculty of Civil Engineering and Built Environment

2Faculty of Science Technology & Human Development

Universiti Tun Hussein Onn Malaysia, 86400, Batu Pahat Johor, Malaysia

3Faculty of Science and Technology,

Universitas Airlangga, Surabaya, Jawa Timur 60115, Indonesia

4Faculty of Engineering,

Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia

5Bendang Afwa Enterprise Sdn Bhd

Bukit Tembaga, Kuala Nerang, Kedah, Malaysia

 

*Corresponding  authors:  norzila@uthm.edu.my

 

 

Received: 10 June 2021; Accepted: 16 July 2021; Published:  29 August 2021

 

 

Abstract

Recently the treatment for hard water was by using a technique that will give an impact on the environment and consumer. Sand, zeolite and rice husk-activated carbon can be used as a media for water hardness treatment by adsorption process. Performance of sand, zeolite and rice husk activated carbon (RHAC) for removal of Ca2+ and Mg2+ in hard water was investigated by employing a batch experimental set-up. The study considered X-ray fluorescence (XRF) spectroscopy analysis for the evaluation of the chemical composition of the media and Fourier transform infrared (FTIR) spectroscopy for the surface functional group. Experimental adsorption data were modelled by Langmuir, Freundlich and BET. The adsorption process followed the Langmuir isotherm model with high coefficients of correlation R2 (0.9888) for Ca2+ and R2 (0.9662) for Mg2+. The RL value in this study was less than one for both Ca2+ and Mg2+, indicating that the absorption of the metal ion onto all the media is favourable. The pseudo-second-order fitted well in correlation to the experiment results. The results indicate that sand, zeolite, and RHAC have chemisorption mechanisms and can be alternative media for hard water treatment using the adsorption process.  Furthermore, there will be an advantage in terms of economic and environment-friendly media.

 

Keywords:  adsorption, kinetic study, filter media, groundwater treatment, hard water, isotherm study

 

Abstrak

Rawatan keliatan air yang sedia ada  memberi kesan  kepada pengguna dan alam sekitar.  Pasir, zeolit dan karbon teraktif dari sekam padi boleh digunakan sebagai media bagi rawatan air liat.  Semua media ini akan bertindak sebagai penyerap. Eksperimen kaedah kelompok digunakan bagi menyiasat keberkesanan pasir, zeolit dan karbon teraktif dari sekam padi dalam menyerap dan merendahkan nilai bagi ion Ca2+ dan Mg2+ di dalam air bawah tanah. Analisis spektroskopi pendaflour sinar-X (XRF) ke atas komposisi bahan kimia dan spektroskopi infra merah transformasi Fourier (FTIR) pada setiap media turut dijalankan. Hasil dapatan daripada ekperimen kaedah kelompok, keputusannya disuaipadan dengan kaedah permodelan Langmuir, Freundlich and BET bagi mengenalpasti sifat kebolehserapan semua media.  Proses penjerapan adalah memenuhi kriteria permodelan Langmuir dengan nilai pekali R2 (0.9888) untuk Ca2+, dan R2 (0.9662) untuk Mg2+. Nilai bagi RL bagi kajian ini adalah adalah kurang dari nilai satu, maka  menunjukkan semua media berfungsi sebagai agen penjerap bagi ion Ca2+ dan  Mg2+.  Kajian kinetik mekanisme penjerapan dikategorikan sebagai tertib pseudo-kedua, ini membuktikan media pasir, zeolit dan karbon teraktif dari sekam padi mempunyai mekanisme penjerapan secara tindakbalas kimia. Maka dengan itu kaedah penjerapan dengan menggunakan media ini dapat digunakan sebagai rawatan kepada keliatan air. Media pasir, zeolit dan  karbon teraktif  dari sekam padi mudah didapati adalah merupakan kelebihan untuk dipilih sebagai media rawatan bagi keliatan air.

 

Kata kunci:  penjerapan, kajian kinetik, media penapis, rawatan air bawah tanah, keliatan air, kajian isoterm

 

References

1.      Ahmed, F., Siwar, C. and Begum, R. A. (2014). Water resources in Malaysia: Issues and challenges. Journal of Food Agriculture Environment, 12(2): 1100-1104.

2.      Ab Razak, N. H., Praveena, S. M., Aris, A. Z. and Hashim, Z. (2015). Drinking water studies: A review on heavy metal, application of biomarker and health risk assessment (a special focus in Malaysia). Journal of Epidemiology and Global Health, 5(4): 297-310.

3.      Aziz, N. I. A. and Othman, N. (2017). Groundwater quality and soil characterization: A case study at Bukit Tembaga, Kuala Nerang, Kedah. In MATEC Web of Conferences, 103, p. 05011.

4.      Mahasti, N. N., Shih, Y. J., Vu, X. T. and Huang, Y. H. (2017). Removal of calcium hardness from solution by fluidized-bed homogeneous crystallization (FBHC) process. Journal of the Taiwan Institute of Chemical Engineers, 78: 378-385.

5.      Ojo, O. I., Otieno, F. A. and Ochieng, G. M. (2012). Groundwater: Characteristics, qualities, pollutions and treatments: An overview. International Journal of Water Resources and Environmental Engineering, 4(6): 162-170.

6.      Abdolahnejad, A., Ebrahimi, A. and Jafari, N. (2014). Application of Iranian natural zeolite and blast furnace slag as slow sand filters media for water softening. International Journal of Environmental Health Engineering, 3(1): 26.

7.   Gomelya, M., et al., Research into ion exchange softening of highly mineralized waters. 2016. Gomelya, M., Hrabitchenko, V., Trokhymenko, А., & Shabliy, T. (2016). Research into ion exchange softening of highly mineralized waters. European of Enterprise Technologies, 4(10): 4-9.

8.      Othman, N., Mohd-Asharuddin, S. and Azizul-Rahman, M. F. H. (2013). An overview of fruit waste as sustainable adsorbent for heavy metal removal. Applied Mechanics and Materials, 389: 29-35).

9.      Gando-Ferreira, L. M., Gaspar, C. S. S., Monteiro, M. and Moreira, M. J. A. (2017). Studies on integration of ion exchange and nanofiltration for water desalination. Separation Science and Technology, 52(16): 2600-2610.

10.   Abdullahi, M. E., Folorunsho, A. D., Agaie, B. G. and Jibril, M. (2012). Predictive model for lime dosage in water treatment plant. International Journal of Scientific and Research Publications, 2(12): 1-5.

11.   Ayob, S., Othman, N., Altowayti, W. A. H., Khalid, F. S., Bakar, N. A., Tahir, M. and Soedjono, E. S. (2021). A review on adsorption of heavy metals from wood-industrial wastewater by oil palm waste. Journal of Ecological Engineering, 22(3): 249-265.

12.   Hess, A. F., Rachwa, A. and Chipps, M. J. (2002). Filter maintenance and operations guidance manual. American Water Works Association.

13.   Yongabi, K. A. (2013). A sustainable low-cost phytodisinfectant-sand filter alternative for water purification. Doctoral dissertation, University of Adelaide.

14.   Chowdhury, S., Chakraborty, S. and Saha, P. (2011). Biosorption of basic green 4 from aqueous solution by Ananas comosus (pineapple) leaf powder. Colloids and surfaces B: Biointerfaces, 84(2): 520-527.

15.   Rahman, M. M., Awang, M. B. and Yusof, A. M. (2012). Preparation, characterization and application of zeolite-Y (Na-Y) for water filtration. Australian Journal of Basic and Applied Sciences, 6(1): 50-54.

16.   Allwar, A., Hartati, R. and Fatimah, I. (2017). Effect of nitric acid treatment on activated carbon derived from oil palm shell. In AIP Conference Proceedings, 1823(1): 020129.

17.   Nahil, M. A. and Williams, P. T. (2012). Pore characteristics of activated carbons from the phosphoric acid chemical activation of cotton stalks. Biomass and Bioenergy, 37: 142-149.

18.   Yunus, Z. M., Al-Gheethi, A., Othman, N., Hamdan, R. and Ruslan, N. N. (2020). Removal of heavy metals from mining effluents in tile and electroplating industries using honeydew peel activated carbon: A microstructure and techno-economic analysis. Journal of Cleaner Production, 251: 119738.

19.   Xin-Hui, D., Srinivasakannan, C., Jin-Hui, P. E. N. G., Li-Bo, Z. and Zheng-Yong, Z. (2011). Preparation of activated carbon from Jatropha hull with microwave heating: optimization using response surface methodology. Fuel Processing Technology, 92(3): 394-400.

20.   Ayawei, N., Ebelegi, A. N. and Wankasi, D. (2017). Modelling and interpretation of adsorption isotherms. Journal of Chemistry, 201: 3039817.

21.   Altowayti, W. A. H., Allozy, H. G. A., Shahir, S., Goh, P. S. and Yunus, M. A. M. (2019). A novel nanocomposite of aminated silica nanotube (MWCNT/Si/NH2) and its potential on adsorption of nitrite. Environmental Science and Pollution Research, 26(28): 28737-28748.

22.   Altowayti, W. A. H., Othman, N., Goh, P. S., Alshalif, A. F., Al-Gheethi, A. A. and Algaifi, H. A. (2021). Application of a novel nanocomposites carbon nanotubes functionalized with mesoporous silica-nitrenium ions (CNT-MS-N) in nitrate removal: Optimizations and nonlinear and linear regression analysis. Environmental Technology & Innovation, 22: 101428.

23.   Altowayti, W. A. H., Algaifi, H. A., Bakar, S. A. and Shahir, S. (2019). The adsorptive removal of As (III) using biomass of arsenic resistant Bacillus thuringiensis strain WS3: Characteristics and modelling studies. Ecotoxicology and Environmental Safety, 172: 176-185.

24.   Allozy, H. G. A. and Abd Karim, K. J. (2020). Removal of copper ions from aqueous solutions using poly (vinylbenzyl chloride). Malaysian Journal of Analytical Sciences, 24(6): 978-991.

25.   Altowayti, W. A. H., Haris, S. A., Almoalemi, H., Shahir, S., Zakaria, Z. and Ibrahim, S. (2020). The removal of arsenic species from aqueous solution by indigenous microbes: Batch bioadsorption and artificial neural network model. Environmental Technology & Innovation, 19: 100830.

26.   Haris, S. A., Altowayti, W. A. H., Ibrahim, Z. and Shahir, S. (2018). Arsenic biosorption using pretreated biomass of psychrotolerant Yersinia sp. strain SOM-12D3 isolated from Svalbard, Arctic. Environmental Science and Pollution Research, 25(28): 27959-27970.

27.   Liu, Q. S., Zheng, T., Wang, P., Jiang, J. P. and Li, N. (2010). Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers. Chemical Engineering Journal, 157(2-3): 348-356.

28.   Aljeboree, A. M., Alshirifi, A. N. and Alkaim, A. F. (2017). Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon. Arabian Journal of Chemistry, 10: S3381-S3393.

29.   Bahari, Z. M., Altowayti, W. A. H., Ibrahim, Z., Jaafar, J. and Shahir, S. (2013). Biosorption of As (III) by non-living biomass of an arsenic-hypertolerant Bacillus cereus strain SZ2 isolated from a gold mining environment: Equilibrium and kinetic study. Applied Biochemistry and Biotechnology, 171(8): 2247-2261.

30.   Jiang, C., Jia, L., Zhang, B., He, Y. and Kirumba, G. (2014). Comparison of quartz sand, anthracite, shale and biological ceramsite for adsorptive removal of phosphorus from aqueous solution. Journal of Environmental Sciences, 26(2): 466-477.

31.   Ab Kadir, N. N., Shahadat, M. and Ismail, S. (2017). Formulation study for softening of hard water using surfactant modified bentonite adsorbent coating. Applied Clay Science, 137: 168-175.

32.   Sepehr, M. N., Zarrabi, M., Kazemian, H., Amrane, A., Yaghmaian, K. and Ghaffari, H. R. (2013). Removal of hardness agents, calcium and magnesium, by natural and alkaline modified pumice stones in single and binary systems. Applied Surface Science, 274: 295-305.

33.   Ghosh, R. and Bhattacherjee, S. (2013). A review study on precipitated silica and activated carbon from rice husk. Journal of Chemical Engineering Process Technology, 4(4): 1-7.

34.   Vargas, A. M., Cazetta, A. L., Garcia, C. A., Moraes, J. C., Nogami, E. M., Lenzi, E. and Almeida, V. C. (2011). Preparation and characterization of activated carbon from a new raw lignocellulosic material: Flamboyant (Delonix regia) pods. Journal of Environmental Management, 92(1): 178-184.

35.   Prahas, D., Kartika, Y., Indraswati, N. and Ismadji, S. J. C. E. J. (2008). Activated carbon from jackfruit peel waste by H3PO4 chemical activation: Pore structure and surface chemistry characterization. Chemical Engineering Journal, 140(1-3): 32-42.

36.  Gopalakrishnan, Y., Al-Gheethi, A., Abdul Malek, M., Marisa Azlan, M., Al-Sahari, M., Radin Mohamed, R. M. S. and Noman, E. (2020). Removal of basic brown 16 from aqueous solution using durian shell adsorbent, optimisation and techno-economic analysis. Sustainability, 12(21): 8928.

37.  Yang, X., Wan, Y., Zheng, Y., He, F., Yu, Z., Huang, J. and Gao, B. (2019). Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: A critical review. Chemical Engineering Journal, 366: 608-621.

38.  Elhefnawy, O. A. and Elabd, A. A. (2017). Natural silica sand modified by calcium oxide as a new adsorbent for uranyl ions removal from aqueous solutions. Radiochimica Acta, 105(10): 821-830.

39.  Guchi, E. (2015). Review on slow sand filtration in removing microbial contamination and particles from drinking water. American Journal of Food and Nutrition, 3(2): 47-55.

40.  Selim, M. M., EL-Mekkawi, D. M., Aboelenin, R. M., Sayed Ahmed, S. A. and Mohamed, G. M. (2017). Preparation and characterization of Na-A zeolite from aluminum scrub and commercial sodium silicate for the removal of Cd2+ from water. Journal of the Association of Arab Universities for Basic and Applied Sciences, 24(1), 19-25.

41.  Lestari, A. Y. D., Malik, A., Ilmi, M. I. and Sidiq, M. (2018). Removal of calcium and magnesium ions from hard water using modified Amorphophallus campanulatus skin as a low cost adsorbent. In MATEC Web of Conferences, 154: 01020.

42.  Xue, Z., Li, Z., Ma, J., Bai, X., Kang, Y., Hao, W. and Li, R. (2014). Effective removal of Mg2+ and Ca2+ ions by mesoporous LTA zeolite. Desalination, 341: 10-18.

43.  Yao, S., Zhang, J., Shen, D., Xiao, R., Gu, S., Zhao, M. and Liang, J. (2016). Removal of Pb(II) from water by the activated carbon modified by nitric acid under microwave heating. Journal of Colloid and Interface Science, 463: 118-127.