Malaysian
Journal of Analytical Sciences Vol 25 No 3
(2021): 508 - 520
THE EFFECTS OF STORAGE TEMPERATURE AND TIME ON THE
LEVELS OF PHTHALATES IN COMMERCIAL PET-BOTTLED WATER
(Kesan Suhu dan Masa Penyimpanan Terhadap
Kandungan Ftalat dalam Air Berbotol PET Komersial)
Nur Amira Syazwan Razali1,
Ungku Fatimah Ungku Zainal Abidin2,3, Nur Hanani Zainal Abedin1,3, Syaliza Omar4, Jinap Selamat1,5,
Maimunah Sanny1,5*
1Department of Food Science, Faculty of
Food Science and Technology
2Department of Food Service Management,
Faculty of Food Science and Technology
3Halal Products Research Institute,
Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
4Faculty of Pharmacy,
Universiti Sultan Zainal Abidin,
Besut Campus, 222000, Besut, Terengganu, Malaysia
5Laboratory of Food Safety and Food
Integrity, Institute of Tropical Agricultural and Food Security,
Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
*Corresponding author: s_maimunah@upm.edu.my
Received: 5 April 2021;
Accepted: 22 May 2021; Published: 27
June 2021
Abstract
This study was
conducted to determine the effects of storage temperature and time on the
levels of phthalates in commercial PET-bottled water. Freshly-produced water
samples consisted of drinking, mineral, and sparkling in PET bottles were
collected from a manufacturing site and subjected to different storage
temperatures (refrigeration temperature of 4 °C, room temperature of 25 °C, and
40 °C) and times (0 month as control, 1.5 months, 3 months, and 6 months). Six
different phthalates were analyzed using LC-MS/MS with deuterated
bis(2-ethylhexyl)phthalate (DEHP) as internal standard. DEHP in the PET-bottled
water was detected in the range from 2.32 to 27.6 ng/mL for 3- and 6-month
storage samples; higher than di-n-octyl phthalate (DnOP) detected in the range from 1.57 to 12.6
ng/mL. Higher levels of DEHP and DnOP in PET-bottled mineral water were
detected at room temperature of 25 °C when compared to refrigeration
temperature of 4 °C, and 40 °C at 6-month storage. Higher level of DEHP and
DnOP in drinking water was found at 6 months compared to 3 months in
refrigeration temperature of 4 °C. The
pronounced effects of storage temperatures on the levels of phthalates was observed only after 6 months of
storage in which DEHP levels exceeded the maximum established limit of 6 ng/mL.
Keywords: PET-bottled water, phthalates, storage
temperature, storage time, liquid chromatography-mass spectrometry/mass
spectrometry.
Abstrak
Kajian ini dilakukan untuk mengetahui
kesan suhu dan masa penyimpanan terhadap kandungan phthalates dalam air
berbotol PET komersial. Sampel air yang baharu dihasilkan di pusat
pengilangan terdiri daripada air minuman, air mineral, dan air soda yang
dibotolkan dengan menggunakan botol PET telah dikumpulkan dan disimpan di dalam
suhu (suhu penyejukan 4 °C, suhu bilik 25 °C, dan 40 °C) dan masa (0 bulan
sebagai kawalan, 1.5 bulan, 3 bulan, dan 6 bulan) yang berbeza. Enam jenis
ftalat dianalisa dengan menggunakan LC-MS/MS dan bis(2-etilheksilt)ftalat (DEHP) deuterasi sebagai piawai dalaman.
DEHP dalam air botol PET dikesan dalam julat 2.32 hingga 27.6 ng/mL untuk
sampel penyimpanan 3- dan 6 bulan; lebih tinggi daripada di-n-oktil ftalat (DnOP) yang dikesan dalam julat 1.57
hingga 12.6 ng/mL. Tahap DEHP dan DnOP yang lebih tinggi dalam air mineral
botol PET dikesan pada suhu bilik 25 °C jika dibandingkan dengan suhu
penyejukan 4 °C, dan 40 °C pada penyimpanan 6 bulan. Tahap DEHP dan DnOP yang
lebih tinggi dalam air minuman didapati pada 6 bulan berbanding 3 bulan pada
suhu penyejukan 4 °C. Kesan suhu penyimpanan yang ketara kepada kandungan
ftalat diperhatikan hanya selepas penyimpanan selama 6 bulan di mana tahap DEHP
melebihi had maksimum yang ditetapkan iaitu 6 ng/mL.
Kata kunci: air berbotol PET, ftalat, masa
penyimpanan, suhu penyimpanan, kromatografi cecair-spektrometri
jisim/spektrometri jisim
References
1.
Majid, I., Ahmad Nayik,
G., Mohammad Dar, S. and Nanda, V. (2018). Novel food packaging technologies:
Innovations and future prospective. Journal
of the Saudi Society of Agricultural Sciences, 17: 454-462.
2.
Jeddi, M. Z., Rastkari,
N., Ahmadkhaniha, R. and Yunesian, M. (2016). Endocrine disruptor phthalates in
bottled water: Daily exposure and health risk assessment in pregnant and
lactating women. Environmental Monitoring
and Assessment, 188: 534.
3.
Pourzamani, H., Falahati,
M., Rastegari, F. and Ebrahim, K. (2017). Freeze-melting process significantly
decreases phthalate ester plasticizer levels in drinking water stored in
polyethylene terephthalate (PET) bottles. Water
Science and Technology: Water Supply, 17: 745-751.
4.
Welle, F. (2011). Twenty
years of PET bottle to bottle recycling - An overview. Resources, Conservation & Recycling, 55: 865-875.
5.
Choi, K., Joo, H.,
Campbell, J. L., Andersen, M. E. and Clewell, H. J. (2013). In vitro intestinal
and hepatic metabolism of Di(2-ethylhexyl) phthalate (DEHP) in human and rat. Toxicology in Vitro, 27: 1451-1457.
6.
Rowdhwal, S. S. S. and
Chen, J. (2018). Toxic effects of di-2-ethylhexyl phthalate: An overview. BioMed Research International, 1750368:
1-10.
7.
Wang, Y., Zhu, H. and
Kannan, K. (2019). A review of biomonitoring of phthalate exposures. Toxics, 7: 21.
8.
Nowak, K.,
Jabłońska, E. and Ratajczak-Wrona, W. (2019). Immunomodulatory
effects of synthetic endocrine disrupting chemicals on the development and functions
of human immune cells. Environment
International, 125: 350-364.
9.
US EPA. National Primary
Drinking Water Regulations. Available online:
https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations
[Accessed on August 30 2020].
10.
WHO. Guidelines for
drinking water quality. Available online: https://apps.who.int/iris/bitstream/ handle/10665/204411/9789241547611_eng.pdf;jsessionid=2F9904A829F426314A3F34407D3CFB84?sequence=1
[Accessed on 30 August 2020].
11.
Khatib, A. J. A., Habib,
I.Y., Muhammad, M., Danladi, F. I., Bala, S. S. and Adamu, A. (2014). Analysis
of phthalate plasticizer in Jordanian bottled waters by liquid
chromatography-tandem mass spectrophotometry (LC-MS/MS). European Scientific Journal, 10: 271-282.
12.
Oldeman, L. R., Frere, M.
(2021). A study of the agroclimatology of the humid tropics of Southeast Asia:
Technical Report. Available online:
https://library.wmo.int/doc_num.php?explnum_id=1084 [Accessed on 20 April
2021].
13.
Muhamad, S. G., Esmail,
L. S. and Hasan, S.H. (2011). Effect of storage temperature and sunlight
exposure on the physicochemical properties of bottled water in Kurdistan
region-Iraq. Journal of Applied
Structural Equation Modeling, 15: 147-154.
14.
Xu, X., Zhou, G., Lei,
K., LeBlanc, G.A., An, L. (2019). Phthalate esters and their potential risk in
PET bottled water stored under common conditions. International Journal of Environmental Research and Public Health, 17:
1-13.
15.
Halden, R. U. (2010).
Plastics and health risks. Annual Review
of Public Health, 31: 179-194.
16.
Srinivasan, K. (2016).
Phthalate leachates in selected plastic packed food products - A GC-MS. International Journal of Research in
Chemistry and Environment, 6: 18-21.
17.
Keresztes, S., Tatar, E.,
Cazegeny, Z., Zaray, G. and Mihucz, V. G. (2013). Study on the leaching of
phthalates from polyethylene terephthalate bottles into mineral water. Science of the Total Environment, 458-460:
451-458.
18.
Yousefi, Z., Babanezhad,
E., Mohammadpour, R. A. and Ala, A. (2018). Concentration of phthalate esters
in polyethylene terephthalate bottled drinking water in different storage
conditions. Journal of Mazandaran
University of Medical Sciences, 28: 110-120.
19.
Xu, Q., Yin, X., Wang,
M., Wang, H., Zhang, N., Shen, Y., Xu, S., Zhang, L. and Gu, Z. (2010).
Analysis of phthalate migration from plastic containers to packaged cooking oil
and mineral water. Journal of
Agricultural and Food Chemistry, 58: 11311-11317.
20.
Ibrahim, N., Osman, R.,
Abdullah, A. and Saim, N. (2014). Determination of phthalate plasticisers in
palm oil using online solid phase extraction-liquid chromatography (SPE-LC). Journal of Chemistry, 682975: 1-9.
21.
Bosnir, J., Puntaric, D.,
Galic, A., Skes, I., Dijanic, T., Klaric, M., Grgic, M., Curkovic, M. and Smit,
Z. (2007). Migration of phthalates from plastic containers into soft drinks and
mineral water. Food Technology and
Biotechnology, 45: 91-95.
22.
Montuori, P., Jover, E.,
Morgantini, M., Bayona, J. M. and Triassi, M. (2008). Assessing human exposure
to phthalic acid and phthalate esters from mineral water stored in polyethylene
terephthalate and glass bottles. Food
Additives & Contaminants: Part A: Chemistry, Analysis, Control, Exposure
& Risk Assessment, 25, 511-518.
23.
Rastkari, N., Zare, J.
M., Yunesian, M. and Ahmadkhaniha, R. (2017). The effect of storage time,
temperature and type of packaging on the release of phthalate esters into
packed acidic liquids. Food Technology
and Biotechnology, 55: 562-569.
24.
Schmid, P., Kohler, M.,
Meierhofer, R., Luzi, S. and Wegelin, M. (2008). Does the reuse of PET bottles
during solar water disinfection pose a health risk due to the migration of
plasticisers and other chemicals into the water? Water Research, 42: 5054-5060..
25.
Leivadara, S. V.,
Nikolaou, A. D. and Lekkas, T. D. (2008). Determination of organic compounds in
bottled waters. Food Chemistry, 108:
277-286.
26.
Abtahi, M., Dobaradaran,
S. and Torabbeigi, M. (2019). Health risk of phthalates in water environment:
Occurrence in water resources, bottled water, and tap water, and burden of
disease from exposure through drinking water in Tehran, Iran. Environmental Research, 173: 469-479.
27.
Greifenstein, M., White,
D. W., Stubner, A., Hout, J. and Whelton, A. J. (2013). Impact of temperature
and storage duration on the chemical and odor quality of military packaged
water in polyethylene terephthalate bottles. Science of the Total Environment 456-457: 376-383.
28.
Al-Saleh, I., Shinwari,
N. and Alsabbaheen, A. (2011). Phthalates residues in plastic bottled waters. The Journal of Toxicological Sciences, 36:
469-478.
29.
Amiridou, D. and Voutsa,
D. (2011). Alkylphenols and phthalates in bottled waters. The Journal of Hazardous Materials, 185: 281-286.
30.
Erythropel, H. C., Maric,
M., Nicell, J. A., Leask, R. L. and Yargeau, V. (2014). Leaching of the
plasticizer di(2-ethylhexyl)phthalate (DEHP) from plastic containers and the
question of human exposure. Applied
Microbiology and Biotechnology, 98: 9967-9981.
31.
Yin, S., Yang, Y., Yang,
D., Li, Y., Jiang, Y., Wu, L. and Sun, C. (2019). Determination of 11 phthalate
esters in beverages by magnetic solid-phase extraction combined with
high-performance liquid chromatography. Journal
of AOAC International, 102: 1624-1631.
32.
Ceretti, E., Zani, C.,
Zerbini, I., Guzzella, L., Scaglia, M., Berna, V., Donato, F., Monarca, S. and
Feretti, D. (2010). Comparative assessment of genotoxicity of mineral water
packed in polyethylene terephthalate (PET) and glass bottles. Water Research, 44: 1462-1470.
33.
Guart, A., Bono-Blay, F.,
Borrell, A. and Lacorte, S. (2011). Migration of plasticizers phthalates,
bisphenol A and alkylphenols from plastic containers and evaluation of risk. Food Additives & Contaminants: Part A:
Chemistry, Analysis, Control, Exposure & Risk Assessment, 28, 676-685.
34.
Moreira, M. A., André, L.
C. and Cardeal, Z. L. (2013). Analysis of phthalate migration to food simulants
in plastic containers during microwave operations. International Journal of Environmental Research and Public Health, 11,
507-526.
35.
Petersen, A. A (2020).
Little secret about bottled water. Available online: https://www.wsj.com/articles/
SB107646063079326366 [Accessed on 31 August 2020].
36.
Haouet, M. N., Tommasino,
M., Mercuri, M. L., Benedetti, F., Bella, S. D., Framboas, M., Pelli, S. and
Altissimi, M. S. (2018). Experimental accelerated shelf life determination of a
ready-to-eat processed food. Italian
Journal of Food Safety, 7: 6919-6919.
37.
Schreiber, A., Fu, F.,
Yang, O., Wan, E., Gu, L., LeBlanc, Y. (2015). Increasing selectivity and
confidence in detection when analyzing phthalates by LC-MS/MS. Available
online: http://sciex.com/Documents/ brochures/Phthalates_QTRAP5500%20SelexION_3690411.pdf
[Accessed on 2 Sept 2015].
38.
Zaki, G. and Shoeib, T.
(2018). Concentrations of several phthalates contaminants in Egyptian bottled
water: Effects of storage conditions and estimate of human exposure. Science of the Total Environment 618:
142-150.
39.
Ventrice, P., Ventrice,
D., Russo, E. and De Sarro, G. (2013). Phthalates: European regulation,
chemistry, pharmacokinetic and related toxicity. Environmental Toxicology and Pharmacology, 36: 88-96.
40.
Vittorio, S., Jose
Manuel, B. B., Claudia, B., Andrew, C., Pier, S. C., Riccardo, C., David, M.
G., Konrad, G., Evgenia, L., Alicja, M. (2019). Update of the risk assessment
of di-butylphthalate (DBP), butyl-benzyl-phthalate (BBP),
bis(2-ethylhexyl)phthalate (DEHP), di-isononylphthalate (DINP) and
di-isodecylphthalate (DIDP) for use in food contact materials. EFSA Journal, 17: 5838.
41.
Plotan, M., Frizzell, C.,
Robinson, V., Elliott, C. T., Connolly, L. (2013). Endocrine disruptor activity
in bottled mineral and flavoured water. Food
Chemistry, 136: 1590-1596.
42.
Bach, C., Dauchy, X.,
Chagnon, M. C. and Etienne, S. (2012). Chemical compounds and toxicological
assessments of drinking water stored in polyethylene terephthalate (PET)
bottles: A source of controversy reviewed. Water
Research, 46, 571-583.
43.
Casajuana, N. and
Lacorte, S. (2003). Presence and release of phthalic esters and other endocrine
disrupting compounds in drinking water. Chromatographia,
57: 649-655.
44.
Rahman, M. and Brazel, C.
S. (2004). The plasticizer market: An assessment of traditional plasticizers
and research trends to meet new challenges. Progress
in Polymer Science 29: 1223-1248.
45.
Boudreaux, K. A. (2020).
Chapter 5 carboxylic acids and esters. Available online:
https://www.angelo.edu/faculty/kboudrea/index_2353/Chapter_05_2SPP.pdf
[Accessed on 31 August 2020].
46.
Lertsirisopon, R., Soda,
S., Sei, K. and Ike, M. (2009). Abiotic degradation of four phthalic acid
esters in aqueous phase under natural sunlight irradiation. Journal of Environmental Sciences, 21:
285-290.