Commented [nb1]: Addition of: (-)

Malaysian Journal of Analytical Sciences (MJAS)

EFFECT OF Cr2O3 ON THE TRANSITION TEMPERATURE AND PHASE FORMATION OF Tl2-xCrxBa2CaCu2O8-8 SUPERCONDUCTOR

(Kesan Cr2O3 Terhadap Suhu Peralihan dan Pembentukan Fasa Superkonduktor $Tl_{2-x}Cr_xBa_2CaCu_2O_{8-\delta}$

Syahrul Humaidi1* and Roslan Abd Shukor

Department of Physics, FMIPA-Universitas Sumatera Utara, Jln Bioteknologi 1, Medan 20155, Indonesia ²Department of Applied Physics, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

*Corresponding author: syahrul1@usu.ac.id

Received: 13 November 2019; Accepted: 3 September 2020; Published: xx October 2020

Abstract

The Tl-based high T_c superconductors, Tl_{2-x}Cr_xBa₂CaCu₂O_xa_c (T12212) have been prepared via the solid-state reaction method. The substitution of Cr into the Tl-site was aimed to investigate the role of Cr on the transition temperature and phase stability of the T12212 phase. Ba₂CaCu₂O₂ precursor material was synthesized using BaCO₂ (99.9% Affich), CaO (99.9%, Alfa Aesar), and CuO (99.9%, Alfa Aesar) powder as the starting compound. The powders were mixed and sintered at 900 °C for 24 hours before cooled to room temperature. The precursor was mixed with Tl₂O₂ (99.9%, Alfa Aesar) and Cr₂O₁(99.9%, Merck) powders before cooled to room temperature. The precursor was mixed with Ti₂O₁ (99.9%, Alfa Assar) and Cr₂O₁ (99.9%, Merck) powders before being pressed to obtain Tl₂-Cr₁Ba₂CaCu₂O₂ pellet. The pellets were heated at 900 °C with oxygen flow for Arminets. The transition temperature, T_c was determined using the standard four-point probe electrical resistance measurements from 50 K to 300 K with a constant current of 20 mA. The phases were determined by powder X-ray diffraction (XRD) method using CuK_a source with λ=0.4548 & Assacd on XRD analysis, fite x = 0.0.2, and 0.6 showed unit cell belonging to the 14/mmm space group on. In the x = 0.4, the space group changed to P4/mmm which is the TII212 phase. It was found that the optimum composition was TI_{1.8}Cr_{1.2}Ba₂CaCu₂O_{8.5} and the maximum zero-resistance temperature, T_{comm} was 96 K, and the onset temperature, T_{comm} was 11 k. It was observed that the transition temperatures decreased with increasing Cr₂O₃. The volume fraction of the TI2212 phase in this composition was 88% with the c-lattice parameter equals to 29.388Å. Superconductivity was destroyed in the x = 1.0 samples.

Keywords: transition temperature, structure, Tl2212 phase

Abstrak

Superkonduktor suhu tinggi berasaskan Tl iaitu, Tl₂₃Cr₃R₂Co₄Co₂O₃₋₆ (Tl2212) telah disediakan melalui kaedah tindak balas pepejal. Penggantian Cr pada kedudukan Tl dilakukan untuk menyelidik peranan Cr terhadap suhu genting dan kestabilan fasa

Abd-Shukor

Shahrul & Roslan: EFFECT OF Cr₂O₃ ON THE TRANSITION TEMPERATURE AND PHASE FORMATION OF Tl_{2-n}Cr₃Ba₂CaCu₂O₈₋₆ SUPERCONDUCTOR

Syahrul

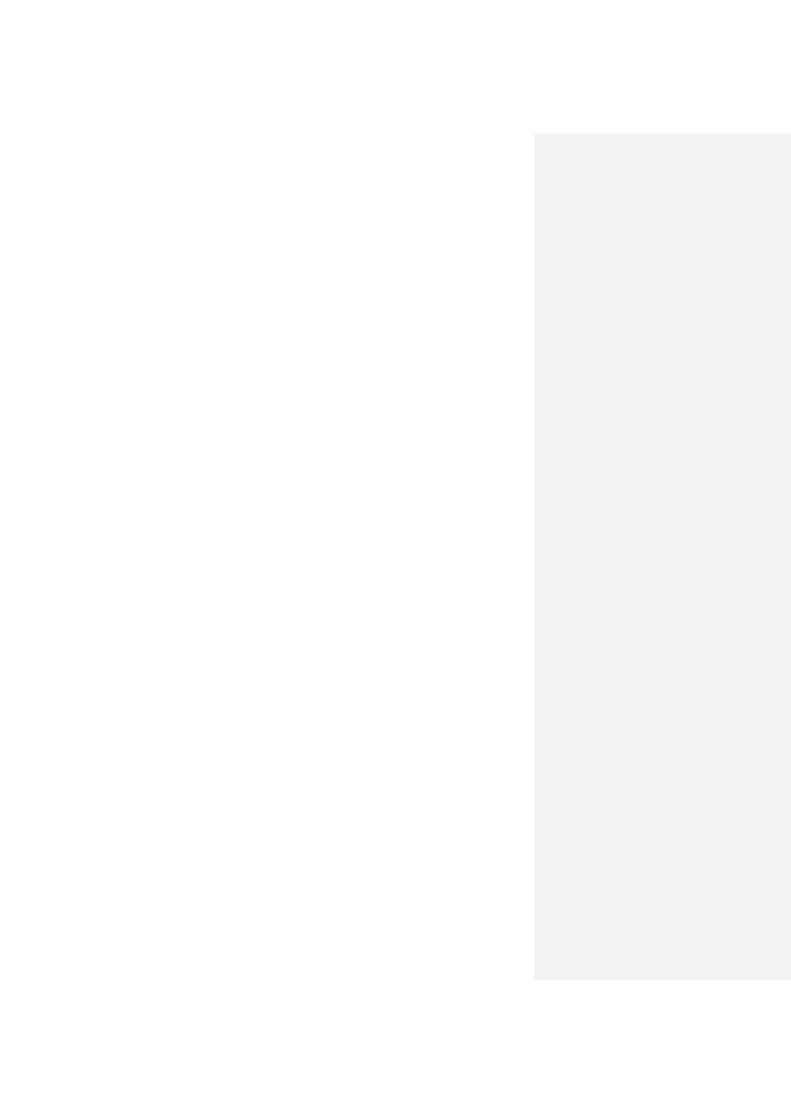
pada 900 °C dengan aliran gas oksigen selama 4 minit. Suhu peralihan, T_c ditentukan dengan pengukuran rintangan elektrik menggunakan kaedah piawai empat titik dalam suhu 50 K hingga 300K dengan bekalan arus malar 20 mA. Pecahan fasa diperolehi daripada kaedah pembelauan serbuk sinar-X (XRD) menggunakan sinar CuK α dengan panjang gelombang λ = 1.5418 λ . Berdasarkan analisis XRD, sampel x = 0, 0,2, dan 0.6 adalah pada kumpulan ruang 14/mmm. Untuk sampel x = 0.4 kumpulan ruang berubah menjadi P4/mmm iaitu fasa yang berlainan (T11212). Didapati bahawa suhu peralihan sifar maksimum, T_c sufa adalah 96 K dan suhu perlalihan mula, T_c sufa adalah 116 K bagi komposisi T1,3C Ta,2Ba-C CuV.0C-A. Pecahan ispadu daripada fasa T12212 dalam sampel ini adalah 88% dengan parameter kekisi c bersamaan 29,388 Å. Sifat superkonduktor hilang pada komposisi x = 1.0.

Kata kunci: suhu peralihan, struktur, fasa Tl2212

Introduction

High temperature superconductor (HTSC) based on copper oxides have critical temperature greater than 77 K (above liquid nitrogen temperature). Some of the common types of HTSCs include YBaCuO (YBCO), BiSrCaCuO (BSSCO), TIBaCaCuO (TBCCO), HgBaCaCuO, and HgTIBaCaCuO. Many efforts are being made to enhance the transition temperature of HTSCs. Some researchers modified the fabrication techniques of the materials [1-4]. Most of the research works [5-9] deal with doping and atomic substitution. The thallium-based copper oxide superconductor consists of several phases with a different number of copper oxide layers. Previous works on thallium-based high temperature superconductor concentrated on several phases of Tl-based HTSCs. T_c of TIBa₂CaCu₂O_{7-δ} (TII201) was around 70 K [10], whereas T₂Ba₂CaCu₂O_{8-δ} (TII212) had T_c of 110 K [11]. The TIBa₂Ca₂Cu₄O_{11-δ} (TI1234) was reported with T_c of around 114 K [12].

The role of Cr at the TI-sites in TI-based superconductor has been widely studied. Chromium is an effective element for substitution in TI-Sr-Ca-Cu-O systems [13]. There have been several reports on the effect of Cr on the superconductivity of TI-1212 phase. The substitution of Cr for TI or Ca site improves the superconducting the state of Cr on the substitution improvements.


has been observed that the volume fraction of Tl2212 phase increased as Te content was increased [19]. It is interesting to investigate the effects of Cr in other phases of the Tl-based superconductor. In this paper, we report the effects of Cr on the superconducting properties and phase formation of the Tl-2212 phase.

Materials and Methods

Samples with the nominal starting composition (Tl₂. $_{x}Cr_{x})Ba_{2}CaCu_{2}O_{8}$ with x = 0.0, 0.2, 0.4, 0.6, and 0.8 were prepared by the solid state reaction method. Appropriate amounts of high purity (>99.99%) BaCO₃, CaO, and CuO were mixed completely using an agate mortar to obtain a homogeneous mixture. The precursor powders were heated at 900 °C for 24 hours with several intermittent grinding. Appropriate amounts of $\mathrm{Tl_2O_3}$ and Cr2O3 with appropriate mole% were then added to the precursor and completely mixed before being pressed into pellets with 1.3 cm diameter and 0.2 cm thickness under 7 ton/cm2 of pressure. The pellets were heated at 900 °C in flowing oxygen for 4 minutes. This was followed by furnace cooling to room temperature. An excess of 10% Tl₂O₃ was added to compensate for the thallium lost during heating.

The dc electrical resistance measurements were performed between 50 K and 300 K. The four-point

Commented [nb2]: h is replaced with y

