Malaysian
Journal of Analytical Sciences Vol 25 No 4
(2021): 669 - 677
SYNTHESIS AND CHARACTERIZATION OF ACETOL FROM PALM-BASED GLYCEROL
(Sintesis dan Pencirian Asetol daripada Gliserol Berasaskan Sawit)
Roila Awang1* and Mohamad Hanif Mohamed2
1Engineering and Processing
Division,
Malaysian Palm Oil Board No.6, Persiaran Institusi, Bandar Baru Bangi,
43000 Kajang, Selangor, Malaysia
2Department of Chemistry, Faculty of Science,
Universiti Putra Malaysia, 43400 Serdang, Selangor,
Malaysia
*Corresponding author: roila@mpob.gov.my
Received: 10 July 2021;
Accepted: 20 August 2021; Published: 29
August 2021
Abstract
Glycerol conversion to value-added product,
acetol was studied through the dehydration reaction of glycerol catalyzed by
copper chromite in a single step reactive distillation. The physical properties
of the synthesized acetol such as its appearance, density and viscosity were
compared with those of a commercial product. The effects of reaction
temperature (190 oC and 200 oC),
reaction period (1.5-7 hours), catalyst loading (0.63-7.0%) and water content
(2-20% w/w) in the glycerol feedstock were studied to optimize its production.
The results show conversion of glycerol increased with the increase of reaction
period and catalyst loading while the presence of water in the glycerol
feedstock decreased the conversion and also reduced the residue which provided ease
of removal and recycles the catalyst. Optimum conditions for the conversion of
glycerol to acetol was at a reaction period of 3.5 hours with 2.5% catalyst
concentration and 200 oC
reaction temperature without dilution where 64.47% of the product was obtained.
Fourier transform infrared (FTIR), gas chromatography (GC) and nuclear magnetic
resonance (NMR) were used to characterize and validate the product from the
dehydration reaction of glycerol. FTIR spectrum of the product showed
stretching of the carbonyl group which suggested that acetol had been
successfully synthesized. All of the analyses (GC and NMR) validate that acetol
was successfully synthesized.
Keywords: acetol,
dehydration, glycerol, palm-based, synthesis
Abstrak
Penukaran
gliserol kepada produk bernilai tinggi, asetol telah dikaji melalui tindak
balas nyah-hidrat gliserol dimangkin oleh kuprum kromit dalam penyulingan
reaktif satu langkah. Ciri-ciri fizikal asetol yang dihasilkan seperti
penampilan, ketumpatan dan kelikatan telah dibandingkan dengan produk komersil.
Kesan suhu tindak balas (190 oC and 200 oC), tempoh
tindak balas (1.5-7jam), kuantiti mangkin (0.63-7.0%) dan kandungan air (2-20%
w/w) dalam stok suapan gliserol dikaji untuk mengoptimumkan penghasilannya.
Hasil kajian menunjukkan penukaran gliserol meningkat dengan peningkatan tempoh
tindak balas dan kuantiti mangkin manakala kehadiran air dalam stok suapan
gliserol merendahkan penukaran dan juga mengurangkan sisa dimana memudahkan
pengasingan dan kitar semula mangkin. Keadaan optimum untuk penukaran gliserol
kepada asetol adalah pada tempoh tindak balas sebanyak 3.5 jam dengan kuantiti
mangkin 2.5% dan 200 oC suhu tindak balas tanpa pencairan stok
suapan dimana ia memperolehi 64.4% produk. Inframerah transformasi Fourier (FTIR),
kromatografi gas (GC) dan resonans magnetik nuklear (NMR) telah digunakan untuk
mencirikan dan mengesahkan produk daripada tindak balas nyah-hidrat gliserol.
Spektrum IR produk menunjukkan regangan kumpulan karbonil menunjukkan asetol
telah berjaya dihasilkan. Semua analisis (GC dan NMR) mengesahkan bahawa asetol
berjaya disintesis.
Kata
kunci: acetol, dehidrasi,
gliserol, berasaskan sawit, sintesis
References
1.
Choi, W. J. (2008).
Glycerol-based biorefinery for fuels and chemicals. Recent Patents Biotech.
2: 173-180.
2.
Pathak, K., Reddy, K. M.,
Bakhshi, N. N. and Dalai, A. K. (2010). Catalytic conversion of glycerol to
value added liquid products. Applied Catalysis A: General, 372: 224-238.
3.
Dasari, M. A.,
Kiatsimkul, P., Sutterlin, W. R and Suppes, G. J. (2005). Low-pressure
hydrogenolysis of glycerol to propylene glycol. Applied Catalyst A: General,
281: 225-231.
4.
Mohamad, M. H., Awang, R.
and Yunus, W. M. Z. W. (2011). A review of acetol: Application and production. American
Journal of Applied Sciences, 8: 1135-1139.
5.
Kinage, A. K., Upare, P.
P., Kasinathan, P., Hwang, Y. K. and Chang, J. S. (2010). Selective conversion
of glycerol to acetol over sodium-doped metal oxide catalysts. Catalysis
Communications, 11: 620-623.
6.
Dasari, M. A. (2006).
Catalytic conversion of glycerol and sugar alcohol to value-added products. PhD
Thesis, University of Missouri-Columbia.
7.
American Oil Chemical
Society (1993). Official methods and recommended practices. 4th
Edition. AOCS Press, Champaign.
8.
Chiu, C. W., Dasari, M.
A., Suppes, G. J. and Sutterlin, W. R. (2006). Dehydration of glycerol to
acetol via catalytic reactive distillation. American Institute Chemical
Engineers Journal, 52: 3543-3548.
9.
Chiu, C. W., Tekeei, A.,
Sutterlin, W. R., Roncho, J. M. and Suppes, G. J. (2008). Low-pressure packed-bed
gas phase conversion of glycerol to acetol. American Institute Chemical
Engineers Journal, 54: 2456-2463.