Malaysian
Journal of Analytical Sciences Vol 24 No 3
(2020): 350 - 362
PERFORMANCE OF CERAMIC MEMBRANE COATED WITH GRAPHENE OXIDE AS ALTERNATIVE FOR OILY WASTEWATER
TREATMENT
(Prestasi Selaput Seramik Grafin Oksida Sebagai Pilihan
Untuk Rawatan Air Sisa Berminyak)
Nurdiyana
Nabilah Kasim1, Sharifah Abdullah1,
Nur Asmaliza Mohd Noor2*
1Faculty of Civil Engineering,
Universiti Teknologi MARA, 40450 Shah
Alam, Selangor, Malaysia
2Faculty of Civil Engineering,
Universiti Teknologi MARA Pahang,
Lintasan Semarak 26400 Jengka, Pahang, Malaysia
*Corresponding
author: nurasmaliza@uitm.edu.my
Received: 20 November
2019; Accepted: 5 April 2020; Published:
9 June 2020
Abstract
The
high demand for liquefied natural gas (LNG) contributes to the increasing
production of LNG thus leading to the increment of oily wastewater. The
membrane technology shows a very promising alternative to replace the
conventional method to treat oily wastewater. The objectives of this study are
to synthesize graphene oxide (GO) as a modifier to graphitic carbon nitride
(g-C3N4) for alumina ceramic membrane, to characterize
the structure of nanosheet and bulk of graphitic carbon nitride, graphene oxide
and g-C3N4/GO composite which leads to the study of the
performance of g-C3N4/GO coated alumina ceramic photocatalytic
membrane to degrade oil in oily wastewater. The methodology started with the
material preparation, photocatalyse membrane preparation and the
characterization of material using X-ray diffraction (XRD), Fourier
Transformation Infrared (FTIR) analysis, Brunauer Emmet Teller (BET) surface
area analyses and UV-Vis-NIR spectrophotometer analysis. The last method is the
degradation of methylene blue (MB) dye and photocatalytic study degradation of
oil in wastewater using synthesis oily wastewater. The results indicated the g-
C3N4/GO reduced 73.79% of the MB dye compared to 38.85%
and 62.71% for bulk g-C3N4 and g-C3N4
nanosheet respectively. The g-C3N4/GO composite
photocatalyst showed remarkable photocatalytic efficiency rather than bulk g-C3N4
and g-C3N4 nanosheet. Thus, the introduction of GO into
g-C3N4 has improved the charge separation efficiency of
g-C3N4 and improving the organic degradation potential of
g-C3N4.
Keywords: alumina, g-C3N4, graphene oxide, photocatalytic
membrane, oily wastewater
Abstrak
Permintaan yang tinggi terhadap gas asli
cecair (LNG) menyumbang kepada peningkatan pengeluaran LNG sehingga
mengakibatkan pertambahan terhadap air sisa berminyak. Teknologi selaput menjadi
pilihan yang menggantikan kaedah konvensional dalam merawat air sisa berminyak.
Objektif kajian ini adalah untuk melakukan sintesis grafin oksida (GO) sebagai
pengubahsuai karbon nitrida grafit (g-C3N4), untuk
memperincikan struktur lapisan nano, karbon nitrida grafit, grafin oksida dan
g-C3N4/GO komposit yang membawa kepada kajian prestasi selaput
fotomangkin seramik alumina bersalut g-C3N4/GO untuk degradasi
minyak dalam air sisa berminyak. Kaedah kajian bermula dengan penyediaan bahan,
penyediaan selaput fotomangkin dan pencirian bahan menggunakan pembelauan
sinar-X (XRD), analisis inframerah trasnformasi Fourier (FTIR), analisis
kawasan permukaan Brunauer Emmet Teller (BET) dan analisis spektrofotometer
UV-Vis-NIR. Kaedah terakhir adalah degradasi pewarna metilena biru (MB) dan kaedah
fotomangkin dalam degradasi minyak dalam air sisa menggunakan jenis tiruan.
Keputusan kajian ini telah menunjukkan bahawa g-C3N4/GO
berkurang kepada 73.79% daripada pewarna MB berbanding 38.85% untuk g-C3N4
dan 62.71% untuk g-C3N4 lapisan nano. Manakala kaedah fotomangkin
bagi komposit g-C3N4/GO menunjukkan kecekapan fotomangkin
yang luar biasa berbanding g-C3N4 dan g-C3N4
lapisan nano. Oleh itu, pengenalan GO ke dalam g-C3N4
telah meningkatkan kecekapan g-C3N4 sebagai agen pemisahan
sekali gus meningkatkan potensi g-C3N4 sebagai degradasi organik.
Kata kunci: alumina, g-C3N4, grafin
oksida, fotokatalik, selaput, air sisa berminyak
References
1.
Jacobs, D. (2011).The global
market for liquefied natural gas. Reserve
Bank Australian Bulletin, 9: 17-28.
2.
Department of Environment
(2009). Discharge of industrial effluent or mixed effluent of standard A and B.
Access from http://www.doe.gov.my/ eia/wp-content/uploads/2012/03/A-Guide-For-Investors1.pdf.
[Access online 20 March 2020].
3.
Coca, J., Gutiérrez, G.
and Benito, J. M. (2011). Treatment of oily wastewater. NATO Science Peace and Security. Series C Environment Security,
101: 1-55.
4.
Won, W., Lee, S. K.,
Choi, K. and Kwon, Y. (2014). Current trends for the floating liquefied natural
gas (FLNG) technologies. Korean Journal of Chemical Engineering, 31: 732-743.
5.
De Angelis, L. and De
Cortalezzi, M. M. F. (2013). Ceramic membrane filtration of organic compounds:
Effect of concentration, pH, and mixtures interactions on fouling. Separation and Purification Technology, 118:
762-775.
6.
Goettmann, F., Thomas,
A. and Antonietti, M. (2007). Metal-free activation of CO2 by
mesoporous graphitic carbon nitride. Angewandte
Chemie - International Edition, 46(15):
2717-2720.
7.
Liu, J, Zhang, T.,
Wang, Z., Dawson, G. and Chen, W. (2011). Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption
and photocatalytic activity. Journal of
Materials Chemistry, 21(38): 14398-14401.
8.
Kang, J. H., Kim, T.,
Choi, J., Park, J., Kim, Y. S., Chang, M. S. and Park, C. R. (2016). Hidden second
oxidation step of Hummers method. Chemistry
of Materials, 28(3): 756-764.
9.
Son, W.-J., Kim, J., Kim,
J. and Ahn, W.-S. (2008). Sonochemical synthesis of MOF-5. Chemical Communications, 44(47):
6336-6338.
10.
Kang, J. S., Won, J.,
Park, H. C., Kim, U. Y., Kang, Y. S. and Lee, Y. M. (2000). Morphology control
of asymmetric membranes by UV irradiation on polyimide dope solution. Journal of Membrane Science, 169(2):
229-235.
11.
Dutrow, B. and Clark,
C. (2015). X-ray powder diffraction (XRD), geochemical instrumentation and
analysis. Access from http://serc.carleton.edu/ research_education/geochemsheets/techniques/XRD.html
[Accessed online: 20 March 2020].
12.
Hummers, W. S. and
Offeman, R. E. (1958). Preparation of oxide. Journal of the American
Chemical Society, 80(6): 1339-1339.
13.
Guo, L. P., Wang, J., Fu,
F. and Wu, Z (2015). Three dimensional Fe3O4-graphene macroscopic composites
for arsenate removal. Journal of Hazardous Materials, 298: 28-35.
14.
Olumurewa, K. O.,
Olofinjana, B., Fasakin, O., Eleruja, M. A. and Ajayi E. O. B. (2017). Characterization
of high yield graphene oxide synthesized by simplified Hummers method. Graphene,
6(4): 85-98.
15.
Alam, S. N., Sharma, N.
and Kumar, L. (2017). Synthesis of graphene oxide (GO) by modified Hummers method
and its thermal reduction to obtain reduced graphene oxide (rGO). Graphene,
6(1): 1-18.
16.
Sheha, E. (2014). Studies
on TiO2/reduced graphene oxide composites as cathode materials for
magnesium-ion battery. Graphene, 3(3): 36-43.
17.
Bhargava, R., Wang, S. Q
and Koenig, J. L. (2003). FTIR micro spectroscopy of polymeric systems. Advances
in Polymer Science, 163: 137-191.
18.
Raphael, L. (2011).
Application of FTIR spectroscopy to agricultural soils analysis. Fourier
Transforms - New Analytical Approaches
FTIR Strategies: pp. 385-404.
19.
Gao, W. (2015). The
chemistry of graphene oxide in Graphene oxide: Reduction recipes, spectroscopy
and applications: pp. 61-95.
20.
Yang, K., Peng, H.,
Wen, Y. and Li, N. (2010). Re-examination of characteristic FTIR spectrum of
secondary layer in bilayer oleic acid-coated Fe3O4
nanoparticles. Applied Surface Science, 256(10): 3093-3097.
21.
Vlachos, N.,
Skopelitis, Y., Psaroudaki, M., Konstantinidou, V., Chatzilazarou, A. and
Tegou, E. (2006). Applications of Fourier transform-infrared spectroscopy to
edible oils. Analytica Chimica Acta, 573: 459-465.
22.
Gulmine, J.V.,
Janissek, P. R. Heise, H. M. and Akcelrud, L. (2002). Polyethylene
characterization by FTIR. Polymer Testing, 21(5): 557563.
23.
Darkwah, K. W. and Ao,
Y. (2018). Mini review on structure and properties (photocatalysis) and
preparation techniques of graphitic carbon nitride nano-based particles and its
application. Nanoscale Research Letter, 13(388): 3-15.
24.
Huh, Y. S. and Chang,
Y. K. (2015). Selective silver ion adsorption onto mesoporous graphitic carbon nitride.
Carbon, 95: 58-64.
25.
Nandi, B. K., Das B.,
Uppaluri R., Purkait M. K. (2010). Studies on submicron range microfiltration
inorganic membranes: Preparation characterization. Membrane Water Treatment,
1(2): 121-137.
26.
Ranfang, Z., Gaoxiang, D.,
Weiwei, Z., Lianhua, L., Yanming, L., Lefu, M. and Zhoahui, L.(2014).
Photocatalytic degradation of methane blue using TiO2 impregnated
diatomite. Advances in Materials Science and Engineering, 2014: 1-7.
27.
Nguyen, H. T. V., Ngo,
T. H. A., Do, K. D., Nguyen, M. N., To Dang, N. T., Nong Yuen, T. T. and Anh
Vu, V. T (2019). Preparation and characterization of hydrophilic polysulfide
membrane using graphene oxide. Hindawi Journal of Chemistry, 2019: 1-10.