Malaysian Journal of Analytical Sciences Vol 24 No 3 (2020): 350 - 362

 

 

 

 

 

PERFORMANCE OF CERAMIC MEMBRANE COATED WITH GRAPHENE OXIDE AS ALTERNATIVE FOR OILY WASTEWATER TREATMENT

 

(Prestasi Selaput Seramik Grafin Oksida Sebagai Pilihan Untuk Rawatan Air Sisa Berminyak)

 

Nurdiyana Nabilah Kasim1, Sharifah Abdullah1, Nur Asmaliza Mohd Noor2*

 

1Faculty of Civil Engineering,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

2Faculty of Civil Engineering,

Universiti Teknologi MARA Pahang, Lintasan Semarak 26400 Jengka, Pahang, Malaysia

 

*Corresponding author:  nurasmaliza@uitm.edu.my

 

 

Received: 20 November 2019; Accepted: 5 April 2020; Published:  9 June 2020

 

 

Abstract

The high demand for liquefied natural gas (LNG) contributes to the increasing production of LNG thus leading to the increment of oily wastewater. The membrane technology shows a very promising alternative to replace the conventional method to treat oily wastewater. The objectives of this study are to synthesize graphene oxide (GO) as a modifier to graphitic carbon nitride (g-C3N4) for alumina ceramic membrane, to characterize the structure of nanosheet and bulk of graphitic carbon nitride, graphene oxide and g-C3N4/GO composite which leads to the study of the performance of g-C3N4/GO coated alumina ceramic photocatalytic membrane to degrade oil in oily wastewater. The methodology started with the material preparation, photocatalyse membrane preparation and the characterization of material using X-ray diffraction (XRD), Fourier Transformation Infrared (FTIR) analysis, Brunauer Emmet Teller (BET) surface area analyses and UV-Vis-NIR spectrophotometer analysis. The last method is the degradation of methylene blue (MB) dye and photocatalytic study degradation of oil in wastewater using synthesis oily wastewater. The results indicated the g- C3N4/GO reduced 73.79% of the MB dye compared to 38.85% and 62.71% for bulk g-C3N4 and g-C3N4 nanosheet respectively. The g-C3N4/GO composite photocatalyst showed remarkable photocatalytic efficiency rather than bulk g-C3N4 and g-C3N4 nanosheet. Thus, the introduction of GO into g-C3N4 has improved the charge separation efficiency of g-C3N4 and improving the organic degradation potential of g-C3N4.

 

Keywords:  alumina, g-C3N4, graphene oxide, photocatalytic membrane, oily wastewater

 

Abstrak

Permintaan yang tinggi terhadap gas asli cecair (LNG) menyumbang kepada peningkatan pengeluaran LNG sehingga mengakibatkan pertambahan terhadap air sisa berminyak. Teknologi selaput menjadi pilihan yang menggantikan kaedah konvensional dalam merawat air sisa berminyak. Objektif kajian ini adalah untuk melakukan sintesis grafin oksida (GO) sebagai pengubahsuai karbon nitrida grafit (g-C3N4), untuk memperincikan struktur lapisan nano, karbon nitrida grafit, grafin oksida dan g-C3N4/GO komposit yang membawa kepada kajian prestasi selaput fotomangkin seramik alumina bersalut g-C3N4/GO untuk degradasi minyak dalam air sisa berminyak. Kaedah kajian bermula dengan penyediaan bahan, penyediaan selaput fotomangkin dan pencirian bahan menggunakan pembelauan sinar-X (XRD), analisis inframerah trasnformasi Fourier (FTIR), analisis kawasan permukaan Brunauer Emmet Teller (BET) dan analisis spektrofotometer UV-Vis-NIR. Kaedah terakhir adalah degradasi pewarna metilena biru (MB) dan kaedah fotomangkin dalam degradasi minyak dalam air sisa menggunakan jenis tiruan. Keputusan kajian ini telah menunjukkan bahawa g-C3N4/GO berkurang kepada 73.79% daripada pewarna MB berbanding 38.85% untuk g-C3N4 dan 62.71% untuk g-C3N4 lapisan nano. Manakala kaedah fotomangkin bagi komposit g-C3N4/GO menunjukkan kecekapan fotomangkin yang luar biasa berbanding g-C3N4 dan g-C3N4 lapisan nano. Oleh itu, pengenalan GO ke dalam g-C3N4 telah meningkatkan kecekapan g-C3N4 sebagai agen pemisahan sekali gus meningkatkan potensi g-C3N4 sebagai degradasi organik.

 

Kata kunci:  alumina, g-C3N4, grafin oksida, fotokatalik, selaput, air sisa berminyak  

 

References

1.       Jacobs, D. (2011).The global market for liquefied natural gas.  Reserve Bank Australian Bulletin, 9: 17-28.

2.       Department of Environment (2009). Discharge of industrial effluent or mixed effluent of standard A and B. Access from http://www.doe.gov.my/ eia/wp-content/uploads/2012/03/A-Guide-For-Investors1.pdf. [Access online 20 March 2020].

3.       Coca, J., Gutiérrez, G. and Benito, J. M. (2011). Treatment of oily wastewater. NATO Science Peace and Security. Series C Environment Security, 101: 1-55.

4.       Won, W., Lee, S. K., Choi, K. and Kwon, Y. (2014). Current trends for the floating liquefied natural gas (FLNG) technologies. Korean Journal of Chemical Engineering, 31: 732-743.

5.       De Angelis, L. and De Cortalezzi, M. M. F. (2013). Ceramic membrane filtration of organic compounds: Effect of concentration, pH, and mixtures interactions on fouling. Separation and Purification Technology, 118: 762-775.

6.       Goettmann, F., Thomas, A. and Antonietti, M. (2007). Metal-free activation of CO2 by mesoporous graphitic carbon nitride. Angewandte Chemie - International Edition, 46(15): 2717-2720.

7.       Liu, J, Zhang, T., Wang, Z., Dawson, G. and Chen, W. (2011).  Simple pyrolysis of urea into graphitic     carbon nitride with recyclable adsorption and photocatalytic activity. Journal of Materials Chemistry, 21(38): 14398-14401.

8.       Kang, J. H., Kim, T., Choi, J., Park, J., Kim, Y. S., Chang, M. S. and Park, C. R. (2016). Hidden second oxidation step of Hummers method. Chemistry of Materials, 28(3): 756-764.

9.       Son, W.-J., Kim, J., Kim, J. and Ahn, W.-S. (2008). Sonochemical synthesis of MOF-5. Chemical Communications, 44(47): 6336-6338.

10.    Kang, J. S., Won, J., Park, H. C., Kim, U. Y., Kang, Y. S. and Lee, Y. M. (2000). Morphology control of asymmetric membranes by UV irradiation on polyimide dope solution. Journal of Membrane Science,   169(2): 229-235.

11.    Dutrow, B. and Clark, C. (2015). X-ray powder diffraction (XRD), geochemical instrumentation and analysis. Access from http://serc.carleton.edu/ research_education/geochemsheets/techniques/XRD.html [Accessed online: 20 March 2020].

12.    Hummers, W. S. and Offeman, R. E. (1958). Preparation of oxide. Journal of the American Chemical    Society, 80(6): 1339-1339.

13.    Guo, L. P., Wang, J., Fu, F. and Wu, Z (2015). Three dimensional Fe3O4-graphene macroscopic composites for arsenate removal. Journal of Hazardous Materials, 298: 28-35.

14.    Olumurewa, K. O., Olofinjana, B., Fasakin, O., Eleruja, M. A. and Ajayi E. O. B. (2017). Characterization of high yield graphene oxide synthesized by simplified Hummers method. Graphene, 6(4): 85-98.

15.    Alam, S. N., Sharma, N. and Kumar, L. (2017). Synthesis of graphene oxide (GO) by modified Hummers method and its thermal reduction to obtain reduced graphene oxide (rGO). Graphene, 6(1): 1-18.

16.    Sheha, E. (2014). Studies on TiO2/reduced graphene oxide composites as cathode materials for magnesium-ion battery. Graphene, 3(3): 36-43.

17.    Bhargava, R., Wang, S. Q and Koenig, J. L. (2003). FTIR micro spectroscopy of polymeric systems. Advances in Polymer Science, 163: 137-191.

18.    Raphael, L. (2011). Application of FTIR spectroscopy to agricultural soils analysis. Fourier Transforms -   New Analytical Approaches FTIR Strategies: pp. 385-404.

19.    Gao, W. (2015). The chemistry of graphene oxide in Graphene oxide: Reduction recipes, spectroscopy and applications: pp. 61-95.

20.    Yang, K., Peng, H., Wen, Y. and Li, N. (2010). Re-examination of characteristic FTIR spectrum of secondary layer in bilayer oleic acid-coated Fe3O4 nanoparticles. Applied Surface Science, 256(10): 3093-3097.

21.    Vlachos, N., Skopelitis, Y., Psaroudaki, M., Konstantinidou, V., Chatzilazarou, A. and Tegou, E. (2006). Applications of Fourier transform-infrared spectroscopy to edible oils. Analytica Chimica Acta, 573: 459-465.

22.    Gulmine, J.V., Janissek, P. R. Heise, H. M. and Akcelrud, L. (2002). Polyethylene characterization by      FTIR. Polymer Testing, 21(5): 557563.

23.    Darkwah, K. W. and Ao, Y. (2018). Mini review on structure and properties (photocatalysis) and preparation techniques of graphitic carbon nitride nano-based particles and its application. Nanoscale Research Letter, 13(388): 3-15.

24.    Huh, Y. S. and Chang, Y. K. (2015). Selective silver ion adsorption onto mesoporous graphitic carbon nitride. Carbon, 95: 58-64.

25.    Nandi, B. K., Das B., Uppaluri R., Purkait M. K. (2010). Studies on submicron range microfiltration inorganic membranes: Preparation characterization. Membrane Water Treatment,  1(2): 121-137.

26.    Ranfang, Z., Gaoxiang, D., Weiwei, Z., Lianhua, L., Yanming, L., Lefu, M. and Zhoahui, L.(2014). Photocatalytic degradation of methane blue using TiO2 impregnated diatomite. Advances in Materials Science and Engineering, 2014: 1-7.

27.    Nguyen, H. T. V., Ngo, T. H. A., Do, K. D., Nguyen, M. N., To Dang, N. T., Nong Yuen, T. T. and Anh Vu, V. T (2019). Preparation and characterization of hydrophilic polysulfide membrane using graphene oxide. Hindawi Journal of Chemistry, 2019: 1-10.