Malaysian
Journal of Analytical Sciences Vol 25 No 2
(2021): 224 - 233
EFFECT OF SODIUM BISULFITE ON CORN STARCH SOLID
POLYMER ELECTROLYTE
(Kesan Sodium Bisulfit terhadap Elektrolit Polimer Pepejal
Kanji)
Fatin Farhana Awang, Khadijah Hilmun Kamarudin,
Mohd Faiz Hassan*
Advanced
Nano-Materials (ANoMa) Research Group, Faculty of Science and Marine
Environment
Ionic
State Analysis (ISA) Laboratory, Faculty of Science and Marine Environment
Universiti
Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
*Corresponding
author: mfhassan@umt.edu.my
Received: 17 January 2021;
Accepted: 25 February 2021; Published: 25 April 2021
Abstract
In this study, solid polymer electrolyte films
were prepared using corn starch as polymer doped with various wt.% ratios of
NaHSO3 via solution casting technique. The SPE films have
been characterized using electrical impedance spectroscopy (EIS) and X-ray
diffraction (XRD). The plots of conductivity versus NaHSO3 (wt.%)
have shown an increasing trend along with NaHSO3 content. It was found
that the highest ionic conductivity at room temperature is 2.22 × 10-4
Scm-1. Besides, XRD analysis also indicates that the increase in
amorphous content will enhance the conductivity value.
Keywords:
electrical impedance spectroscopy, X-ray
diffraction, solid polymer electrolyte, corn starch
Abstrak
Dalam
kajian ini, filem elektrolit polimer pepejal telah disediakan menggunakan kanji
sebagai polimer dan ditambah dengan pelbagai nisbah berat (wt.%) NaHSO3 melalui
kaedah penuangan larutan. Filem-filem SPE tersebut telah diuji menggunakan
spektrometer elektrokimia impedans (EIS) dan analisa pembelauan sinar-X (XRD).
Plot kekonduksian melawan kandungan NaHSO3 menunjukkan peningkatan
dengan meningkatnya wt.% NaHSO3. Ia telah dijumpai bahawa
kekonduksian tertinggi pada suhu bilik adalah 2.22 × 10-4 Scm-1.
Disamping itu, analisis XRD menunjukkan peningkatan kandungan amorphous akan
membantu dalam peningkatan nilai kekonduksian.
Kata
kunci: spektrometer
elektrokimia impedans, pembelauan sinar-X, elektrolit polimer pepejal, kanji
References
1. Barbosa, P. C., Rodrigues, L. C.,
Silva, M. M., Smith, M. J., Parola, A. J., Pina, F. and Pinheiro, C. (2010).
Solid-state electrochromic devices using pTMC/PEO blends as polymer
electrolytes. Electrochimica Acta, 55(4): 1495-1502.
2. Dai, S., Chu, Y., Liu, D., Cao, F.,
Wu, X., Zhou, J., Cheng, Y. and Huang, J. (2018). Intrinsically ionic
conductive cellulose nanopapers applied as all solid dielectrics for low
voltage organic transistors. Nature
Communication, 9(1): 1-10,
3. Hassan, M. F. and Azimi, N. S. N.
(2019). Conductivity and transport properties of starch/glycerin-MgSO4 solid
polymer electrolytes. International
Journal of Advanced and Applied Sciences, 6(5): 38-43.
4. Misenan, M. S. M. and Khiar, A. S.
A. (2018). Conductivity, dielectric and modulus studies of Methylcellulose-NH4TF
polymer electrolyte. Eurasian Journal of
Biological and Chemical Sciences, 1(2):
59-62.
5. Deraman, S. K., Mohamed, N. S. and
Subban, R. H. Y. (2013). Conductivity and electrochemical studies on polymer
electrolytes based on poly vinyl (chloride)- ammonium triflate -ionic liquid
for proton battery. International Journal
Electrochemical Science, 6(1): 1459-1468.
6.
Chandra,
A., Agrawal, R. C. and Mahipal, Y. K. (2009). Ion transport property studies on
PEO–PVP blended solid polymer electrolyte membranes. Journal of Physics D: Applied Physics, 42(13): 135107.
7. Hema, M.,
Selvasekarapandian, S., Arunkumar, D., Sakunthala, A. and Nithya, H. (2009).
FTIR, XRD and ac impedance spectroscopic study on PVA based polymer electrolyte
doped with NH4X (X=Cl, Br, I). Journal
of Non-Crystalline Solids, 355(2):
84-90.
8.
Hassan, M. F., Zainuddin, S. K.,
Kamarudin, K. H., Sheng, C. K. and Abdullah, M. A. A. (2018). Ion-conducting
polymer electrolyte films based on poly (sodium 4-styrenesulfonate) complexed
with ammonium nitrate: studies based on morphology, structural and electrical
spectroscopy. Malaysian Journal of
Analytical Science, 22(2):
238-248.
9. Ramesh, S., Liew, C.-W. and Ramesh,
K. (2011). Evaluation and investigation on the effect of ionic liquid onto
PMMA-PVC gel polymer blend electrolytes. Journal
of Non-Crystalline Solids, 357(10),
2132-2138.
10. Marcondes, R. F. M. S., D'Agostini,
P. S., Ferreira, J., Girotto, E. M., Pawlicka, A. and Dragunski, D. C. (2010).
Amylopectin-rich starch plasticized with glycerol for polymer electrolyte
application. Solid State Ionics, 181(13-14): 586-591.
11. Harun, N. I., Ali, R. M., Ali, A.
M. M. and Yahya, M. Z. A. (2011). Dielectric behaviour of cellulose
acetate-based polymer electrolytes. Ionics,
18(6): 599-606.
12. Lopes, L. V. S., Machado, G. O.,
Pawlicka, A. and Donoso, J. P. (2005). Nuclear magnetic resonance and
conductivity study of hydroxyethylcellulose based polymer gel electrolytes. Electrochimica Acta, 50(19): 3978-3984.
13. Pawlicka, A., Mattos, R. I.,
Tambelli, C. E., Silva, I. D. A., Magon, C. J. and Donoso, J. P. (2013).
Magnetic resonance study of chitosan bio-membranes with proton conductivity
properties. Journal of Membrane Science, 429: 190-196.
14.
Xu,
Y., Miladinov, V. and Hanna, M. A. (2004). Synthesis and characterization of
starch acetates with high substitution. Cereal
Chemistry, 81(6): 735-740.
15. Hassan, M. F.,
Azimi N.S.N, Kamarudin, K. H. and Sheng, C. K. (2018). Solid polymer
electrolytes based on starch- magnesium sulphate: study on morphology and electrical
conductivity. ASM Science Journal,
2018: 17-28.
16. Shahrudin, S. and Ahmad, A. H.
(2017). Electrical analysis of corn starch-based polymer electrolyte doped with
NaCl. Solid State Phenomena, 268: 347-351.
17.
Sivakumar,
M., Subadevi, R., Rajendran, S., Wu, H. C. and Wu, N. L. (2007). Compositional
effect of PVdF–PEMA blend gel polymer electrolytes for lithium polymer
batteries. European Polymer Journal, 43(10): 4466-4473.
18. Seng, L. K. (2018). Preparation and
characterization of solid polymer electrolyte based on carboxymethyl chitosan, ammonium nitrate
and ethylene carbonate. The Eurasia
Proceedings of Science, Technology, Engineering & Mathematics (EPSTEM), 2: 10-16.
19.
He,
R. and Kyu, T. (2016). Effect of plasticization on ionic conductivity
enhancement in relation to glass transition temperature of crosslinked polymer
electrolyte membranes. Macromolecules, 49(15): 5637-5648.
20. Liew, C. W. and Ramesh, S. (2015).
Electrical, structural, thermal, and electrochemical properties of corn
starch-based biopolymer electrolytes. Carbohydrate
Polymers, 124: 222-228.
21. Teoh, K. H., Ramesh, S. and Arof,
A. K. (2012). Investigation on the effect of nanosilica towards corn
starch–lithium perchlorate-based polymer electrolytes. Journal of Solid State Electrochemistry, 16(10): 3165-3170.
22. Rathod, S. G., Bhajantri, R. F.,
Ravindrachary, V., Pujari, P. K. and Sheela, T. (2014). Ionic conductivity and
dielectric studies of LiClO4 doped poly
(vinylalcohol)(PVA)/chitosan(CS) composites. Journal of Advanced Dielectrics, 4(4); 1450033.
23.
Mohd Asnawi, A. S. F., Mohd Azli, A. M.,
Hamsan, M. H., Abdul Kadir, M. F. Z. and Mohamed Yusof, Y. (2020). Electrical
and infrared spectroscopic analysis of solid polymer electrolyte based on
polyethylene oxide and graphene oxide blend. Malaysian Journal of Analytical Sciences, 24: 682-697.
24.
Shahrudin,
S. A., A. H. (2016). Corn starch based biopolymer electrolyte doped with Na3PO4.
Science Letters, 10(2): 26-30.
25. Hassan, N. and Ahmad, A. H. (2016).
Conductivity and FTIR Studies of NaI-Na3PO4-PLL
electrolyte for solid state batteries. Materials
Science Forum, 846: 505-509.
26. Khairul, W. M., Isa, M. I. N.,
Samsudin, A. S., Adli, H. K. and Ghazali, S. R. (2014). Conductive biodegradable film of
N-N-octyloxyphenyl-N -(4 methylbenzoyl)thiourea. Bulletin of Materials Science, 37(2): 357-369.
27.
Hirankumar,
G. and Mehta, N. (2018). Effect of incorporation of different plasticizers on
structural and ion transport properties of PVA-LiClO4 based
electrolytes. Heliyon, 4(12): 00992.
28. Osman, Z., Md Isa, K. B., Ahmad, A. and Othman, L. (2010). A
comparative study of lithium and sodium salts in PAN-based ions conducting polymer electrolytes. Ionics, 16(5): 431-435.
29. Fonseca, C. P., Rosa, D. S.,
Gaboardi, F. and Neves, S. (2006). Development of a biodegradable polymer
electrolyte for rechargeable batteries. Journal
of Power Sources, 155(2): 381-384.
30. Hafiza, M. N., Bashirah, A. N. A.,
Bakar, N. Y. and Isa, M. I. N. (2014). electrical properties of carboxyl
methylcellulose/chitosan dual-blend green polymer doped with ammonium bromide. International Journal of Polymer Analysis
and Characterization, 19(2),
151-158.
31.
Samsudin,
A. S., Lai, H. M. and Isa, M. I. N. (2014). Biopolymer materials based
carboxymethyl cellulose as a proton conducting biopolymer electrolyte for
application in rechargeable proton battery. Electrochimica
Acta, 129: 1-13.
32.
Ramya,
C. S., Selvasekarapandian, S., Savitha, T., Hirankumar, G. and Angelo, P. C.
(2007). Vibrational and impedance spectroscopic study on PVP–NH4SCN
based polymer electrolytes. Physica B:
Condensed Matter, 393(1-2): 11-17.
33. Kadir, M. F. Z., Majid, S. R. and
Arof, A. K. (2010). Plasticized chitosan–PVA blend polymer electrolyte based
proton battery. Electrochimica Acta, 55(4): 1475-1482.
34. Phetwarotai, W., Potiyaraj, P. and
Aht-Ong, D. (2012). Characteristics of biodegradable polylactide/gelatinized
starch films: Effects of starch, plasticizer, and compatibilizer. Journal of Applied Polymer Science, 126(S1): 162-172.
35.
Arof, A. K., Shuhaimi, N. E. A., Alias,
N. A., Kufian, M. Z. and Majid, S. R. (2010). Application of chitosan/iota-carrageenan polymer electrolytes in
electrical double layer capacitor (EDLC). Journal of Solid State Electrochemistry, 14(12): 2145-2152.
36. Sekhar, P., Naveen Kumar, P. and
Sharma, A. K. (2012). Effect of plasticizer on conductivity and cell parameters
of (PMMA+NaCIO4) polymer electrolyte system. IOSR Journal of Applied Physics, 2(4): 1-6.