Malaysian Journal of Analytical Sciences Vol 25 No 2 (2021): 224 - 233

 

 

 

 

EFFECT OF SODIUM BISULFITE ON CORN STARCH SOLID POLYMER ELECTROLYTE

 

(Kesan Sodium Bisulfit terhadap Elektrolit Polimer Pepejal Kanji)

 

Fatin Farhana Awang, Khadijah Hilmun Kamarudin, Mohd Faiz Hassan*

 

Advanced Nano-Materials (ANoMa) Research Group, Faculty of Science and Marine Environment

Ionic State Analysis (ISA) Laboratory, Faculty of Science and Marine Environment

Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

 

*Corresponding author:  mfhassan@umt.edu.my

 

 

Received: 17 January 2021; Accepted: 25 February 2021; Published:  25 April 2021

 

 

Abstract

In this study, solid polymer electrolyte films were prepared using corn starch as polymer doped with various wt.% ratios of NaHSO3 via solution casting technique. The SPE films have been characterized using electrical impedance spectroscopy (EIS) and X-ray diffraction (XRD). The plots of conductivity versus NaHSO3 (wt.%) have shown an increasing trend along with NaHSO3 content. It was found that the highest ionic conductivity at room temperature is 2.22 × 10-4 Scm-1. Besides, XRD analysis also indicates that the increase in amorphous content will enhance the conductivity value.

 

Keywords:  electrical impedance spectroscopy, X-ray diffraction, solid polymer electrolyte, corn starch

 

Abstrak

Dalam kajian ini, filem elektrolit polimer pepejal telah disediakan menggunakan kanji sebagai polimer dan ditambah dengan pelbagai nisbah berat (wt.%) NaHSO3 melalui kaedah penuangan larutan. Filem-filem SPE tersebut telah diuji menggunakan spektrometer elektrokimia impedans (EIS) dan analisa pembelauan sinar-X (XRD). Plot kekonduksian melawan kandungan NaHSO3 menunjukkan peningkatan dengan meningkatnya wt.% NaHSO3. Ia telah dijumpai bahawa kekonduksian tertinggi pada suhu bilik adalah 2.22 × 10-4 Scm-1. Disamping itu, analisis XRD menunjukkan peningkatan kandungan amorphous akan membantu dalam peningkatan nilai kekonduksian.

 

Kata kunci:  spektrometer elektrokimia impedans, pembelauan sinar-X, elektrolit polimer pepejal, kanji

 

References

1.      Barbosa, P. C., Rodrigues, L. C., Silva, M. M., Smith, M. J., Parola, A. J., Pina, F. and Pinheiro, C. (2010). Solid-state electrochromic devices using pTMC/PEO blends as polymer electrolytes. Electrochimica Acta, 55(4): 1495-1502.

2.      Dai, S., Chu, Y., Liu, D., Cao, F., Wu, X., Zhou, J., Cheng, Y. and Huang, J. (2018). Intrinsically ionic conductive cellulose nanopapers applied as all solid dielectrics for low voltage organic transistors. Nature Communication, 9(1): 1-10,

3.      Hassan, M. F. and Azimi, N. S. N. (2019). Conductivity and transport properties of starch/glycerin-MgSO4 solid polymer electrolytes. International Journal of Advanced and Applied Sciences, 6(5): 38-43.

4.      Misenan, M. S. M. and Khiar, A. S. A. (2018). Conductivity, dielectric and modulus studies of Methylcellulose-NH4TF polymer electrolyte. Eurasian Journal of Biological and Chemical Sciences, 1(2): 59-62.

5.      Deraman, S. K., Mohamed, N. S. and Subban, R. H. Y. (2013). Conductivity and electrochemical studies on polymer electrolytes based on poly vinyl (chloride)- ammonium triflate -ionic liquid for proton battery. International Journal Electrochemical Science, 6(1): 1459-1468.

6.      Chandra, A., Agrawal, R. C. and Mahipal, Y. K. (2009). Ion transport property studies on PEO–PVP blended solid polymer electrolyte membranes. Journal of Physics D: Applied Physics, 42(13): 135107.

7.      Hema, M., Selvasekarapandian, S., Arunkumar, D., Sakunthala, A. and Nithya, H. (2009). FTIR, XRD and ac impedance spectroscopic study on PVA based polymer electrolyte doped with NH4X (X=Cl, Br, I). Journal of Non-Crystalline Solids, 355(2): 84-90.

8.      Hassan, M. F., Zainuddin, S. K., Kamarudin, K. H., Sheng, C. K. and Abdullah, M. A. A. (2018). Ion-conducting polymer electrolyte films based on poly (sodium 4-styrenesulfonate) complexed with ammonium nitrate: studies based on morphology, structural and electrical spectroscopy. Malaysian Journal of Analytical Science, 22(2): 238-248.

9.      Ramesh, S., Liew, C.-W. and Ramesh, K. (2011). Evaluation and investigation on the effect of ionic liquid onto PMMA-PVC gel polymer blend electrolytes. Journal of Non-Crystalline Solids, 357(10), 2132-2138.

10.   Marcondes, R. F. M. S., D'Agostini, P. S., Ferreira, J., Girotto, E. M., Pawlicka, A. and Dragunski, D. C. (2010). Amylopectin-rich starch plasticized with glycerol for polymer electrolyte application. Solid State Ionics, 181(13-14): 586-591.

11.   Harun, N. I., Ali, R. M., Ali, A. M. M. and Yahya, M. Z. A. (2011). Dielectric behaviour of cellulose acetate-based polymer electrolytes. Ionics, 18(6): 599-606.

12.   Lopes, L. V. S., Machado, G. O., Pawlicka, A. and Donoso, J. P. (2005). Nuclear magnetic resonance and conductivity study of hydroxyethylcellulose based polymer gel electrolytes. Electrochimica Acta, 50(19): 3978-3984.

13.   Pawlicka, A., Mattos, R. I., Tambelli, C. E., Silva, I. D. A., Magon, C. J. and Donoso, J. P. (2013). Magnetic resonance study of chitosan bio-membranes with proton conductivity properties. Journal of Membrane Science, 429: 190-196.

14.   Xu, Y., Miladinov, V. and Hanna, M. A. (2004). Synthesis and characterization of starch acetates with high substitution. Cereal Chemistry, 81(6): 735-740.

15.   Hassan, M. F., Azimi N.S.N, Kamarudin, K. H. and Sheng, C. K. (2018). Solid polymer electrolytes based on starch- magnesium sulphate: study on morphology and electrical conductivity. ASM Science Journal, 2018: 17-28.

16.   Shahrudin, S. and Ahmad, A. H. (2017). Electrical analysis of corn starch-based polymer electrolyte doped with NaCl. Solid State Phenomena, 268: 347-351.

17.   Sivakumar, M., Subadevi, R., Rajendran, S., Wu, H. C. and Wu, N. L. (2007). Compositional effect of PVdF–PEMA blend gel polymer electrolytes for lithium polymer batteries. European Polymer Journal, 43(10): 4466-4473.

18.   Seng, L. K. (2018). Preparation and characterization of solid polymer electrolyte based on carboxymethyl chitosan, ammonium nitrate and ethylene carbonate. The Eurasia Proceedings of Science, Technology, Engineering & Mathematics (EPSTEM), 2: 10-16.

19.   He, R. and Kyu, T. (2016). Effect of plasticization on ionic conductivity enhancement in relation to glass transition temperature of crosslinked polymer electrolyte membranes. Macromolecules, 49(15): 5637-5648.

20.   Liew, C. W. and Ramesh, S. (2015). Electrical, structural, thermal, and electrochemical properties of corn starch-based biopolymer electrolytes. Carbohydrate Polymers, 124: 222-228.

21.   Teoh, K. H., Ramesh, S. and Arof, A. K. (2012). Investigation on the effect of nanosilica towards corn starch–lithium perchlorate-based polymer electrolytes. Journal of Solid State Electrochemistry, 16(10): 3165-3170.

22.   Rathod, S. G., Bhajantri, R. F., Ravindrachary, V., Pujari, P. K. and Sheela, T. (2014). Ionic conductivity and dielectric studies of LiClO4 doped poly (vinylalcohol)(PVA)/chitosan(CS) composites. Journal of Advanced Dielectrics, 4(4); 1450033.

23.   Mohd Asnawi, A. S. F., Mohd Azli, A. M., Hamsan, M. H., Abdul Kadir, M. F. Z. and Mohamed Yusof, Y. (2020). Electrical and infrared spectroscopic analysis of solid polymer electrolyte based on polyethylene oxide and graphene oxide blend. Malaysian Journal of Analytical Sciences, 24: 682-697.

24.   Shahrudin, S. A., A. H. (2016). Corn starch based biopolymer electrolyte doped with Na3PO4. Science Letters, 10(2): 26-30.

25.   Hassan, N. and Ahmad, A. H. (2016). Conductivity and FTIR Studies of NaI-Na3PO4-PLL electrolyte for solid state batteries. Materials Science Forum, 846: 505-509.

26.   Khairul, W. M., Isa, M. I. N., Samsudin, A. S., Adli, H. K. and Ghazali, S. R. (2014). Conductive biodegradable film of N-N-octyloxyphenyl-N -(4 methylbenzoyl)thiourea. Bulletin of Materials Science, 37(2): 357-369.

27.   Hirankumar, G. and Mehta, N. (2018). Effect of incorporation of different plasticizers on structural and ion transport properties of PVA-LiClO4 based electrolytes. Heliyon, 4(12): 00992.

28.   Osman, Z., Md Isa, K. B., Ahmad, A. and Othman, L. (2010). A comparative study of lithium and sodium salts in PAN-based ions conducting polymer electrolytes. Ionics, 16(5): 431-435.

29.   Fonseca, C. P., Rosa, D. S., Gaboardi, F. and Neves, S. (2006). Development of a biodegradable polymer electrolyte for rechargeable batteries. Journal of Power Sources, 155(2): 381-384.

30.   Hafiza, M. N., Bashirah, A. N. A., Bakar, N. Y. and Isa, M. I. N. (2014). electrical properties of carboxyl methylcellulose/chitosan dual-blend green polymer doped with ammonium bromide. International Journal of Polymer Analysis and Characterization, 19(2), 151-158.

31.   Samsudin, A. S., Lai, H. M. and Isa, M. I. N. (2014). Biopolymer materials based carboxymethyl cellulose as a proton conducting biopolymer electrolyte for application in rechargeable proton battery. Electrochimica Acta, 129: 1-13.

32.   Ramya, C. S., Selvasekarapandian, S., Savitha, T., Hirankumar, G. and Angelo, P. C. (2007). Vibrational and impedance spectroscopic study on PVP–NH4SCN based polymer electrolytes. Physica B: Condensed Matter, 393(1-2): 11-17.

33.   Kadir, M. F. Z., Majid, S. R. and Arof, A. K. (2010). Plasticized chitosan–PVA blend polymer electrolyte based proton battery. Electrochimica Acta, 55(4): 1475-1482.

34.   Phetwarotai, W., Potiyaraj, P. and Aht-Ong, D. (2012). Characteristics of biodegradable polylactide/gelatinized starch films: Effects of starch, plasticizer, and compatibilizer. Journal of Applied Polymer Science, 126(S1): 162-172.

35.   Arof, A. K., Shuhaimi, N. E. A., Alias, N. A., Kufian, M. Z. and Majid, S. R. (2010). Application of chitosan/iota-carrageenan polymer electrolytes in electrical double layer capacitor (EDLC). Journal of Solid State Electrochemistry, 14(12): 2145-2152.

36.   Sekhar, P., Naveen Kumar, P. and Sharma, A. K. (2012). Effect of plasticizer on conductivity and cell parameters of (PMMA+NaCIO4) polymer electrolyte system. IOSR Journal of Applied Physics, 2(4): 1-6.