Malaysian
Journal of Analytical Sciences Vol 24 No 6
(2020): 1024 - 1033
POLYMELAMINE/GOLD NANOPARTICLE-MODIFIED CARBON PASTE ELECTRODE
AS VOLTAMMETRIC SENSOR OF URIC ACID
(Elektrod Pes Carbon Terubahsuai Polimelamin/Partikel Nano
Emas sebagai Sensor Voltametrik bagi Asid Urik)
Muji
Harsini1*, Erna Fitriany1,2, Ainy Nur Farida1,
Dianita Suryaningrum1, Dimas Noor Asy’ari1, Bernadeta
Ayu Widyaningrum1,3, Denok. Rizky Ayu Paramita,4, Afaf
Baktir1, Fredy Kurniawan5
1Department of Chemistry,
Faculty of Science and Technology,
Universitas Airlangga, Surabaya, Indonesia
2Akademi Farmasi Mitra
Sehat Mandiri, Sidoarjo, Indonesia
4Akademi Farmasi Jember,
Jember, Indonesia
5Department of Chemistry,
Faculty of Natural Science,
Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
*Corresponding author:
muji-h@fst.unair.ac.id
Received: 18 July 2019;
Accepted: 20 July 2020; Published: xx
December 2020
Abstract
Uric acid (UA), a vital
biological substance, should be accurately detected in clinical monitoring and
diagnosis. An electrochemical sensor was developed for UA determination based
on polymelamine/gold nanoparticle-modified carbon paste electrode
(AuNPs/PM/CPE). Carbon paste electrode
(CPE) was made by mixing carbon and paraffin powder at a ratio of 7:3. PM/CPE
was made using 1 mM melamine electropolymerisation in 0.1 M NaOH solution on
the CPE surface with the cyclic voltammetry (CV) technique with a potential range of 0 to +1.6 V, and a scan rate of
100 mV/s. AuNPs/PM/CPE electrodes were made using Au electrodeposition on the
PM/CPE surface using a 1 mM HAuCl4 solution containing 0.1 M Na2SO4.
Electrodeposition was performed by CV in the potential range of -0.6 to +1.5 V,
with a scan rate of 50 mV/s. The electrocatalytic activity towards UA was
systematically studied by CV techniques on the surface of CPE, PM/CPE,
AuNPs/CPE, and AuNPs/PM/CPE in
phosphate-buffered solution (PBS) at pH 7 with the potential of 0 V to + 1 V,
and a scan rate of 100 mV/s. The effect of
pH and the analysis of real samples using baby urine that had been diluted and
spiked with UA were also studied. The results for bare CPE, and
AuNPs/PM/CPE showed a 5-fold increase in anodic peak currents for UA. The
optimum conditions were pH 5 (PBS 0.1 M) with the scan rate of 100 mV/s. Under
this optimised condition, the modified electrode demonstrated high catalytic
activity of UA oxidation. The differential pulse voltammetry (DPV) technique
was used for quantitative analysis. The performance of AuNPs/PM/CPE electrodes
has a linearity range, detection limit, sensitivity, precision, and accuracy of
0.1-11 µM, 0.0647 µM, 7.8592 µA/µM, 0.1107-0.3930%, and 82.45-107.23%,
respectively. The results of the UA analysis
in the baby urine show that the recovery of the disposed sample was 99.41 ±
0.06%, indicating that these electrodes have good accuracy.
Keywords: voltammetry, uric acid, polymelamine, gold
nanoparticles, modified carbon electrode
Abstrak
Asid urik (UA), bahan
biologi penting, mesti dikesan dengan tepat dalam pemantauan dan diagnosis
klinikal. Penderia elektrokimia telah dibangunkan untuk pengesanan UA
berdasarkan elektrod pes karbon terubahsuai nano partikel emas/polimelamin
(AuNPs/PM/CPE). Elektrod pes karbon (CPE) disediakan dengan mencampurkan karbon
dan serbuk parafin pada nisbah 7:3. PM/PCE dihasilkan menggunakan 1 mM
elektropolimerisasi melamin dalam larutan 0.1 M NaOH pada permukaan CPE melalui
teknik voltametri berkitar (CV) pada julat potensi 0 hingga +1.6 V dan kadar
imbasan 100 mV/s. Elektrod AuNPs/PM/CPE dihasilkan menggunakan
pengelektroendapan Au pada permukaan PM/CFE menggunakan larutan 1 mM HAuCl4
yang mengandungi 0.1 M Na2SO4. Pengelektroendapan
dilakukan menggunakan CV dalam julat potensi −0.6 hingga +1.5 V, dengan
kadar imbasan 50 mV/s. Aktiviti elektropemangkinan UA dikaji secara sistematik
menggunakan teknik CV pada permukaan CPE, PM/CPE, AuNPs/CPE, dan AuNPs/PM/CPE
dalam larutan penimbal fosfat (PBS) pada pH 7 dengan julat potensi 0 hingga +1
V dan kadar imbasan 100 mV/s. Kesan pH dan analisis sampel sebenar menggunakan
air kencing bayi yang dicairkan dan dicampur dengan UA juga dikaji. Keputusan
bagi CPE terdedah dan AuNPs/PM/CPE menunjukkan peningkatan 5 kali ganda dalam arus
puncak anodik bagi UA. Keadaan optimum adalah pada pH 5 (PBS 0.1 M) dengan
kadar imbasan 100 mV/s. Pada keadaan optimum tersebut, elektrod terubah suai
menunjukkan aktiviti pemangkinan pengoksidaan UA yang tinggi. Teknik voltametri
denyut pembezaan (DPV) digunakan untuk analisis kuantitatif. Prestasi elektrod
AuNPs/PM/CPE masing-masing mempunyai julat kelinearan, had pengesanan,
kepekaan, kejituan, dan ketepatan pada 0.1–11 µM, 0.0647 µM, 7.8592 µA/µM,
0.1107%–0.3930%, dan 82.45%–107.23%.
Keputusan analisis UA dalam bayi air kencing menunjukkan bahawa
perolehan sampel dilupuskan pada 99.41 ± 0.06%, menunjukkan elektrod ini
mempunyai ketepatan yang baik.
Kata kunci: voltametri, asid urik, polimelamin, nano
partikel emas, elektrod karbon terubahsuai
References
1.
Maiuolo, J., Oppedisano, F., Gratteri, S.,
Muscoli, C. and Mollace, V. (2016). Regulation of uric acid metabolism and
excretion. International Journal of Cardiology, 213: 8-14.
2. Atta, N. F., El-kady, M. F. and Galal, A.
(2010). Simultaneous determination of catecholamines, uric acid and ascorbic
acid at physiological levels using poly (N-methylpyrrole)/Pd-nanoclusters
sensor. Analytical Biochemistry, 400(1): 78-88.
3. Kong, D., Zhuang, Q.,
Han, Y., Xu, L., Wang, Z. and Jiang, L. (2018). Simultaneous voltammetry
detection of dopamine and uric acid in human serum and urine with a poly
(procaterol hydrochloride) modified glassy carbon electrode. Talanta, 185(3):
203-212.
4. Rana, L., Gupta, R.,
Tomar, M. and Gupta, V. (2018). Highly sensitive Love wave acoustic biosensor
for uric acid. Sensors & Actuators: B. Chemical, 261: 169-177.
5. El, R. and Tallima, H.
(2017). Physiological functions and pathogenic potential of uric acid: A
review. Journal of Advanced Research, 8(5): 487-493.
6. Norazmi, N., Rasad, Z.
R. A., Mohamad, M. and Manap, H. (2017). Uric acid detection using UV-Vis
spectrometer. IOP Conference Series: Materials Science and Engineering,
257(1): 1-6.
7. Norazmi, N., Rasat, Z.
R. A., Mohamad, M. and Manap, H. (2018). UV detection on artificial uric acid
using UV-Vis spectrometer. Journal of Lasers, Optics & Photonics, 5(179):
2.
8. Jeliki, M., Djurdjevi,
P. and Stankov, D. (2003). Determination of uric acid in human serum by an
enzymatic method using N-methyl-N-(4-aminophenyl)-3-methoxyaniline reagent. Journal
Serbian Chemical Society, 68: 691-698.
9. Kock, R., Seitz, S.,
Delvoux, B. and Greiling, H. (1995). A method for the simultaneous
determination of creatinine and uric acid in serum by
high-performance-liquid-chromatography evaluated versus reference methods. Clinical
Chemistry and Laboratory Medicine, 33(1): 23-30.
10. Wijemanne, N., Soysa,
P., Wijesundara, S. and Perera, H. (2018). Development and validation of a
simple high performance liquid chromatography/UV method for simultaneous
determination of urinary uric acid, hypoxanthine, and creatinine in human
urine. International Journal of Analytical Chemistry, 2018: 1-7.
11. Honeychurch, K.
(2018). The Determination of uric acid in human saliva by liquid chromatography
with electrochemical detection. Journal of Analytical, Bioanalytical and
Separation Techniques, 2(1): 47-51.
12. Popa, E., Kubota, Y.,
Tryk, D. A. and Fujishima, A. (2000). Selective voltammetric and amperometric
detection of uric acid with oxidized diamond film electrodes. Analytical
Chemistry, 72(7): 1724-1727.
13. Kumar, S. S.,
Mathiyarasu, J., Phani, K. L., Jain, Y. K. and Yegnaraman, V. (2005).
Determination of uric acid in the presence of ascorbic acid using poly (3,
4‐ethylenedioxythiophene)‐modified electrodes. Electroanalysis:
An International Journal Devoted to Fundamental and Practical Aspects of
Electroanalysis, 17(24): 2281-2286.
14. Wang, L., Huang, P.,
Bai, J., Wang, H., Wu, X. and Zhao, Y. (2006). Voltammetric sensing of uric
acid and ascorbic acid with poly (p-toluene sulfonic acid) modified electrode. International
Journal of Electrochemical Science, 1: 334-342.
15. Khasanah, M., Mudasir,
M., Mada, U. G. and Kuncaka, A. (2012). Development of uric acid sensor based
on molecularly imprinted polymethacrylic acid-modified hanging mercury drop
electrode. Journal of Chemistry
and Chemical Engineering, 6: 209-214.
16. Sadikoglu, M., Taskin,
G., Demirtas, F. G., Selvi, B. and Barut, M. (2012). Voltammetric determination
of uricacid on poly (p-aminobenzene sulfonic acid)-modified glassy carbon
electrode. International Journal of Electrochemical Science,7:
11550-11557.
17. Amiri, M. and
Bezaatpour, A. (2012). Simultaneous voltammetric determination of uric acid and
ascorbic acid using carbon paste/cobalt Schiff base composite electrode, Journal Solid State Electrochemistry, 16: 2187-2195.
18. Movlaee, K., Norouzi,
P., Beitollahi, H., Rezapour, M. and Larijani, B. (2017). Highly selective
differential pulse voltammetric determination of uric acid using modified
glassy carbon electrode. International Journal of Electrochemical Science,12:
3241-3251.
19. Metto, M., Eramias,
S., Gelagay, B. and Washe, A. P. (2019). Voltammetric determination of uric
acid in clinical serum samples using DMF modified screen printed carbon
electrodes, International Journal of
Electrochemistry, 2019: 1-8.
20. Kounaves, S. P. (1997).
Voltammetric techniques, handbook of
instrumental techniques for analytical chemistry: pp. 709-726.
21. Sroysee, W., Chairam,
S. and Amatatongchai, M. (2016). Poly (m-ferrocenylaniline) modified carbon
nanotubes-paste electrode encapsulated in nafion film for selective and
sensitive determination of dopamine and uric acid in the presence of ascorbic
acid. Journal of Saudi Chemical Society, 22(2): 173-182.
22. Chitravathi, S.,
Swamy, B. E. K., Mamatha, G. P. and Sherigara, B. S. (2012). Electrochemical
behavior of poly (naphthol green B)-film modified carbon paste electrode and
its application for the determination of dopamine and uric acid. Journal of
Electroanalytical Chemistry, 667: 66-75.
23. Atta, N. F. and
El-kady, M. F. (2010). Novel poly (3-methylthiophene)/Pd, Pt nanoparticle
sensor: Synthesis, characterization and its application to the simultaneous
analysis of dopamine and ascorbic acid in biological fluids. Sensors &
Actuators: B. Chemical, 145(1): 299-310.
24. Wang, C., Li, J., Shi,
K., Wang, Q., Zhao, X., Xiong, Z. and Wang, Y. (2016). Graphene coated by
polydopamine/multi-walled carbon nanotubes modified electrode for highly
selective detection of dopamine and uric acid in the presence of ascorbic acid.
Journal of electroanalytical Chemistry, 770: 56-61.
25. Chandrashekar, B. N.,
Lv, W. and Jayaprakash, G. K. (2019). Cyclic voltammetric and quantum chemical
studies of a poly (methionine) modified carbon paste electrode for simultaneous
detection of dopamine and uric acid. Chemosensors, 7(24):1-18.
26. Hou, S., Zheng, N.,
Feng, H., Li, X. and Yuan, Z. (2008). Determination of dopamine in the presence
of ascorbic acid using poly (3, 5-dihydroxy benzoic acid) film modified
electrode, 179: 179-184.
27. Xiongwei, X. U., In,
Q. L., Iu, A. L., Hen, W. C., Eng, X. W. and Ang, C. W. (2010). Simultaneous
voltammetric determination of ascorbic acid, dopamine and uric acid using
polybromothymol blue film-modified glassy. Chemical and Pharmaceutical Bulletin, 58(6): 788-793.
28. Baskar, S., Liao, C.,
Chang, J. and Zen, J. (2013). Electrochemical synthesis of electroactive poly
(melamine) with mechanistic explanation and its applicability to functionalize
carbon surface to prepare nanotube – nanoparticles hybrid. Electrochimica
Acta, 88: 1-5.
29. Goyal, R. N. (2015).
Gold nanoparticles decorated poly-melamine modi fi ed glassy carbon sensor for
the voltammetric estimation of domperidone in pharmaceuticals and biological fl
uids. Talanta, 141: 53-59.
30. Peng, J., Feng, Y.,
Han, X. and Gao, Z. (2016). Simultaneous determination of bisphenol A and
hydroquinone using a poly (melamine) coated graphene doped carbon paste
electrode. Microchimica Acta, 183: 2289-2296.
31. Gupta, P., Yadav, S.
K. and Goyal, R. N. (2015). A sensitive polymelamine modified sensor for the
determination of lomefloxacin in biological fluids. Journal of The
Electrochemical Society, 162(1): 86-92.
32. Tadayon, F., Vahed, S.
and Bagheri, H. (2016). Au-Pd/reduced graphene oxide composite as a new sensing
layer for electrochemical determination of ascorbic acid, acetaminophen and
tyrosine. Materials Science & Engineering C, 68: 805-813.
33. Amidi, S., Ardakani,
Y. H., Amiri-Aref, M., Ranjbari, E., Sepehri, Z. and Bagheri, H. (2017).
Sensitive electrochemical determination of rifampicin using gold
nanoparticles/poly-melamine nanocomposite. RSC Advances, 7(64):
40111-40118.
34. Widyaningrum, B. A.
(2018). Modifikasi elektroda pasta karbon dengan polimelamin/nanopartikel emas
secara elektrokimia sebagai sensor voltammetri dopamin. Tesis Magister,
Universitas Airlangga, Surabaya-Indonesia.
35. Farida, A. N.,
Fitriany, E., Baktir, A., Kurniawan, F. and Harsini, M. (2019). Voltammetric
study of ascorbic acid using polymelamine/gold nanoparticle modified carbon
paste electrode. IOP Conference Series: Earth and Environmental Science,
217(1): 012004.
36. Paramita, D. R. A.
(2018). Modifikasi elektroda pasta karbon menggunakan polimelamin/nanopartikel
emas secara elektrokimia sebagai sensor voltammetri hidrokuinon. Tesis
Magister, Universitas Airlangga, Surabaya-Indonesia.
37. Zen, J. and Chen, P.
(1997). A selective voltammetric method for uric acid and dopamine detection
using clay-modified electrodes. Analytical
Chemistry, 69(24): 5087-5093.
38. Harmita (2004).
Petunjuk pelaksanaan validasi metode dan cara perhitungannya, Majalah Ilmu Kefarmasian, 1(3): 117-135.
39. Association for
Clinical Biochemistry (2013). Dopamine (plasma, urine). Retrieved from
http://www.acb.org.uk/Nat Lab Med Hbk /Dopamine.pdf.