Malaysian Journal of Analytical Sciences Vol 25 No 3 (2021): 508 - 520


 

 

 

 

THE EFFECTS OF STORAGE TEMPERATURE AND TIME ON THE LEVELS OF PHTHALATES IN COMMERCIAL PET-BOTTLED WATER

 

(Kesan Suhu dan Masa Penyimpanan Terhadap Kandungan Ftalat dalam Air Berbotol PET Komersial)

 

Nur Amira Syazwan Razali1, Ungku Fatimah Ungku Zainal Abidin2,3, Nur Hanani Zainal Abedin1,3, Syaliza Omar4, Jinap Selamat1,5, Maimunah Sanny1,5*

 

1Department of Food Science, Faculty of Food Science and Technology

2Department of Food Service Management, Faculty of Food Science and Technology

3Halal Products Research Institute,

Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

4Faculty of Pharmacy,

Universiti Sultan Zainal Abidin, Besut Campus, 222000, Besut, Terengganu, Malaysia

5Laboratory of Food Safety and Food Integrity, Institute of Tropical Agricultural and Food Security,

Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

 

*Corresponding author:  s_maimunah@upm.edu.my

 

 

Received:  5 April 2021; Accepted: 22 May 2021; Published:  27 June 2021

 

 

Abstract

This study was conducted to determine the effects of storage temperature and time on the levels of phthalates in commercial PET-bottled water. Freshly-produced water samples consisted of drinking, mineral, and sparkling in PET bottles were collected from a manufacturing site and subjected to different storage temperatures (refrigeration temperature of 4 °C, room temperature of 25 °C, and 40 °C) and times (0 month as control, 1.5 months, 3 months, and 6 months). Six different phthalates were analyzed using LC-MS/MS with deuterated bis(2-ethylhexyl)phthalate (DEHP) as internal standard. DEHP in the PET-bottled water was detected in the range from 2.32 to 27.6 ng/mL for 3- and 6-month storage samples; higher than di-n-octyl phthalate (DnOP) detected in the range from 1.57 to 12.6 ng/mL. Higher levels of DEHP and DnOP in PET-bottled mineral water were detected at room temperature of 25 °C when compared to refrigeration temperature of 4 °C, and 40 °C at 6-month storage. Higher level of DEHP and DnOP in drinking water was found at 6 months compared to 3 months in refrigeration temperature of 4 °C.  The pronounced effects of storage temperatures on the levels of phthalates was observed only after 6 months of storage in which DEHP levels exceeded the maximum established limit of 6 ng/mL.

 

Keywords: PET-bottled water, phthalates, storage temperature, storage time, liquid chromatography-mass spectrometry/mass spectrometry.

 

Abstrak

Kajian ini dilakukan untuk mengetahui kesan suhu dan masa penyimpanan terhadap kandungan phthalates dalam air berbotol PET komersial.  Sampel air yang baharu dihasilkan di pusat pengilangan terdiri daripada air minuman, air mineral, dan air soda yang dibotolkan dengan menggunakan botol PET telah dikumpulkan dan disimpan di dalam suhu (suhu penyejukan 4 °C, suhu bilik 25 °C, dan 40 °C) dan masa (0 bulan sebagai kawalan, 1.5 bulan, 3 bulan, dan 6 bulan) yang berbeza. Enam jenis ftalat dianalisa dengan menggunakan LC-MS/MS dan bis(2-etilheksilt)ftalat (DEHP) deuterasi sebagai piawai dalaman. DEHP dalam air botol PET dikesan dalam julat 2.32 hingga 27.6 ng/mL untuk sampel penyimpanan 3- dan 6 bulan; lebih tinggi daripada di-n-oktil ftalat (DnOP) yang dikesan dalam julat 1.57 hingga 12.6 ng/mL. Tahap DEHP dan DnOP yang lebih tinggi dalam air mineral botol PET dikesan pada suhu bilik 25 °C jika dibandingkan dengan suhu penyejukan 4 °C, dan 40 °C pada penyimpanan 6 bulan. Tahap DEHP dan DnOP yang lebih tinggi dalam air minuman didapati pada 6 bulan berbanding 3 bulan pada suhu penyejukan 4 °C. Kesan suhu penyimpanan yang ketara kepada kandungan ftalat diperhatikan hanya selepas penyimpanan selama 6 bulan di mana tahap DEHP melebihi had maksimum yang ditetapkan iaitu 6 ng/mL.

 

Kata kunci:  air berbotol PET, ftalat, masa penyimpanan, suhu penyimpanan, kromatografi cecair-spektrometri jisim/spektrometri jisim

 

References

1.      Majid, I., Ahmad Nayik, G., Mohammad Dar, S. and Nanda, V. (2018). Novel food packaging technologies: Innovations and future prospective. Journal of the Saudi Society of Agricultural Sciences, 17: 454-462.

2.      Jeddi, M. Z., Rastkari, N., Ahmadkhaniha, R. and Yunesian, M. (2016). Endocrine disruptor phthalates in bottled water: Daily exposure and health risk assessment in pregnant and lactating women. Environmental Monitoring and Assessment, 188: 534.

3.      Pourzamani, H., Falahati, M., Rastegari, F. and Ebrahim, K. (2017). Freeze-melting process significantly decreases phthalate ester plasticizer levels in drinking water stored in polyethylene terephthalate (PET) bottles. Water Science and Technology: Water Supply, 17: 745-751.

4.      Welle, F. (2011). Twenty years of PET bottle to bottle recycling - An overview. Resources, Conservation & Recycling, 55: 865-875.

5.      Choi, K., Joo, H., Campbell, J. L., Andersen, M. E. and Clewell, H. J. (2013). In vitro intestinal and hepatic metabolism of Di(2-ethylhexyl) phthalate (DEHP) in human and rat. Toxicology in Vitro, 27: 1451-1457.

6.      Rowdhwal, S. S. S. and Chen, J. (2018). Toxic effects of di-2-ethylhexyl phthalate: An overview. BioMed Research International, 1750368: 1-10.

7.      Wang, Y., Zhu, H. and Kannan, K. (2019). A review of biomonitoring of phthalate exposures. Toxics, 7: 21.

8.      Nowak, K., Jabłońska, E. and Ratajczak-Wrona, W. (2019). Immunomodulatory effects of synthetic endocrine disrupting chemicals on the development and functions of human immune cells. Environment International, 125: 350-364.

9.      US EPA. National Primary Drinking Water Regulations. Available online: https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations [Accessed on August 30 2020].

10.   WHO. Guidelines for drinking water quality. Available online: https://apps.who.int/iris/bitstream/ handle/10665/204411/9789241547611_eng.pdf;jsessionid=2F9904A829F426314A3F34407D3CFB84?sequence=1 [Accessed on 30 August 2020].

11.   Khatib, A. J. A., Habib, I.Y., Muhammad, M., Danladi, F. I., Bala, S. S. and Adamu, A. (2014). Analysis of phthalate plasticizer in Jordanian bottled waters by liquid chromatography-tandem mass spectrophotometry (LC-MS/MS). European Scientific Journal, 10: 271-282.

12.   Oldeman, L. R., Frere, M. (2021). A study of the agroclimatology of the humid tropics of Southeast Asia: Technical Report. Available online: https://library.wmo.int/doc_num.php?explnum_id=1084 [Accessed on 20 April 2021].

13.   Muhamad, S. G., Esmail, L. S. and Hasan, S.H. (2011). Effect of storage temperature and sunlight exposure on the physicochemical properties of bottled water in Kurdistan region-Iraq. Journal of Applied Structural Equation Modeling, 15: 147-154.

14.   Xu, X., Zhou, G., Lei, K., LeBlanc, G.A., An, L. (2019). Phthalate esters and their potential risk in PET bottled water stored under common conditions. International Journal of Environmental Research and Public Health, 17: 1-13.

15.   Halden, R. U. (2010). Plastics and health risks. Annual Review of Public Health, 31: 179-194.

16.   Srinivasan, K. (2016). Phthalate leachates in selected plastic packed food products - A GC-MS. International Journal of Research in Chemistry and Environment, 6: 18-21.

17.   Keresztes, S., Tatar, E., Cazegeny, Z., Zaray, G. and Mihucz, V. G. (2013). Study on the leaching of phthalates from polyethylene terephthalate bottles into mineral water. Science of the Total Environment, 458-460: 451-458.

18.   Yousefi, Z., Babanezhad, E., Mohammadpour, R. A. and Ala, A. (2018). Concentration of phthalate esters in polyethylene terephthalate bottled drinking water in different storage conditions. Journal of Mazandaran University of Medical Sciences, 28: 110-120.

19.   Xu, Q., Yin, X., Wang, M., Wang, H., Zhang, N., Shen, Y., Xu, S., Zhang, L. and Gu, Z. (2010). Analysis of phthalate migration from plastic containers to packaged cooking oil and mineral water. Journal of Agricultural and Food Chemistry, 58: 11311-11317.

20.   Ibrahim, N., Osman, R., Abdullah, A. and Saim, N. (2014). Determination of phthalate plasticisers in palm oil using online solid phase extraction-liquid chromatography (SPE-LC). Journal of Chemistry, 682975: 1-9.

21.   Bosnir, J., Puntaric, D., Galic, A., Skes, I., Dijanic, T., Klaric, M., Grgic, M., Curkovic, M. and Smit, Z. (2007). Migration of phthalates from plastic containers into soft drinks and mineral water. Food Technology and Biotechnology, 45: 91-95.

22.   Montuori, P., Jover, E., Morgantini, M., Bayona, J. M. and Triassi, M. (2008). Assessing human exposure to phthalic acid and phthalate esters from mineral water stored in polyethylene terephthalate and glass bottles. Food Additives & Contaminants: Part A: Chemistry, Analysis, Control, Exposure & Risk Assessment, 25, 511-518.

23.   Rastkari, N., Zare, J. M., Yunesian, M. and Ahmadkhaniha, R. (2017). The effect of storage time, temperature and type of packaging on the release of phthalate esters into packed acidic liquids. Food Technology and Biotechnology, 55: 562-569.

24.   Schmid, P., Kohler, M., Meierhofer, R., Luzi, S. and Wegelin, M. (2008). Does the reuse of PET bottles during solar water disinfection pose a health risk due to the migration of plasticisers and other chemicals into the water? Water Research, 42: 5054-5060..

25.   Leivadara, S. V., Nikolaou, A. D. and Lekkas, T. D. (2008). Determination of organic compounds in bottled waters. Food Chemistry, 108: 277-286.

26.   Abtahi, M., Dobaradaran, S. and Torabbeigi, M. (2019). Health risk of phthalates in water environment: Occurrence in water resources, bottled water, and tap water, and burden of disease from exposure through drinking water in Tehran, Iran. Environmental Research, 173: 469-479.

27.   Greifenstein, M., White, D. W., Stubner, A., Hout, J. and Whelton, A. J. (2013). Impact of temperature and storage duration on the chemical and odor quality of military packaged water in polyethylene terephthalate bottles. Science of the Total Environment 456-457: 376-383.

28.   Al-Saleh, I., Shinwari, N. and Alsabbaheen, A. (2011). Phthalates residues in plastic bottled waters. The Journal of Toxicological Sciences, 36: 469-478.

29.   Amiridou, D. and Voutsa, D. (2011). Alkylphenols and phthalates in bottled waters. The Journal of Hazardous Materials, 185: 281-286.

30.   Erythropel, H. C., Maric, M., Nicell, J. A., Leask, R. L. and Yargeau, V. (2014). Leaching of the plasticizer di(2-ethylhexyl)phthalate (DEHP) from plastic containers and the question of human exposure. Applied Microbiology and Biotechnology, 98: 9967-9981.

31.   Yin, S., Yang, Y., Yang, D., Li, Y., Jiang, Y., Wu, L. and Sun, C. (2019). Determination of 11 phthalate esters in beverages by magnetic solid-phase extraction combined with high-performance liquid chromatography. Journal of AOAC International, 102: 1624-1631.

32.   Ceretti, E., Zani, C., Zerbini, I., Guzzella, L., Scaglia, M., Berna, V., Donato, F., Monarca, S. and Feretti, D. (2010). Comparative assessment of genotoxicity of mineral water packed in polyethylene terephthalate (PET) and glass bottles. Water Research, 44: 1462-1470.

33.   Guart, A., Bono-Blay, F., Borrell, A. and Lacorte, S. (2011). Migration of plasticizers phthalates, bisphenol A and alkylphenols from plastic containers and evaluation of risk. Food Additives & Contaminants: Part A: Chemistry, Analysis, Control, Exposure & Risk Assessment, 28, 676-685.

34.   Moreira, M. A., André, L. C. and Cardeal, Z. L. (2013). Analysis of phthalate migration to food simulants in plastic containers during microwave operations. International Journal of Environmental Research and Public Health, 11, 507-526.

35.   Petersen, A. A (2020). Little secret about bottled water. Available online: https://www.wsj.com/articles/ SB107646063079326366 [Accessed on 31 August 2020].

36.   Haouet, M. N., Tommasino, M., Mercuri, M. L., Benedetti, F., Bella, S. D., Framboas, M., Pelli, S. and Altissimi, M. S. (2018). Experimental accelerated shelf life determination of a ready-to-eat processed food. Italian Journal of Food Safety, 7: 6919-6919.

37. Schreiber, A., Fu, F., Yang, O., Wan, E., Gu, L., LeBlanc, Y. (2015). Increasing selectivity and confidence in detection when analyzing phthalates by LC-MS/MS. Available online: http://sciex.com/Documents/ brochures/Phthalates_QTRAP5500%20SelexION_3690411.pdf [Accessed on 2 Sept 2015].

38.   Zaki, G. and Shoeib, T. (2018). Concentrations of several phthalates contaminants in Egyptian bottled water: Effects of storage conditions and estimate of human exposure. Science of the Total Environment 618: 142-150.

39.   Ventrice, P., Ventrice, D., Russo, E. and De Sarro, G. (2013). Phthalates: European regulation, chemistry, pharmacokinetic and related toxicity. Environmental Toxicology and Pharmacology, 36: 88-96.

40. Vittorio, S., Jose Manuel, B. B., Claudia, B., Andrew, C., Pier, S. C., Riccardo, C., David, M. G., Konrad, G., Evgenia, L., Alicja, M. (2019). Update of the risk assessment of di-butylphthalate (DBP), butyl-benzyl-phthalate (BBP), bis(2-ethylhexyl)phthalate (DEHP), di-isononylphthalate (DINP) and di-isodecylphthalate (DIDP) for use in food contact materials. EFSA Journal, 17: 5838.

41.   Plotan, M., Frizzell, C., Robinson, V., Elliott, C. T., Connolly, L. (2013). Endocrine disruptor activity in bottled mineral and flavoured water. Food Chemistry, 136: 1590-1596.

42.   Bach, C., Dauchy, X., Chagnon, M. C. and Etienne, S. (2012). Chemical compounds and toxicological assessments of drinking water stored in polyethylene terephthalate (PET) bottles: A source of controversy reviewed. Water Research, 46, 571-583.

43.   Casajuana, N. and Lacorte, S. (2003). Presence and release of phthalic esters and other endocrine disrupting compounds in drinking water. Chromatographia, 57: 649-655.

44.   Rahman, M. and Brazel, C. S. (2004). The plasticizer market: An assessment of traditional plasticizers and research trends to meet new challenges. Progress in Polymer Science 29: 1223-1248.

45.   Boudreaux, K. A. (2020). Chapter 5 carboxylic acids and esters. Available online: https://www.angelo.edu/faculty/kboudrea/index_2353/Chapter_05_2SPP.pdf [Accessed on 31 August 2020].

46.   Lertsirisopon, R., Soda, S., Sei, K. and Ike, M. (2009). Abiotic degradation of four phthalic acid esters in aqueous phase under natural sunlight irradiation. Journal of Environmental Sciences, 21: 285-290.