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Abstract 

Palladium nanoparticles (PdNP) supported onto the anatase phase of TiO2 were successfully synthesised using a colloidal method. 

This synthesis method involved the reduction of K2PdCl4 solution by NaBH4 at different temperatures (1, 25, 50, 75 oC) and 

stabilised with PVA ligand. Transmission electron microscope (TEM) was used to determine the particle size of PdNP on the TiO2. 

Colloidal synthesis at 1 oC and 25 oC produced PdNP with less than a 3 nm diameter, whereas when the synthesis temperatures 

were higher than 25 oC, PdNP were produced with a size larger than 4 nm. The catalytic activity of Pd/TiO2 was significantly 

improved when palladium (Pd) was produced at 1 oC with high selectivity towards the hydrogenation of cinnamaldehyde to 

hydrocinnamaldehyde. The conversion and selectivity trends from the cinnamaldehyde hydrogenation reaction demonstrated the 

influence of Pd nanoparticle size to provide active sites for the reduction of C=C and C=O bonds. Pd with a diameter of 2.58 nm 

favoured hydrogenation of C=C bond to produce high selectivity towards hydrocinnamaldehyde, meanwhile a large Pd diameter 

> 4 nm allowed simultaneaous reduction of C=C and C=O bonds to give comparable selectivity between hydrocinnamaldehyde 

and hydrocinnamylalcohol. 

 

Keywords:  palladium nanoparticles, cinnamaldehyde hydrogenation 

 

Abstrak 

Nanopartikel palladium (PdNP) yang disokong pada fasa anatase TiO2 telah berjaya disintesis dengan kaedah koloidal. Kaedah 

sintesis ini melibatkan penurunan larutan K2PdCl4 oleh NaBH4 pada kumpulan suhu yang berbeza (1, 25, 50, 75 oC) dan distabilkan 

menggunakan ligan PVA. Mikroskop elektron transmisi (TEM) digunakan untuk mengukur saiz partikel PdNP di atas pemangkin. 

Sintesis koloid pada suhu 1 oC dan 25 oC menghasilan PdNP kurang daripada 3 nm, manakala suhu lebih tinggi dari 25 oC 

menghasilkan PdNP lebih besar daripada 4 nm. Aktiviti pemangkinan Pd/TiO2 meningkat dengan ketara apabila palladium (Pd) 
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dihasilkan pada 1 oC dengan pemilihan yang tinggi terhadap hidrogenasi sinamaldehid ke hidrosinamaldehid. Trend penukaran 

dan pemilihan dalam tindak balas hidrogenasi sinamaldehid menunjukkan pengaruh diameter saiz nanopartikel dalam 

menyediakan tapak aktif untuk penurunan ikatan C=C dan C=O. Pd dengan diameter 2.58 nm lebih menyukai hidrogenasi ikatan 

C=C untuk menghasilkan pemilihan tinggi terhadap hidrosinamaldehid, manakala saiz Pd berdiameter > 4nm membenarkan 

penurunan ikatan C=C dan C=O secara serentak untuk memberikan persamaan pemilihan antara hidrosinamaldehid dan 

hidrosinamilalkohol. 

 

Kata kunci:  palladium nanopartikel, hydrogenasi sinamaldehid 

 

 

Introduction 

Noble metal nanoparticles deposited on metal oxide 

support (TiO2, Al2O3, ZrO2, CeO2) exhibit a huge role as 

heterogenous catalysts for various industrial 

applications. Heterogeneous catalysts based on metal 

nanoparticles contribute towards the production of 

commercially valuable products such as environmental 

remediation, synthesis of fine chemicals, hydrogen gas 

production, and biomass processing [1, 2]. Palladium 

(Pd) metal nanoparticles show high catalytic ability 

towards hydrogenation reaction, whereas TiO2 is widely 

utilised as heterogenous support due to its pysical and 

chemical stability in acidic and oxidative environments 

[3]. TiO2 exists in three different phases, namely 

anatase, rutile, and brookite. With anatase, TiO2 has 

been frequently utilised as a catalyst support due to 

strong interaction with metal nanoparticles [4]. 

Supported metal nanoparticles (NPs) have attracted 

huge interests in the field of heterogeneous catalysis due 

to their unique optical, electronic, and catalytic 

properties in comparison with their larger counterparts. 

Tailoring metal NPs allow the optimisation of catalytic 

performance for a given process, with the metal particle 

size, shape, and structure dictating the overall catalytic 

performances [5].  

 

A colloidal method for the preparation of NPs provides 

a reliable pathway to control the nanoparticles’ growth 

and improve the dispersions of nanoparticles.The 

colloidal method involves metal reduction using 

reduction agents such as hydrazinem sodium 

borohydride and sodium citrate with the addition of 

stabilisers to avoid particle agglomeration [6, 7]. 

Polyvinylpyrrolidone (PVP) is used to stabilise 

palladium (Pd) nanoparticles to form different shapes 

and sizes; for example, the octahedrons (24 nm), 

tetrahedrons (22 nm), and cubes (20 nm) nanoparticles 

are obtained by reducing Pd in ethanol with the addition 

of hydrochloric acid. High concentration of inorganic 

ligand stabliser to control the size and shape of Pd 

nanoparticles leads to the appearance of various 

irregular sizes and shapes of Pd [8]. Many attempts have 

been made to develop suitable catalysts for selective 

hydrogenation of α, β-unsaturated aldehydes and the 

challenge is not only faced by the industrial sector but 

also the scientific communities.  

 

Hydrogenation of cinnamaldehyde (CAL) produces 

variations of products resulting from the hydrogenation 

of olefin bond (C=C) and/or aldehyde functionality 

(C=O). Hydrogenation at the C=C bond leads to the 

formation of hydrocinnamaldehyde (HCALD), 

meanwhile hydrogenation at the C=O site produces 

cinnamyl alcohol (COL). Further hydrogenation of these 

two partially hydrogenated products produces 

hydrocinnamyl alcohol (HCALC) [9]. Small Pd 

particles shows high selectivity towards C=C 

hydrogenation reaction to HCALD, while large Pd 

particles catalyse the reduction of C=O to produce 

HCALC [10]. In the early work by Xu Yang et al. [11], 

they successfully obtained nearly 100% conversion with 

80% selectivity towards HCALD using Pd nanoparticles 

entrapped in titanate nano-tubes. On the other hand, Arai 

et al. [12] obtained 87% HCA selectivity and 100% CA 

conversion using Pd/C catalyst. The small diameter of 

Pd granules over the multiwalled carbon nanotubes 

(MWCNTs) leads to a high catalyst activity, and results 

in a better hydrogenation performance for C═O bonds 

than that for C═C bonds. 

 

In this study, the influence of Pd nanoparticles supported 

on the anatase phase of TiO2 was investigated as 

catalysts for the hydrogenation reaction of 

cinnamaldehyde. PdNP were prepared using the 
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colloidal method with in-situ reduction of Pd carried out 

at different reaction temperatures. The effect of 

temperature variation on the distribution of 

nanoparticles was correlated with the catalytic activity 

of cinnamaldehyde hydrogenation.  

 

Materials and Methods 

Potassium tetrachloropalladate (II) K2PdCl4 (99.99% 

purity) was purchased from Johnson Matthey. 

Cinnamaldehyde C9H8O (>99% purity), Sodium 

borohydrate NaBH4 (>96% purity), Polyvinylalcohol 

(80% hydrolysed), and TiO2 anatase phase were 

supplied by Sigma-Aldrich. Toluene as solvent for the 

catalytic reaction was purchased from MERCK. 

Deionised water was used in all of the experiments. 

Supported Pd/TiO2 were prepared using a modified 

colloidal method with various reduction temperatures in 

order to tune the Pd particle size diameter. In a beaker, 

a 500 mL aqueous solution of K2PdCl4 of the desired 

concentration was stirred for 15 minutes at different 

temperatures (1, 25, 50, 75 oC). Then, freshly prepared 

aqueous solutions of PVA were added into the beaker 

and continued to be stirred for 10 minutes. This was 

followed by adding drop-wise freshly prepared 0.1 M 

aqueous solutions of NaBH4. The reduction of Pd 

occured when the solution turned dark brown upon 30 

minutes of stirring. After completion of reduction, TiO2 

powder was added to the above mixture under vigorous 

stirring at 900 rpm. The amount of support TiO2 required 

was calculated to achieve final metal loadings of 1 wt.%. 

The mixtures were acidified to pH 1-2 by sulphuric acid 

before they were stirred for 60 minutes to accomplish 

immobilisation of the PdNP onto the Titania support. 

The colloid was washed with distilled water and dried 

overnight prior to analysis and catalytic reaction. 

 

Catalysts characterisation 

Formation of the colloidal-reduced Pd was analysed by 

a UV-Vis spectroscopy. UV-Vis spectra (200-800 nm, 

Shimadzu UV-1800 spectrometer) of the Pd precursor 

and corresponding reduced Pd solution were recorded in 

a quartz cuvette after 15 and 30 minutes of process 

generation. Samples for examination by a transmission 

electron microscope (TEM) were prepared by first 

dispersing the catalyst powder in ethanol using ultra-

sonication for 30 minutes before dropped on to a holey 

carbon film supported by a 300 mesh copper TEM grid 

where the solvent was allowed to evaporate. The 

samples for TEM were then examined using a JEOL 

JEM 2100 TEM model operating at 200 kV.  

 

Catalytic activity 

Catalytic hydrogenation of cinnamalydehyde was 

carried out in 50 ml autoclave. The reactor pot was 

added with 50 mg of catalyst, 5 mg of trans-

cinnamalydehyde (purity >98%, Aldrich), and 20 mL 

toluene used as solvent. The reactor was flushed three 

times with He gas and repeated using pure H2 gas before 

it was pressurised to the desired pressure of 9 bars. The 

reaction time was taken once the reactor reached 323 K. 

The reaction was allowed for 2 hours. Product analysis 

was performed using a Shimadzu gas chromatography 

(GC) equipped with a flame ionisation detector. The 

calculation of cinnamaldehyde conversion and the 

product selectivity are defined respectively in the 

following equations: 

 

𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 (%) =  
[𝐶𝑎𝑙]0−[𝐶𝑎𝑙]𝑡

[𝐶𝑎𝑙]𝑜
 × 100                                                                                                          (1) 

𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑋 (%) =
[𝑋]𝑡

[𝑋]𝑡
× 100                                                                                                            (2) 

 

Table 1.  Experimental conditions for the synthesis of Pd/TiO2 catalysts 

Temperature  

(°C) 

Solvent Theoretical wt.% 

Pd loading 

Sample  

Coding 

1 H2O 1 PdA1 

30 H2O 1 PdA2 

50 H2O 1 PdA3 

75 H2O 1 PdA4 
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Results and Discussion 

The UV-Vis spectrometer was used to monitor the 

transition of metal precursor salt, K2PdCl4 to Pd metal 

nanoparticles during the colloidal synthesis with NaBH4 

as the reduction agent. Figures 1(a)-(b) show the UV-

Vis spectra of the aqueous solution of K2PdCl4 as well 

as the Pd colloidal suspension after reduction with 

NaBH4 at 1, 25, 50, and 75 oC. Figure 1 (a) presents the 

UV-Vis spectra of Pd aqeuous solution prepared at 1oC 

and 25 oC that exhibited absorption band at 208 nm 

(peak) and 236 nm (shoulder). This indicates the 

adsorption of ligand to the metal via charge transfer 

between the halide-metal and the metal halide in 

[PdCl4]2-, respectively [13,14]. The disappearance of 

these two bands in the colloidal solution specified the 

reduction of Pd2+ precursor to Pd0. The K2PdCl4 solution 

prepared at 50 oC and 75 oC showed the formation of 

broad adsorption band at low energies, 286 nm 

corresponded to d-d transition. After 30 minutes of 

stirring with NaBH4, PVA-stabilised Pd nanoparticles 

were formed, and the total reduction of the Pd metal 

precursor was confirmed by the disappearance of the 

band, as illustrated in Figure 1(b). 

 

TEM analysis was performed on the Pd/TiO2 catalysts 

to determine the particle size distribution of PdNP. The 

representative TEM images and the derived histograms 

of the Pd catalysts are presented in Figures 2 and 3, 

respectively. It is apparent that increasing the reduction 

temperatures during the syntehsis of colloidal Pd 

increased the average diameter of Pd nanoparticles. Pd 

produced using water as solvent formed the smallest 

average of Pd particle diameter at 2.66 nm with a very 

narrow particle size distribution. The catalyst also 

showed a very homogenous Pd distribution on the 

anatase support as indicated in Figures 2(a-b) and 3(a). 

As the temperature was increased to 25 oC, the particle 

size of Pd was slightly increased to 2.88 nm as shown in 

Figures 2(c-d). Pd with large particle sizes of 4.1 nm and 

<5.5 nm were observed when the synthesis temperatures 

were increased at 50 oC and 75 oC, respectively. 

Reduction of Pd2+ to form Pd nanoparticles during the 

colloidal synthesis was significantly influenced by the 

temperatures of the solution [15]. High temperatures 

accelerated the nucleation process and strengthened the 

interaction between Pd nanoparticles, resulting in 

agglomeration and non-uniformed distribution of Pd 

nanoparticles [16] as shown in Figure 3(c). Analysis on 

the particle size distribution of Pd when the synthesis 

was carried out at 75 oC was unable to be performed due 

to the agglomeration of the particles. Reducing the 

synthesis temperature below room temperature formed 

colloidal PdNP that was stable towards agglomeration.  

 

Figure 4 presents the variations of Pd/TiO2 activity as 

catalysts for cinnamaldehyde hydrogenation reaction 

using toluene as solvent at 50 oC under 9 bars of 

hydrogen gas pressure. The liquid product was analysed 

using gas chromatography and the two main products 

observed were HCALD and HCALC. There were no 

products detected from selective hydrogenation to 

cynnamalalcohol, which were consistent with the results 

reported by others [17, 18]. The catalytic activity of 

PdA1 that contained the smallest Pd particle size 

exhibited high conversion (48%) of cinnamaldehyde 

with the selectivity of 60%, 27%, and 13% towards 

HCALD, HCALC, and other products, respectively. 

Pd/TiO2 catalyst with a slightly bigger particle size 

(PdA2) resulted in 43% conversion with the selectivity 

to HCALD that was reduced to 51%. However, the 

catalysts produced at 25 oC showed enhanced selectivity 

of HCALC at 41%. As the particle size of PdNP became 

larger >4.0 nm (PdA3 and PdA4), the conversion of 

cinnamaldehyde was significantly reduced to give less 

than 5% conversion. Apparently, the selectivity to 

HCALD was similar in comparison to the PdA2 catalyst. 

The distribution of products from α, β-unsaturated 

aldehydes hydrogenation was influenced by several 

factors such as the dispersion of metal on the support, 

the metal particle size, and also the type of support [19, 

20]. 

 

Therefore, in the current case, there was a trend in the 

product distribution from the hydrogenation of 

cinnamaldehyde, in which Pd/TiO2 catalyts with narrow 

Pd size distribution showed the domination of CAL 

hydrogenation to HCALD as compared to the 

hydrogenation of HCALC, to give high selectivity ratios 
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between HCALD/HCALH. However, the ratio between 

the selectivity of HCALD/HCALC was reduced as the 

PdNP particle size increased. Pd with larger particles 

favoured hydrogenation to both HCALD and HCALC. 

Linear reduction of conversion was also contributed 

from the enlargement of Pd particle size and the 

reduction of homogenous distribution of PdNP on the 

anatase support. Small PdNP provided more available 

sites for the hydrogenation of C=C that led to high 

selectivity towards HCALD. Fast hydrogenation 

reaction promoted further hydrogenation of HCALD to 

HCALC at C=O sites [21]. The finding was consistent 

with the results from other researchers that showed Pd 

nanoparticles were prone to catalyse hydrogenation 

reaction of C=C bond in cinnamaldehyde [22]. 

Increasing the temperature of the synthesis of Pd 

colloidal exhibited agglomeration of Pd nanoparticles to 

form larger particles, which consequently reduced the 

available actives sites for hydrogenation reaction. Small 

Pd also allowed simultaneous adsorption at both C=C 

and C=O sites on the metal surface and therefore 

enhanced the selectivity for both HCALD and HCALC 

products. The suggested schematic reaction of 

cinnamaldehyde hydrogenation on Pd is presented in 

Figure 5. This schematic reaction was based on the 

reaction graph for all samples.  

 

The schematic reaction herein was formed by two types 

of pathways. Hydrogenation at C=C bond that led to 

HCALD and futher hydrogenation to form HCALC 

occurred on smaller particle size as seen in Figure 5(a). 

Meanwhile, for bigger particle size, both C=C and C=O 

bonds were preferred, leading to the production of 

HCALC and HCALD. 

 

 

 

 

Figure 1.  UV-Vis spectra of precursor and colloidal Pd nanoparticles on anatase prepared at different tenperatures 
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Figure 2.  TEM images for the Pd/TiO2 catalysts prepared at different temperatures; (a)-(b) 1 °C, (c)-(d) 25 °C, (e) 

50 °C, (f) 75 °C 

 

 

 
 

Figure 3.  Particle size histogram for the Pd/TiO2 catalysts prepared at different temperatures; a) 1 °C, b) 25 °C, and 

c) 50 °C 
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Figure 4.  Plot of selectivity to hydrocinnamaldehyde and hydrocinnamyl alcohol (a) as a function of conversion (b) 

of Pd/TiO2 prepared at 1oC 

 

 

 

 
Figure 5.  Schematic process of cinnamaldehyde hydrogenation on Pd/TiO2 catalysts 

 

 

Conclusion 

The colloidal method for the synthesis of Pd 

nanoparticles on TiO2 anatase with the various reduction 

temperatures produced Pd nanoparticles with tailored 

particle sizes in the range of 2.5 nm to 6 nm. Reducing 

the synthesis temperatures to 1 oC produced a narrow 

size of Pd nanoparticles, which exhibited high 

cinnamaldehyde conversion towards 

hydrocinnamaldehyde. Significant Pd particles 

agglomeration occurred when the synthesis was carried 

out at elevated temperatures. The enlargement of PdNP 

on TiO2 reduced the conversion of cinnamaldehyde and 

the selectivity towards hydrocinnamaldehyde. Tailored 

synthesis of Pd nanoparticles controlled the active sites 

of Pd that allowed selective hydrogenation of 

cinnamaldehyde. 
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