Malaysian Journal of Analytical Sciences Vol 25 No 4 (2021): 669 - 677

 

 

 

 

SYNTHESIS AND CHARACTERIZATION OF ACETOL FROM PALM-BASED GLYCEROL

 

(Sintesis dan Pencirian Asetol daripada Gliserol Berasaskan Sawit)

 

Roila Awang1* and Mohamad Hanif Mohamed2

 

1Engineering and Processing Division,

Malaysian Palm Oil Board No.6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia

2Department of Chemistry, Faculty of Science,

Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

 

*Corresponding author:  roila@mpob.gov.my

 

 

Received: 10 July 2021; Accepted: 20 August 2021; Published:  29 August 2021

 

 

Abstract

Glycerol conversion to value-added product, acetol was studied through the dehydration reaction of glycerol catalyzed by copper chromite in a single step reactive distillation. The physical properties of the synthesized acetol such as its appearance, density and viscosity were compared with those of a commercial product. The effects of reaction temperature (190 oC and 200 oC), reaction period (1.5-7 hours), catalyst loading (0.63-7.0%) and water content (2-20% w/w) in the glycerol feedstock were studied to optimize its production. The results show conversion of glycerol increased with the increase of reaction period and catalyst loading while the presence of water in the glycerol feedstock decreased the conversion and also reduced the residue which provided ease of removal and recycles the catalyst. Optimum conditions for the conversion of glycerol to acetol was at a reaction period of 3.5 hours with 2.5% catalyst concentration and 200  oC reaction temperature without dilution where 64.47% of the product was obtained. Fourier transform infrared (FTIR), gas chromatography (GC) and nuclear magnetic resonance (NMR) were used to characterize and validate the product from the dehydration reaction of glycerol. FTIR spectrum of the product showed stretching of the carbonyl group which suggested that acetol had been successfully synthesized. All of the analyses (GC and NMR) validate that acetol was successfully synthesized.

 

Keywords:  acetol, dehydration, glycerol, palm-based, synthesis

 

Abstrak

Penukaran gliserol kepada produk bernilai tinggi, asetol telah dikaji melalui tindak balas nyah-hidrat gliserol dimangkin oleh kuprum kromit dalam penyulingan reaktif satu langkah. Ciri-ciri fizikal asetol yang dihasilkan seperti penampilan, ketumpatan dan kelikatan telah dibandingkan dengan produk komersil. Kesan suhu tindak balas (190 oC and 200 oC), tempoh tindak balas (1.5-7jam), kuantiti mangkin (0.63-7.0%) dan kandungan air (2-20% w/w) dalam stok suapan gliserol dikaji untuk mengoptimumkan penghasilannya. Hasil kajian menunjukkan penukaran gliserol meningkat dengan peningkatan tempoh tindak balas dan kuantiti mangkin manakala kehadiran air dalam stok suapan gliserol merendahkan penukaran dan juga mengurangkan sisa dimana memudahkan pengasingan dan kitar semula mangkin. Keadaan optimum untuk penukaran gliserol kepada asetol adalah pada tempoh tindak balas sebanyak 3.5 jam dengan kuantiti mangkin 2.5% dan 200 oC suhu tindak balas tanpa pencairan stok suapan dimana ia memperolehi 64.4% produk. Inframerah transformasi Fourier (FTIR), kromatografi gas (GC) dan resonans magnetik nuklear (NMR) telah digunakan untuk mencirikan dan mengesahkan produk daripada tindak balas nyah-hidrat gliserol. Spektrum IR produk menunjukkan regangan kumpulan karbonil menunjukkan asetol telah berjaya dihasilkan. Semua analisis (GC dan NMR) mengesahkan bahawa asetol berjaya disintesis.

 

Kata kunci:  acetol, dehidrasi, gliserol, berasaskan sawit, sintesis

 

References

1.      Choi, W. J. (2008). Glycerol-based biorefinery for fuels and chemicals. Recent Patents Biotech. 2: 173-180.

2.      Pathak, K., Reddy, K. M., Bakhshi, N. N. and Dalai, A. K. (2010). Catalytic conversion of glycerol to value added liquid products. Applied Catalysis A: General, 372: 224-238.

3.      Dasari, M. A., Kiatsimkul, P., Sutterlin, W. R and Suppes, G. J. (2005). Low-pressure hydrogenolysis of glycerol to propylene glycol. Applied Catalyst A: General, 281: 225-231.

4.      Mohamad, M. H., Awang, R. and Yunus, W. M. Z. W. (2011). A review of acetol: Application and production. American Journal of Applied Sciences, 8: 1135-1139.

5.      Kinage, A. K., Upare, P. P., Kasinathan, P., Hwang, Y. K. and Chang, J. S. (2010). Selective conversion of glycerol to acetol over sodium-doped metal oxide catalysts. Catalysis Communications, 11: 620-623.

6.      Dasari, M. A. (2006). Catalytic conversion of glycerol and sugar alcohol to value-added products. PhD Thesis, University of Missouri-Columbia.

7.      American Oil Chemical Society (1993). Official methods and recommended practices. 4th Edition. AOCS Press, Champaign.

8.      Chiu, C. W., Dasari, M. A., Suppes, G. J. and Sutterlin, W. R. (2006). Dehydration of glycerol to acetol via catalytic reactive distillation. American Institute Chemical Engineers Journal, 52: 3543-3548.

9.      Chiu, C. W., Tekeei, A., Sutterlin, W. R., Roncho, J. M. and Suppes, G. J. (2008). Low-pressure packed-bed gas phase conversion of glycerol to acetol. American Institute Chemical Engineers Journal, 54: 2456-2463.